コード例 #1
0
def test_centralizer():
    # the centralizer of the trivial group is the entire group
    S = SymmetricGroup(2)
    assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S)
    A = AlternatingGroup(5)
    assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A)
    # a centralizer in the trivial group is the trivial group itself
    triv = PermutationGroup([Permutation([0, 1, 2, 3])])
    D = DihedralGroup(4)
    assert triv.centralizer(D).is_subgroup(triv)
    # brute-force verifications for centralizers of groups
    for i in (4, 5, 6):
        S = SymmetricGroup(i)
        A = AlternatingGroup(i)
        C = CyclicGroup(i)
        D = DihedralGroup(i)
        for gp in (S, A, C, D):
            for gp2 in (S, A, C, D):
                if not gp2.is_subgroup(gp):
                    assert _verify_centralizer(gp, gp2)
    # verify the centralizer for all elements of several groups
    S = SymmetricGroup(5)
    elements = list(S.generate_dimino())
    for element in elements:
        assert _verify_centralizer(S, element)
    A = AlternatingGroup(5)
    elements = list(A.generate_dimino())
    for element in elements:
        assert _verify_centralizer(A, element)
    D = DihedralGroup(7)
    elements = list(D.generate_dimino())
    for element in elements:
        assert _verify_centralizer(D, element)
    # verify centralizers of small groups within small groups
    small = []
    for i in (1, 2, 3):
        small.append(SymmetricGroup(i))
        small.append(AlternatingGroup(i))
        small.append(DihedralGroup(i))
        small.append(CyclicGroup(i))
    for gp in small:
        for gp2 in small:
            if gp.degree == gp2.degree:
                assert _verify_centralizer(gp, gp2)
コード例 #2
0
def get_state_space_size(moves, n_points):
    """
    calculate the state space size of the puzzle generated by the given moves

    inputs:
    -------
        moves - (list) or (iter) - iterable containing moves as lists of cycles
        n_points - (int) - number of points (color stickers) in the puzzle
            this can be determined with `len(puzzle.solved_state)`

    returns:
    --------
        (int) - number of possible states of the puzzle
    """
    perms = list()
    for move in moves:
        perms.append(Permutation(move, size=n_points))
    perm_group = PermutationGroup(perms)
    return perm_group.order()
コード例 #3
0
def test_isomorphisms():

    F, a, b = free_group("a, b")
    E, c, d = free_group("c, d")
    # Infinite groups with differently ordered relators.
    G = FpGroup(F, [a**2, b**3])
    H = FpGroup(F, [b**3, a**2])
    assert is_isomorphic(G, H)

    # Trivial Case
    # FpGroup -> FpGroup
    H = FpGroup(F, [a**3, b**3, (a*b)**2])
    F, c, d = free_group("c, d")
    G = FpGroup(F, [c**3, d**3, (c*d)**2])
    check, T =  group_isomorphism(G, H)
    assert check
    T(c**3*d**2) == a**3*b**2

    # FpGroup -> PermutationGroup
    # FpGroup is converted to the equivalent isomorphic group.
    F, a, b = free_group("a, b")
    G = FpGroup(F, [a**3, b**3, (a*b)**2])
    H = AlternatingGroup(4)
    check, T = group_isomorphism(G, H)
    assert check
    assert T(b*a*b**-1*a**-1*b**-1) == Permutation(0, 2, 3)
    assert T(b*a*b*a**-1*b**-1) == Permutation(0, 3, 2)

    # PermutationGroup -> PermutationGroup
    D = DihedralGroup(8)
    p = Permutation(0, 1, 2, 3, 4, 5, 6, 7)
    P = PermutationGroup(p)
    assert not is_isomorphic(D, P)

    A = CyclicGroup(5)
    B = CyclicGroup(7)
    assert not is_isomorphic(A, B)

    # Two groups of the same prime order are isomorphic to each other.
    G = FpGroup(F, [a, b**5])
    H = CyclicGroup(5)
    assert G.order() == H.order()
    assert is_isomorphic(G, H)
コード例 #4
0
    def base_strong_generating_set(self, hermitian=True, no_sym=False):
        """
        Return minimal base and strong generating set of this IndicesPair.
        :param hermitian: upper and lower indices can be swapped if True
        :param no_sym: an identity group if True
        :return: a tuple of (base, strong generating set)
        """
        if self.size == 0:
            raise ValueError("Cannot perform BSGS on empty indices pair.")

        if no_sym:
            sym = PermutationGroup([Permutation(range(2 * self.n_body + 2))])
            sym.schreier_sims()
            return get_minimal_bsgs(sym.base, sym.strong_gens)

        if not isinstance(self.upper_indices, IndicesAntisymmetric):
            return self.sym_bsgs(hermitian)
        else:
            return self.asym_bsgs(hermitian)
コード例 #5
0
ファイル: homomorphisms.py プロジェクト: Daaofer/sympyTest
def orbit_homomorphism(group, omega):
    '''
    Return the homomorphism induced by the action of the permutation
    group `group` on the set `omega` that is closed under the action.

