コード例 #1
0
ファイル: test_refine.py プロジェクト: vishalbelsare/sympy
def test_pow1():
    assert refine((-1)**x, Q.even(x)) == 1
    assert refine((-1)**x, Q.odd(x)) == -1
    assert refine((-2)**x, Q.even(x)) == 2**x

    # nested powers
    assert refine(sqrt(x**2)) != Abs(x)
    assert refine(sqrt(x**2), Q.complex(x)) != Abs(x)
    assert refine(sqrt(x**2), Q.real(x)) == Abs(x)
    assert refine(sqrt(x**2), Q.positive(x)) == x
    assert refine((x**3)**Rational(1, 3)) != x

    assert refine((x**3)**Rational(1, 3), Q.real(x)) != x
    assert refine((x**3)**Rational(1, 3), Q.positive(x)) == x

    assert refine(sqrt(1/x), Q.real(x)) != 1/sqrt(x)
    assert refine(sqrt(1/x), Q.positive(x)) == 1/sqrt(x)

    # powers of (-1)
    assert refine((-1)**(x + y), Q.even(x)) == (-1)**y
    assert refine((-1)**(x + y + z), Q.odd(x) & Q.odd(z)) == (-1)**y
    assert refine((-1)**(x + y + 1), Q.odd(x)) == (-1)**y
    assert refine((-1)**(x + y + 2), Q.odd(x)) == (-1)**(y + 1)
    assert refine((-1)**(x + 3)) == (-1)**(x + 1)

    # continuation
    assert refine((-1)**((-1)**x/2 - S.Half), Q.integer(x)) == (-1)**x
    assert refine((-1)**((-1)**x/2 + S.Half), Q.integer(x)) == (-1)**(x + 1)
    assert refine((-1)**((-1)**x/2 + 5*S.Half), Q.integer(x)) == (-1)**(x + 1)
コード例 #2
0
def test_matrix_element_sets():
    X = MatrixSymbol('X', 4, 4)
    assert ask(Q.real(X[1, 2]), Q.real_elements(X))
    assert ask(Q.integer(X[1, 2]), Q.integer_elements(X))
    assert ask(Q.complex(X[1, 2]), Q.complex_elements(X))
    assert ask(Q.integer_elements(Identity(3)))
    assert ask(Q.integer_elements(ZeroMatrix(3, 3)))
    assert ask(Q.integer_elements(OneMatrix(3, 3)))
    from sympy.matrices.expressions.fourier import DFT
    assert ask(Q.complex_elements(DFT(3)))
コード例 #3
0
def get_known_facts(x=None):
    """
    Facts between unary predicates.

    Parameters
    ==========

    x : Symbol, optional
        Placeholder symbol for unary facts. Default is ``Symbol('x')``.

    Returns
    =======

    fact : Known facts in conjugated normal form.

    """
    if x is None:
        x = Symbol('x')

    fact = And(
        # primitive predicates for extended real exclude each other.
        Exclusive(Q.negative_infinite(x), Q.negative(x), Q.zero(x),
                  Q.positive(x), Q.positive_infinite(x)),

        # build complex plane
        Exclusive(Q.real(x), Q.imaginary(x)),
        Implies(Q.real(x) | Q.imaginary(x), Q.complex(x)),

        # other subsets of complex
        Exclusive(Q.transcendental(x), Q.algebraic(x)),
        Equivalent(Q.real(x),
                   Q.rational(x) | Q.irrational(x)),
        Exclusive(Q.irrational(x), Q.rational(x)),
        Implies(Q.rational(x), Q.algebraic(x)),

        # integers
        Exclusive(Q.even(x), Q.odd(x)),
        Implies(Q.integer(x), Q.rational(x)),
        Implies(Q.zero(x), Q.even(x)),
        Exclusive(Q.composite(x), Q.prime(x)),
        Implies(Q.composite(x) | Q.prime(x),
                Q.integer(x) & Q.positive(x)),
        Implies(Q.even(x) & Q.positive(x) & ~Q.prime(x), Q.composite(x)),

        # hermitian and antihermitian
        Implies(Q.real(x), Q.hermitian(x)),
        Implies(Q.imaginary(x), Q.antihermitian(x)),
        Implies(Q.zero(x),
                Q.hermitian(x) | Q.antihermitian(x)),

        # define finity and infinity, and build extended real line
        Exclusive(Q.infinite(x), Q.finite(x)),
        Implies(Q.complex(x), Q.finite(x)),
        Implies(
            Q.negative_infinite(x) | Q.positive_infinite(x), Q.infinite(x)),

        # commutativity
        Implies(Q.finite(x) | Q.infinite(x), Q.commutative(x)),

        # matrices
        Implies(Q.orthogonal(x), Q.positive_definite(x)),
        Implies(Q.orthogonal(x), Q.unitary(x)),
        Implies(Q.unitary(x) & Q.real_elements(x), Q.orthogonal(x)),
        Implies(Q.unitary(x), Q.normal(x)),
        Implies(Q.unitary(x), Q.invertible(x)),
        Implies(Q.normal(x), Q.square(x)),
        Implies(Q.diagonal(x), Q.normal(x)),
        Implies(Q.positive_definite(x), Q.invertible(x)),
        Implies(Q.diagonal(x), Q.upper_triangular(x)),
        Implies(Q.diagonal(x), Q.lower_triangular(x)),
        Implies(Q.lower_triangular(x), Q.triangular(x)),
        Implies(Q.upper_triangular(x), Q.triangular(x)),
        Implies(Q.triangular(x),
                Q.upper_triangular(x) | Q.lower_triangular(x)),
        Implies(Q.upper_triangular(x) & Q.lower_triangular(x), Q.diagonal(x)),
        Implies(Q.diagonal(x), Q.symmetric(x)),
        Implies(Q.unit_triangular(x), Q.triangular(x)),
        Implies(Q.invertible(x), Q.fullrank(x)),
        Implies(Q.invertible(x), Q.square(x)),
        Implies(Q.symmetric(x), Q.square(x)),
        Implies(Q.fullrank(x) & Q.square(x), Q.invertible(x)),
        Equivalent(Q.invertible(x), ~Q.singular(x)),
        Implies(Q.integer_elements(x), Q.real_elements(x)),
        Implies(Q.real_elements(x), Q.complex_elements(x)),
    )
    return fact