コード例 #1
0
def test_adams_bashforth_requires_same_timestep(mock_prognostic_call):
    """Test that the Asselin filter is being correctly applied"""
    mock_prognostic_call.return_value = ({'air_temperature': 0.}, {})
    state = {'air_temperature': 273.}
    time_stepper = AdamsBashforth([MockPrognostic()])
    state = time_stepper.__call__(state, timedelta(seconds=1.))
    try:
        time_stepper.__call__(state, timedelta(seconds=2.))
    except ValueError:
        pass
    except Exception as err:
        raise err
    else:
        raise AssertionError(
            'AdamsBashforth must require timestep to be constant')
コード例 #2
0
    def get_steppable_component(self):
        component = self.get_component_instance()

        if isinstance(component, TendencyComponent):
            return AdamsBashforth(component)
        else:
            return component
コード例 #3
0
 def test_3d_stepping_output_matches_cached_output(self):
     component = self.get_component_instance()
     if isinstance(component, (TendencyComponent, ImplicitTendencyComponent)):
         component = AdamsBashforth(component)
         state = self.get_3d_input_state(component)
         output = call_with_timestep_if_needed(component, state)
         cached_output = self.get_cached_output('3d_stepping')
         if cached_output is None:
             self.cache_output(output, '3d_stepping')
             raise AssertionError(
                 'Failed due to no cached output, cached current output.')
         else:
             compare_outputs(output, cached_output)
コード例 #4
0
    ax.plot(state['air_temperature'].values.flatten(),
            state['air_pressure'].values.flatten(), '-o')
    ax.axes.invert_yaxis()

    ax.set_yscale('log')
    ax.set_ylim(1e5, 1.)
    ax.set_title('Temperature')
    ax.grid()
    ax.set_xlabel('K')
    ax.set_yticklabels([])


monitor = PlotFunctionMonitor(plot_function)
rad_sw = RRTMGShortwave()
rad_lw = RRTMGLongwave()
time_stepper = AdamsBashforth([rad_sw, rad_lw])
timestep = timedelta(hours=1)

mid_levels = {'label': 'mid_level', 'values': np.arange(60), 'units': ''}

int_levels = {'label': 'interface_level', 'values': np.arange(61), 'units': ''}
state = get_default_state([rad_sw, rad_lw],
                          mid_levels=mid_levels,
                          interface_levels=int_levels)

tp_profiles = np.load('thermodynamic_profiles.npz')
mol_profiles = np.load('molecule_profiles.npz')

state['air_pressure'].values[0, 0, :] = tp_profiles['air_pressure']
state['air_temperature'].values[0, 0, :] = tp_profiles['air_temperature']
state['air_pressure_on_interface_levels'].values[
コード例 #5
0
    ax.set_xlabel('longitude')
    ax.set_ylabel('latitude')
    ax.set_title('Lowest model level air temperature (K)')
    im = ax.pcolormesh(
        state['air_temperature'].to_units('degK').values[0, :, :],
        vmin=260.,
        vmax=310.)
    cbar = fig.colorbar(im)


plot_monitor = PlotFunctionMonitor(my_plot_function)

state = get_initial_state(nx=256, ny=128, nz=64)
state['time'] = datetime(2000, 1, 1)

physics_stepper = AdamsBashforth(
    UpdateFrequencyWrapper(Radiation(), timedelta(hours=2)),
    BoundaryLayer(),
    DeepConvection(),
)
implicit_dynamics = ImplicitDynamics()

timestep = timedelta(minutes=30)
while state['time'] < datetime(2010, 1, 1):
    physics_diagnostics, state_after_physics = physics_stepper(state)
    dynamics_diagnostics, next_state = implicit_dynamics(state_after_physics)
    state_after_physics.update(physics_diagnostics)
    state_after_physics.update(dynamics_diagnostics)
    plot_monitor.store(state_after_physics)
    next_state['time'] = state['time'] + timestep
    state = next_state
コード例 #6
0

def plot_function(fig, state):
    ax = fig.add_subplot(1, 1, 1)
    ax.plot(state['air_temperature'].values.flatten(),
            state['air_pressure'].values.flatten(), '-o')
    ax.axes.invert_yaxis()
    ax.set_yscale('log')
    ax.set_ylim(1e5, 100.)
    ax.set_xlabel('Kelvin')
    ax.set_ylabel('Pa')
    ax.set_title('Radiative equilibrium in a Grey Gas atmosphere')
    ax.grid()