    '''
    from sympy.combinatorics import Permutation
    from sympy.combinatorics.named_groups import SymmetricGroup
    codomain = SymmetricGroup(len(omega))
    identity = codomain.identity
    omega = list(omega)
    images = {g: identity*Permutation([omega.index(o^g) for o in omega]) for g in group.generators}
    group._schreier_sims(base=omega)
    H = GroupHomomorphism(group, codomain, images)
    if len(group.basic_stabilizers) > len(omega):
        H._kernel = group.basic_stabilizers[len(omega)]
    else:
        H._kernel = PermutationGroup([group.identity])
    return H
コード例 #6
0
ファイル: testutil.py プロジェクト: landunin/meta-core
def _verify_normal_closure(group, arg, closure=None):
    from sympy.combinatorics.perm_groups import PermutationGroup
    """
    Verify the normal closure of a subgroup/subset/element in a group.

    This is used to test
    sympy.combinatorics.perm_groups.PermutationGroup.normal_closure

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import (SymmetricGroup,\
    ... AlternatingGroup)
    >>> from sympy.combinatorics.testutil import _verify_normal_closure
    >>> S = SymmetricGroup(3)
    >>> A = AlternatingGroup(3)
    >>> _verify_normal_closure(S, A, closure=A)
    True

    See Also
    ========

    sympy.combinatorics.perm_groups.PermutationGroup.normal_closure

    """
    if closure is None:
        closure = group.normal_closure(arg)
    conjugates = []
    group_els = list(group.generate_dimino())
    if hasattr(arg, 'generators'):
        subgr_gens = arg.generators
    elif hasattr(arg, '__getitem__'):
        subgr_gens = arg
    elif hasattr(arg, 'array_form'):
        subgr_gens = [arg]
    for el in group_els:
        for gen in subgr_gens:
            conjugate = rmul(~el, gen, el)
            if conjugate not in conjugates:
                conjugates.append(conjugate)
    naive_closure = PermutationGroup(conjugates)
    return closure.is_subgroup(naive_closure)
コード例 #7
0
def CyclicGroup(n):
    """
    Generates the cyclic group of order ``n`` as a permutation group.

    Explanation
    ===========

    The generator taken is the ``n``-cycle ``(0 1 2 ... n-1)``
    (in cycle notation). After the group is generated, some of its basic
    properties are set.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import CyclicGroup
    >>> G = CyclicGroup(6)
    >>> G.is_group
    True
    >>> G.order()
    6
    >>> list(G.generate_schreier_sims(af=True))
    [[0, 1, 2, 3, 4, 5], [1, 2, 3, 4, 5, 0], [2, 3, 4, 5, 0, 1],
    [3, 4, 5, 0, 1, 2], [4, 5, 0, 1, 2, 3], [5, 0, 1, 2, 3, 4]]

    See Also
    ========

    SymmetricGroup, DihedralGroup, AlternatingGroup

    """
    a = list(range(1, n))
    a.append(0)
    gen = _af_new(a)
    G = PermutationGroup([gen])

    G._is_abelian = True
    G._is_nilpotent = True
    G._is_solvable = True
    G._degree = n
    G._is_transitive = True
    G._order = n
    return G
コード例 #8
0
def test_composition_series():
    a = Permutation(1, 2, 3)
    b = Permutation(1, 2)
    G = PermutationGroup([a, b])
    comp_series = G.composition_series()
    assert comp_series == G.derived_series()
    # The first group in the composition series is always the group itself and
    # the last group in the series is the trivial group.
    S = SymmetricGroup(4)
    assert S.composition_series()[0] == S
    assert len(S.composition_series()) == 5
    A = AlternatingGroup(4)
    assert A.composition_series()[0] == A
    assert len(A.composition_series()) == 4

    # the composition series for C_8 is C_8 > C_4 > C_2 > triv
    G = CyclicGroup(8)
    series = G.composition_series()
    assert is_isomorphic(series[1], CyclicGroup(4))
    assert is_isomorphic(series[2], CyclicGroup(2))
    assert series[3].is_trivial
コード例 #9
0
def gen_puzzle_group(moves, n_points):
    """
    generate the group representing the puzzle.
    The group will be a subgroup of the symmetric group with order [n_points]
        and it will have the given moves as generators.

    inputs:
    -------
        moves - (list) of (list)s of (list)s of (int)s - list of moves represented
            as lists of cycles defining the permutation.
        n_points - (int) - number of points in the puzzle
            n_points = len(puzzle.SOLVED_STATE)

    returns:
    --------
        (sympy.combinatorics.perm_groups.PermutationGroup) -
            a sympy permutation group generated by the moves.
    """
    perms = list()
    for move in moves:
        perms.append(Permutation(move, size=n_points))
    return PermutationGroup(perms)
コード例 #10
0
def _verify_normal_closure(group, arg, closure=None):
    from sympy.combinatorics.perm_groups import PermutationGroup
    """
    Verify the normal closure of a subgroup/subset/element in a group.

    This is used to test
    sympy.combinatorics.perm_groups.PermutationGroup.normal_closure

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import (SymmetricGroup,
    ... AlternatingGroup)
    >>> from sympy.combinatorics.testutil import _verify_normal_closure
    >>> S = SymmetricGroup(3)
    >>> A = AlternatingGroup(3)
    >>> _verify_normal_closure(S, A, closure=A)
    True

    See Also
    ========

    sympy.combinatorics.perm_groups.PermutationGroup.normal_closure

    """
    if closure is None:
        closure = group.normal_closure(arg)
    conjugates = set()
    if hasattr(arg, "generators"):
        subgr_gens = arg.generators
    elif hasattr(arg, "__getitem__"):
        subgr_gens = arg
    elif hasattr(arg, "array_form"):
        subgr_gens = [arg]
    for el in group.generate_dimino():
        for gen in subgr_gens:
            conjugates.add(gen ^ el)
    naive_closure = PermutationGroup(list(conjugates))
    return closure.is_subgroup(naive_closure)
コード例 #11
0
def _verify_bsgs(group, base, gens):
    """
    Verify the correctness of a base and strong generating set.

    Explanation
    ===========

    This is a naive implementation using the definition of a base and a strong
    generating set relative to it. There are other procedures for
    verifying a base and strong generating set, but this one will
    serve for more robust testing.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import AlternatingGroup
    >>> from sympy.combinatorics.testutil import _verify_bsgs
    >>> A = AlternatingGroup(4)
    >>> A.schreier_sims()
    >>> _verify_bsgs(A, A.base, A.strong_gens)
    True

    See Also
    ========

    sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims

    """
    from sympy.combinatorics.perm_groups import PermutationGroup
    strong_gens_distr = _distribute_gens_by_base(base, gens)
    current_stabilizer = group
    for i in range(len(base)):
        candidate = PermutationGroup(strong_gens_distr[i])
        if current_stabilizer.order() != candidate.order():
            return False
        current_stabilizer = current_stabilizer.stabilizer(base[i])
    if current_stabilizer.order() != 1:
        return False
    return True
コード例 #12
0
def test_schreier_sims_incremental():
    identity = Permutation([0, 1, 2, 3, 4])
    TrivialGroup = PermutationGroup([identity])
    base, strong_gens = TrivialGroup.schreier_sims_incremental(base=[0, 1, 2])
    assert _verify_bsgs(TrivialGroup, base, strong_gens) is True
    S = SymmetricGroup(5)
    base, strong_gens = S.schreier_sims_incremental(base=[0, 1, 2])
    assert _verify_bsgs(S, base, strong_gens) is True
    D = DihedralGroup(2)
    base, strong_gens = D.schreier_sims_incremental(base=[1])
    assert _verify_bsgs(D, base, strong_gens) is True
    A = AlternatingGroup(7)
    gens = A.generators[:]
    gen0 = gens[0]
    gen1 = gens[1]
    gen1 = rmul(gen1, ~gen0)
    gen0 = rmul(gen0, gen1)
    gen1 = rmul(gen0, gen1)
    base, strong_gens = A.schreier_sims_incremental(base=[0, 1], gens=gens)
    assert _verify_bsgs(A, base, strong_gens) is True
    C = CyclicGroup(11)
    gen = C.generators[0]
    base, strong_gens = C.schreier_sims_incremental(gens=[gen**3])
    assert _verify_bsgs(C, base, strong_gens) is True
コード例 #13
0
    def asym_bsgs(self, hermitian):
        """
        Return minimal base and strong generating set for antisymmetric indices.
        :param hermitian: upper and lower indices can be swapped if True
        :return: a tuple of (base, strong generating set)
        """
        if not hermitian:
            u_base, u_gens = get_symmetric_group_sgs(self.n_upper, 1)
            l_base, l_gens = get_symmetric_group_sgs(self.n_lower, 1)
            return bsgs_direct_product(u_base, u_gens, l_base, l_gens)

        if self.n_upper != self.n_lower:
            raise ValueError(f"{self} cannot be Hermitian.")

        upper = list(range(self.n_upper))
        lower = list(range(self.n_upper, self.size))
        sign = [self.size, self.size + 1]

        perms = [
            Permutation(i, j)(sign[0], sign[1])
            for i, j in zip(upper[:-1], upper[1:])
        ]
        perms += [
            Permutation(i, j)(sign[0], sign[1])
            for i, j in zip(lower[:-1], lower[1:])
        ]

        p = list(range(self.size + 2))
        for i, j in zip(upper, lower):
            p[i] = j
            p[j] = i
        perms.append(Permutation(p))

        asymmetric = PermutationGroup(*perms)
        asymmetric.schreier_sims()
        return get_minimal_bsgs(asymmetric.base, asymmetric.strong_gens)
コード例 #14
0
    def check(h, size, rpt, target):

        assert len(h.faces) + len(h.vertices) - len(h.edges) == 2
        assert h.size == size

        got = set()
        for p in h.pgroup:
            # make sure it restores original
            P = h.copy()
            hit = P.corners
            for i in range(rpt):
                P.rotate(p)
                if P.corners == hit:
                    break
            else:
                print('error in permutation', p.array_form)
            for i in range(rpt):
                P.rotate(p)
                got.add(tuple(P.corners))
                c = P.corners
                f = [[c[i] for i in f] for f in P.faces]
                assert h.faces == Polyhedron(c, f).faces
        assert len(got) == target
        assert PermutationGroup([Permutation(g) for g in got]).is_group
コード例 #15
0
def test_is_trivial():
    for i in range(5):
        triv = PermutationGroup([Permutation(list(range(i)))])
        assert triv.is_trivial
コード例 #16
0
def test_order():
    a = Permutation([2, 0, 1, 3, 4, 5, 6, 7, 8, 9])
    b = Permutation([2, 1, 3, 4, 5, 6, 7, 8, 9, 0])
    g = PermutationGroup([a, b])
    assert g.order() == 1814400
    assert PermutationGroup().order() == 1
コード例 #17
0
def canonicalize_naive(g, dummies, sym, *v):
    """
    Canonicalize tensor formed by tensors of the different types.