monitor = PlotFunctionMonitor(plot_function)
diagnostic = Frierson06LongwaveOpticalDepth()
radiation = GrayLongwaveRadiation()
time_stepper = AdamsBashforth([radiation])
timestep = timedelta(hours=4)

state = get_default_state([radiation, diagnostic])

for i in range(6 * 7 * 4 * 10):
    state.update(diagnostic(state))
    diagnostics, new_state = time_stepper(state, timestep)
    state.update(diagnostics)
    if i % 5 == 0:
        monitor.store(state)
    state.update(new_state)
コード例 #7
0
 def timestepper_class(self, *args):
     return AdamsBashforth(*args, order=4)
コード例 #8
0
ファイル: radiative_equilibrium.py プロジェクト: sit23/climt

def plot_function(fig, state):
    ax = fig.add_subplot(1, 1, 1)
    ax.plot(
        state['air_temperature'].values.flatten(),
        state['air_pressure'].values.flatten(), '-o')
    ax.axes.invert_yaxis()
    ax.set_yscale('log')
    ax.set_ylim(1e5, 100.)
    ax.set_xlabel('Kelvin')
    ax.set_ylabel('Pa')
    ax.set_title('Radiative equilibrium in a Grey Gas atmosphere')


monitor = PlotFunctionMonitor(plot_function)
diagnostic = Frierson06LongwaveOpticalDepth()
radiation = GrayLongwaveRadiation()
time_stepper = AdamsBashforth([radiation])
timestep = timedelta(hours=4)

state = get_default_state([radiation, diagnostic])

for i in range(6*7*4*10):
    state.update(diagnostic(state))
    diagnostics, new_state = time_stepper.__call__(state, timestep)
    state.update(diagnostics)
    if i % 5 == 0:
        monitor.store(state)
    state.update(new_state)
コード例 #9
0
convection.current_time_step = timestep

state = get_default_state(
    [simple_physics, convection, radiation_lw, radiation_sw, slab])

state['air_temperature'].values[:] = 270
state['surface_albedo_for_direct_shortwave'].values[:] = 0.5
state['surface_albedo_for_direct_near_infrared'].values[:] = 0.5
state['surface_albedo_for_diffuse_shortwave'].values[:] = 0.5

state['zenith_angle'].values[:] = np.pi / 2.5
state['surface_temperature'].values[:] = 300.
state['ocean_mixed_layer_thickness'].values[:] = 5
state['area_type'].values[:] = 'sea'

time_stepper = AdamsBashforth([convection, radiation_lw, radiation_sw, slab])

for i in range(20000):
    convection.current_time_step = timestep
    diagnostics, state = time_stepper(state, timestep)
    state.update(diagnostics)
    diagnostics, new_state = simple_physics(state, timestep)
    state.update(diagnostics)
    if (i + 1) % 20 == 0:
        monitor.store(state)
        netcdf_monitor.store(state)
        print(i, state['surface_temperature'].values)
        print(state['surface_upward_sensible_heat_flux'])
        print(state['surface_upward_latent_heat_flux'])

    state.update(new_state)
コード例 #10
0
ファイル: test_timestepping.py プロジェクト: sunt05/sympl
 def timestepper_class(self, *args, **kwargs):
     kwargs['order'] = 4
     return AdamsBashforth(*args, **kwargs)
コード例 #11
0
import climt
import matplotlib.pyplot as plt
import numpy as np
from sympl import AdamsBashforth
from datetime import timedelta

incoming_radiation = climt.RRTMGShortwave(
        cloud_overlap_method=0,
        solar_constant = 2500)
outgoing_radiation = climt.RRTMGLongwave(
        cloud_overlap_method=0)
convection = climt.EmanuelConvection()
surface = climt.SlabSurface()
state = climt.get_default_state([incoming_radiation,
                                 outgoing_radiation,
                                 convection])
model_time_step = timedelta(hours=24)
model = AdamsBashforth([incoming_radiation,
                        outgoing_radiation,
                        convection])

for step in range(50):
    diagnostics, new_state = model(state, model_time_step)
    state.update(diagnostics)
    state.update(new_state)
    state['time'] += model_time_step
    print state['time'], ':', state['air_temperature'].max().values
    #print state['time'], ':', state['surface_longwave_emissivity'].max().values

#print state.keys()