    Explanation
    ===========

    sym_i symmetry under exchange of two component tensors of type `i`
          None  no symmetry
          0     commuting
          1     anticommuting

    Parameters
    ==========

    g : Permutation representing the tensor.
    dummies : List of dummy indices.
    msym : Symmetry of the metric.
    v : A list of (base_i, gens_i, n_i, sym_i) for tensors of type `i`.
        base_i, gens_i BSGS for tensors of this type
        n_i  number ot tensors of type `i`

    Returns
    =======

    Returns 0 if the tensor is zero, else returns the array form of
    the permutation representing the canonical form of the tensor.

    Examples
    ========

    >>> from sympy.combinatorics.testutil import canonicalize_naive
    >>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs
    >>> from sympy.combinatorics import Permutation
    >>> g = Permutation([1, 3, 2, 0, 4, 5])
    >>> base2, gens2 = get_symmetric_group_sgs(2)
    >>> canonicalize_naive(g, [2, 3], 0, (base2, gens2, 2, 0))
    [0, 2, 1, 3, 4, 5]
    """
    from sympy.combinatorics.perm_groups import PermutationGroup
    from sympy.combinatorics.tensor_can import gens_products, dummy_sgs
    from sympy.combinatorics.permutations import Permutation, _af_rmul
    v1 = []
    for i in range(len(v)):
        base_i, gens_i, n_i, sym_i = v[i]
        v1.append((base_i, gens_i, [[]] * n_i, sym_i))
    size, sbase, sgens = gens_products(*v1)
    dgens = dummy_sgs(dummies, sym, size - 2)
    if isinstance(sym, int):
        num_types = 1
        dummies = [dummies]
        sym = [sym]
    else:
        num_types = len(sym)
    dgens = []
    for i in range(num_types):
        dgens.extend(dummy_sgs(dummies[i], sym[i], size - 2))
    S = PermutationGroup(sgens)
    D = PermutationGroup([Permutation(x) for x in dgens])
    dlist = list(D.generate(af=True))
    g = g.array_form
    st = set()
    for s in S.generate(af=True):
        h = _af_rmul(g, s)
        for d in dlist:
            q = tuple(_af_rmul(d, h))
            st.add(q)
    a = list(st)
    a.sort()
    prev = (0, ) * size
    for h in a:
        if h[:-2] == prev[:-2]:
            if h[-1] != prev[-1]:
                return 0
        prev = h
    return list(a[0])
コード例 #18
0
    def exponent_vector(self, element):
        r"""
        Return the exponent vector of length equal to the
        length of polycyclic generating sequence.

        For a given generator/element ``g`` of the polycyclic group,
        it can be represented as `g = {x_1}^{e_1}, \ldots, {x_n}^{e_n}`,
        where `x_i` represents polycyclic generators and ``n`` is
        the number of generators in the free_group equal to the length
        of pcgs.

        Parameters
        ==========

        element : Permutation
            Generator of a polycyclic group.

        Examples
        ========
        >>> from sympy.combinatorics.named_groups import SymmetricGroup
        >>> from sympy.combinatorics.permutations import Permutation
        >>> G = SymmetricGroup(4)
        >>> PcGroup = G.polycyclic_group()
        >>> collector = PcGroup.collector
        >>> pcgs = PcGroup.pcgs
        >>> collector.exponent_vector(G[0])
        [1, 0, 0, 0]
        >>> exp = collector.exponent_vector(G[1])
        >>> g = Permutation()
        >>> for i in range(len(exp)):
        ...     g = g*pcgs[i]**exp[i] if exp[i] else g
        >>> assert g == G[1]

        References
        ==========

        .. [1] Holt, D., Eick, B., O'Brien, E.
               "Handbook of Computational Group Theory"
               Section 8.1.1, Definition 8.4

        """
        free_group = self.free_group
        G = PermutationGroup()
        for g in self.pcgs:
            G = PermutationGroup([g] + G.generators)
        gens = G.generator_product(element, original=True)
        gens.reverse()

        perm_to_free = {}
        for sym, g in zip(free_group.generators, self.pcgs):
            perm_to_free[g**-1] = sym**-1
            perm_to_free[g] = sym
        w = free_group.identity
        for g in gens:
            w = w * perm_to_free[g]

        pc_presentation = self.pc_presentation
        word = self.collected_word(w)

        index = self.index
        exp_vector = [0] * len(free_group)
        word = word.array_form
        for t in word:
            exp_vector[index[t[0]]] = t[1]
        return exp_vector
コード例 #19
0
    def __new__(cls, corners, faces=[], pgroup=[]):
        """
        The constructor of the Polyhedron group object.

        It takes up to three parameters: the corners, faces, and
        allowed transformations.

        The corners/vertices are entered as a list of arbitrary
        expressions that are used to identify each vertex.

        The faces are entered as a list of tuples of indices; a tuple
        of indices identifies the vertices which define the face. They
        should be entered in a cw or ccw order; they will be standardized
        by reversal and rotation to be give the lowest lexical ordering.
        If no faces are given then no edges will be computed.

            >>> from sympy.combinatorics.polyhedron import Polyhedron
            >>> Polyhedron(list('abc'), [(1, 2, 0)]).faces
            {(0, 1, 2)}
            >>> Polyhedron(list('abc'), [(1, 0, 2)]).faces
            {(0, 1, 2)}

        The allowed transformations are entered as allowable permutations
        of the vertices for the polyhedron. Instance of Permutations
        (as with faces) should refer to the supplied vertices by index.
        These permutation are stored as a PermutationGroup.

        Examples
        ========

        >>> from sympy.combinatorics.permutations import Permutation
        >>> Permutation.print_cyclic = False
        >>> from sympy.abc import w, x, y, z

        Here we construct the Polyhedron object for a tetrahedron.

        >>> corners = [w, x, y, z]
        >>> faces = [(0,1,2), (0,2,3), (0,3,1), (1,2,3)]

        Next, allowed transformations of the polyhedron must be given. This
        is given as permutations of vertices.

        Although the vertices of a tetrahedron can be numbered in 24 (4!)
        different ways, there are only 12 different orientations for a
        physical tetrahedron. The following permutations, applied once or
        twice, will generate all 12 of the orientations. (The identity
        permutation, Permutation(range(4)), is not included since it does
        not change the orientation of the vertices.)

        >>> pgroup = [Permutation([[0,1,2], [3]]), \
                      Permutation([[0,1,3], [2]]), \
                      Permutation([[0,2,3], [1]]), \
                      Permutation([[1,2,3], [0]]), \
                      Permutation([[0,1], [2,3]]), \
                      Permutation([[0,2], [1,3]]), \
                      Permutation([[0,3], [1,2]])]

        The Polyhedron is now constructed and demonstrated:

        >>> tetra = Polyhedron(corners, faces, pgroup)
        >>> tetra.size
        4
        >>> tetra.edges
        {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
        >>> tetra.corners
        (w, x, y, z)

        It can be rotated with an arbitrary permutation of vertices, e.g.
        the following permutation is not in the pgroup:

        >>> tetra.rotate(Permutation([0, 1, 3, 2]))
        >>> tetra.corners
        (w, x, z, y)

        An allowed permutation of the vertices can be constructed by
        repeatedly applying permutations from the pgroup to the vertices.
        Here is a demonstration that applying p and p**2 for every p in
        pgroup generates all the orientations of a tetrahedron and no others:

        >>> all = ( (w, x, y, z), \
                    (x, y, w, z), \
                    (y, w, x, z), \
                    (w, z, x, y), \
                    (z, w, y, x), \
                    (w, y, z, x), \
                    (y, z, w, x), \
                    (x, z, y, w), \
                    (z, y, x, w), \
                    (y, x, z, w), \
                    (x, w, z, y), \
                    (z, x, w, y) )

        >>> got = []
        >>> for p in (pgroup + [p**2 for p in pgroup]):
        ...     h = Polyhedron(corners)
        ...     h.rotate(p)
        ...     got.append(h.corners)
        ...
        >>> set(got) == set(all)
        True

        The make_perm method of a PermutationGroup will randomly pick
        permutations, multiply them together, and return the permutation that
        can be applied to the polyhedron to give the orientation produced
        by those individual permutations.

        Here, 3 permutations are used:

        >>> tetra.pgroup.make_perm(3) # doctest: +SKIP
        Permutation([0, 3, 1, 2])

        To select the permutations that should be used, supply a list
        of indices to the permutations in pgroup in the order they should
        be applied:

        >>> use = [0, 0, 2]
        >>> p002 = tetra.pgroup.make_perm(3, use)
        >>> p002
        Permutation([1, 0, 3, 2])


        Apply them one at a time:

        >>> tetra.reset()
        >>> for i in use:
        ...     tetra.rotate(pgroup[i])
        ...
        >>> tetra.vertices
        (x, w, z, y)
        >>> sequentially = tetra.vertices

        Apply the composite permutation:

        >>> tetra.reset()
        >>> tetra.rotate(p002)
        >>> tetra.corners
        (x, w, z, y)
        >>> tetra.corners in all and tetra.corners == sequentially
        True

        Notes
        =====

        Defining permutation groups
        ---------------------------

        It is not necessary to enter any permutations, nor is necessary to
        enter a complete set of transforations. In fact, for a polyhedron,
        all configurations can be constructed from just two permutations.
        For example, the orientations of a tetrahedron can be generated from
        an axis passing through a vertex and face and another axis passing
        through a different vertex or from an axis passing through the
        midpoints of two edges opposite of each other.

        For simplicity of presentation, consider a square --
        not a cube -- with vertices 1, 2, 3, and 4:

        1-----2  We could think of axes of rotation being:
        |     |  1) through the face
        |     |  2) from midpoint 1-2 to 3-4 or 1-3 to 2-4
        3-----4  3) lines 1-4 or 2-3


        To determine how to write the permutations, imagine 4 cameras,
        one at each corner, labeled A-D:

        A       B          A       B
         1-----2            1-----3             vertex index:
         |     |            |     |                 1   0
         |     |            |     |                 2   1
         3-----4            2-----4                 3   2
        C       D          C       D                4   3

        original           after rotation
                           along 1-4

        A diagonal and a face axis will be chosen for the "permutation group"
        from which any orientation can be constructed.

        >>> pgroup = []

        Imagine a clockwise rotation when viewing 1-4 from camera A. The new
        orientation is (in camera-order): 1, 3, 2, 4 so the permutation is
        given using the *indices* of the vertices as:

        >>> pgroup.append(Permutation((0, 2, 1, 3)))

        Now imagine rotating clockwise when looking down an axis entering the
        center of the square as viewed. The new camera-order would be
        3, 1, 4, 2 so the permutation is (using indices):

        >>> pgroup.append(Permutation((2, 0, 3, 1)))

        The square can now be constructed:
            ** use real-world labels for the vertices, entering them in
               camera order
            ** for the faces we use zero-based indices of the vertices
               in *edge-order* as the face is traversed; neither the
               direction nor the starting point matter -- the faces are
               only used to define edges (if so desired).

        >>> square = Polyhedron((1, 2, 3, 4), [(0, 1, 3, 2)], pgroup)

        To rotate the square with a single permutation we can do:

        >>> square.rotate(square.pgroup[0]); square.corners
        (1, 3, 2, 4)

        To use more than one permutation (or to use one permutation more
        than once) it is more convenient to use the make_perm method:

        >>> p011 = square.pgroup.make_perm([0,1,1]) # diag flip + 2 rotations
        >>> square.reset() # return to initial orientation
        >>> square.rotate(p011); square.corners
        (4, 2, 3, 1)

        Thinking outside the box
        ------------------------

        Although the Polyhedron object has a direct physical meaning, it
        actually has broader application. In the most general sense it is
        just a decorated PermutationGroup, allowing one to connect the
        permutations to something physical. For example, a Rubik's cube is
        not a proper polyhedron, but the Polyhedron class can be used to
        represent it in a way that helps to visualize the Rubik's cube.

        >>> from sympy.utilities.iterables import flatten, unflatten
        >>> from sympy import symbols
        >>> from sympy.combinatorics import RubikGroup
        >>> facelets = flatten([symbols(s+'1:5') for s in 'UFRBLD'])
        >>> def show():
        ...     pairs = unflatten(r2.corners, 2)
        ...     print(pairs[::2])
        ...     print(pairs[1::2])
        ...
        >>> r2 = Polyhedron(facelets, pgroup=RubikGroup(2))
        >>> show()
        [(U1, U2), (F1, F2), (R1, R2), (B1, B2), (L1, L2), (D1, D2)]
        [(U3, U4), (F3, F4), (R3, R4), (B3, B4), (L3, L4), (D3, D4)]
        >>> r2.rotate(0) # cw rotation of F
        >>> show()
        [(U1, U2), (F3, F1), (U3, R2), (B1, B2), (L1, D1), (R3, R1)]
        [(L4, L2), (F4, F2), (U4, R4), (B3, B4), (L3, D2), (D3, D4)]

        Predefined Polyhedra
        ====================

        For convenience, the vertices and faces are defined for the following
        standard solids along with a permutation group for transformations.
        When the polyhedron is oriented as indicated below, the vertices in
        a given horizontal plane are numbered in ccw direction, starting from
        the vertex that will give the lowest indices in a given face. (In the
        net of the vertices, indices preceded by "-" indicate replication of
        the lhs index in the net.)

        tetrahedron, tetrahedron_faces
        ------------------------------

            4 vertices (vertex up) net:

                 0 0-0
                1 2 3-1

            4 faces:

            (0,1,2) (0,2,3) (0,3,1) (1,2,3)

        cube, cube_faces
        ----------------

            8 vertices (face up) net:

                0 1 2 3-0
                4 5 6 7-4

            6 faces:

            (0,1,2,3)
            (0,1,5,4) (1,2,6,5) (2,3,7,6) (0,3,7,4)
            (4,5,6,7)

        octahedron, octahedron_faces
        ----------------------------

            6 vertices (vertex up) net:

                 0 0 0-0
                1 2 3 4-1
                 5 5 5-5

            8 faces:

            (0,1,2) (0,2,3) (0,3,4) (0,1,4)
            (1,2,5) (2,3,5) (3,4,5) (1,4,5)

        dodecahedron, dodecahedron_faces
        --------------------------------

            20 vertices (vertex up) net:

                  0  1  2  3  4 -0
                  5  6  7  8  9 -5
                14 10 11 12 13-14
                15 16 17 18 19-15

            12 faces:

            (0,1,2,3,4)
            (0,1,6,10,5) (1,2,7,11,6) (2,3,8,12,7) (3,4,9,13,8) (0,4,9,14,5)
            (5,10,16,15,14) (
                6,10,16,17,11) (7,11,17,18,12) (8,12,18,19,13) (9,13,19,15,14)
            (15,16,17,18,19)

        icosahedron, icosahedron_faces
        ------------------------------

            12 vertices (face up) net:

                 0  0  0  0 -0
                1  2  3  4  5 -1
                 6  7  8  9  10 -6
                  11 11 11 11 -11

            20 faces:

            (0,1,2) (0,2,3) (0,3,4) (0,4,5) (0,1,5)
            (1,2,6) (2,3,7) (3,4,8) (4,5,9) (1,5,10)
            (2,6,7) (3,7,8) (4,8,9) (5,9,10) (1,6,10)
            (6,7,11,) (7,8,11) (8,9,11) (9,10,11) (6,10,11)

        >>> from sympy.combinatorics.polyhedron import cube
        >>> cube.edges
        {(0, 1), (0, 3), (0, 4), '...', (4, 7), (5, 6), (6, 7)}

        If you want to use letters or other names for the corners you
        can still use the pre-calculated faces:

        >>> corners = list('abcdefgh')
        >>> Polyhedron(corners, cube.faces).corners
        (a, b, c, d, e, f, g, h)

        References
        ==========

        [1] www.ocf.berkeley.edu/~wwu/articles/platonicsolids.pdf

        """
        faces = [minlex(f, directed=False, is_set=True) for f in faces]
        corners, faces, pgroup = args = \
            [Tuple(*a) for a in (corners, faces, pgroup)]
        obj = Basic.__new__(cls, *args)
        obj._corners = tuple(corners)  # in order given
        obj._faces = FiniteSet(faces)
        if pgroup and pgroup[0].size != len(corners):
            raise ValueError("Permutation size unequal to number of corners.")
        # use the identity permutation if none are given
        obj._pgroup = PermutationGroup((
            pgroup or [Perm(range(len(corners)))] ))
        return obj
コード例 #20
0
def AlternatingGroup(n):
    """
    Generates the alternating group on ``n`` elements as a permutation group.

    Explanation
    ===========

    For ``n > 2``, the generators taken are ``(0 1 2), (0 1 2 ... n-1)`` for
    ``n`` odd
    and ``(0 1 2), (1 2 ... n-1)`` for ``n`` even (See [1], p.31, ex.6.9.).
    After the group is generated, some of its basic properties are set.
    The cases ``n = 1, 2`` are handled separately.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import AlternatingGroup
    >>> G = AlternatingGroup(4)
    >>> G.is_group
    True
    >>> a = list(G.generate_dimino())
    >>> len(a)
    12
    >>> all(perm.is_even for perm in a)
    True

    See Also
    ========

    SymmetricGroup, CyclicGroup, DihedralGroup

    References
    ==========

    .. [1] Armstrong, M. "Groups and Symmetry"

    """
    # small cases are special
    if n in (1, 2):
        return PermutationGroup([Permutation([0])])

    a = list(range(n))
    a[0], a[1], a[2] = a[1], a[2], a[0]
    gen1 = a
    if n % 2:
        a = list(range(1, n))
        a.append(0)
        gen2 = a
    else:
        a = list(range(2, n))
        a.append(1)
        a.insert(0, 0)
        gen2 = a
    gens = [gen1, gen2]
    if gen1 == gen2:
        gens = gens[:1]
    G = PermutationGroup([_af_new(a) for a in gens], dups=False)

    if n < 4:
        G._is_abelian = True
        G._is_nilpotent = True
    else:
        G._is_abelian = False
        G._is_nilpotent = False
    if n < 5:
        G._is_solvable = True
    else:
        G._is_solvable = False
    G._degree = n
    G._is_transitive = True
    G._is_alt = True
    return G
コード例 #21
0
def SymmetricGroup(n):
    """
    Generates the symmetric group on ``n`` elements as a permutation group.

    Explanation
    ===========

    The generators taken are the ``n``-cycle
    ``(0 1 2 ... n-1)`` and the transposition ``(0 1)`` (in cycle notation).
    (See [1]). After the group is generated, some of its basic properties
    are set.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import SymmetricGroup
    >>> G = SymmetricGroup(4)
    >>> G.is_group
    True
    >>> G.order()
    24
    >>> list(G.generate_schreier_sims(af=True))
    [[0, 1, 2, 3], [1, 2, 3, 0], [2, 3, 0, 1], [3, 1, 2, 0], [0, 2, 3, 1],
    [1, 3, 0, 2], [2, 0, 1, 3], [3, 2, 0, 1], [0, 3, 1, 2], [1, 0, 2, 3],
    [2, 1, 3, 0], [3, 0, 1, 2], [0, 1, 3, 2], [1, 2, 0, 3], [2, 3, 1, 0],
    [3, 1, 0, 2], [0, 2, 1, 3], [1, 3, 2, 0], [2, 0, 3, 1], [3, 2, 1, 0],
    [0, 3, 2, 1], [1, 0, 3, 2], [2, 1, 0, 3], [3, 0, 2, 1]]

    See Also
    ========

    CyclicGroup, DihedralGroup, AlternatingGroup

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Symmetric_group#Generators_and_relations

    """
    if n == 1:
        G = PermutationGroup([Permutation([0])])
    elif n == 2:
        G = PermutationGroup([Permutation([1, 0])])
    else:
        a = list(range(1, n))
        a.append(0)
        gen1 = _af_new(a)
        a = list(range(n))
        a[0], a[1] = a[1], a[0]
        gen2 = _af_new(a)
        G = PermutationGroup([gen1, gen2])
    if n < 3:
        G._is_abelian = True
        G._is_nilpotent = True
    else:
        G._is_abelian = False
        G._is_nilpotent = False
    if n < 5:
        G._is_solvable = True
    else:
        G._is_solvable = False
    G._degree = n
    G._is_transitive = True
    G._is_sym = True
    return G
コード例 #22
0
def test_PermutationGroup():
    assert PermutationGroup() == PermutationGroup(Permutation())
コード例 #23
0
def test_PermutationGroup():
    assert PermutationGroup() == PermutationGroup(Permutation())
    assert (PermutationGroup() == 0) is False
コード例 #24
0
def test_is_alt_sym():
    G = DihedralGroup(10)
    assert G.is_alt_sym() is False
    assert G._eval_is_alt_sym_naive() is False
    assert G._eval_is_alt_sym_naive(only_alt=True) is False
    assert G._eval_is_alt_sym_naive(only_sym=True) is False

    S = SymmetricGroup(10)
    assert S._eval_is_alt_sym_naive() is True
    assert S._eval_is_alt_sym_naive(only_alt=True) is False
    assert S._eval_is_alt_sym_naive(only_sym=True) is True

    N_eps = 10
    _random_prec = {
        'N_eps': N_eps,
        0: Permutation([[2], [1, 4], [0, 6, 7, 8, 9, 3, 5]]),
        1: Permutation([[1, 8, 7, 6, 3, 5, 2, 9], [0, 4]]),
        2: Permutation([[5, 8], [4, 7], [0, 1, 2, 3, 6, 9]]),
        3: Permutation([[3], [0, 8, 2, 7, 4, 1, 6, 9, 5]]),
        4: Permutation([[8], [4, 7, 9], [3, 6], [0, 5, 1, 2]]),
        5: Permutation([[6], [0, 2, 4, 5, 1, 8, 3, 9, 7]]),
        6: Permutation([[6, 9, 8], [4, 5], [1, 3, 7], [0, 2]]),
        7: Permutation([[4], [0, 2, 9, 1, 3, 8, 6, 5, 7]]),
        8: Permutation([[1, 5, 6, 3], [0, 2, 7, 8, 4, 9]]),
        9: Permutation([[8], [6, 7], [2, 3, 4, 5], [0, 1, 9]])
    }
    assert S.is_alt_sym(_random_prec=_random_prec) is True

    A = AlternatingGroup(10)
    assert A._eval_is_alt_sym_naive() is True
    assert A._eval_is_alt_sym_naive(only_alt=True) is True
    assert A._eval_is_alt_sym_naive(only_sym=True) is False

    _random_prec = {
        'N_eps': N_eps,
        0: Permutation([[1, 6, 4, 2, 7, 8, 5, 9, 3], [0]]),
        1: Permutation([[1], [0, 5, 8, 4, 9, 2, 3, 6, 7]]),
        2: Permutation([[1, 9, 8, 3, 2, 5], [0, 6, 7, 4]]),
        3: Permutation([[6, 8, 9], [4, 5], [1, 3, 7, 2], [0]]),
        4: Permutation([[8], [5], [4], [2, 6, 9, 3], [1], [0, 7]]),
        5: Permutation([[3, 6], [0, 8, 1, 7, 5, 9, 4, 2]]),
        6: Permutation([[5], [2, 9], [1, 8, 3], [0, 4, 7, 6]]),
        7: Permutation([[1, 8, 4, 7, 2, 3], [0, 6, 9, 5]]),
        8: Permutation([[5, 8, 7], [3], [1, 4, 2, 6], [0, 9]]),
        9: Permutation([[4, 9, 6], [3, 8], [1, 2], [0, 5, 7]])
    }
    assert A.is_alt_sym(_random_prec=_random_prec) is False

    G = PermutationGroup(
        Permutation(1, 3, size=8)(0, 2, 4, 6),
        Permutation(5, 7, size=8)(0, 2, 4, 6))
    assert G.is_alt_sym() is False

    # Tests for monte-carlo c_n parameter setting, and which guarantees
    # to give False.
    G = DihedralGroup(10)
    assert G._eval_is_alt_sym_monte_carlo() is False
    G = DihedralGroup(20)
    assert G._eval_is_alt_sym_monte_carlo() is False

    # A dry-running test to check if it looks up for the updated cache.
    G = DihedralGroup(6)
    G.is_alt_sym()
    assert G.is_alt_sym() == False
コード例 #25
0
def test_elements():
    p = Permutation(2, 3)
    assert PermutationGroup(p).elements == {Permutation(3), Permutation(2, 3)}
コード例 #26
0
def tensor_gens(base, gens, list_free_indices, sym=0):
    """
    Returns size, res_base, res_gens BSGS for n tensors of the
    same type

    base, gens BSGS for tensors of this type
    list_free_indices  list of the slots occupied by fixed indices
                       for each of the tensors

    sym symmetry under commutation of two tensors
    sym   None  no symmetry
    sym   0     commuting
    sym   1     anticommuting

    Examples
    ========

    >>> from sympy.combinatorics import Permutation
    >>> from sympy.combinatorics.tensor_can import tensor_gens, get_symmetric_group_sgs
    >>> Permutation.print_cyclic = True

    two symmetric tensors with 3 indices without free indices

    >>> base, gens = get_symmetric_group_sgs(3)
    >>> tensor_gens(base, gens, [[], []])
    (8, [0, 1, 3, 4], [(7)(0 1), (7)(1 2), (7)(3 4), (7)(4 5), (7)(0 3)(1 4)(2 5)])

    two symmetric tensors with 3 indices with free indices in slot 1 and 0

    >>> tensor_gens(base, gens, [[1], [0]])
    (8, [0, 4], [(7)(0 2), (7)(4 5)])

    four symmetric tensors with 3 indices, two of which with free indices

    """
    def _get_bsgs(G, base, gens, free_indices):
        """
        return the BSGS for G.pointwise_stabilizer(free_indices)
        """
        if not free_indices:
            return base[:], gens[:]
        else:
            H = G.pointwise_stabilizer(free_indices)
            base, sgs = H.schreier_sims_incremental()
            return base, sgs

    # if not base there is no slot symmetry for the component tensors
    # if list_free_indices.count([]) < 2 there is no commutation symmetry
    # so there is no resulting slot symmetry
    if not base and list_free_indices.count([]) < 2:
        n = len(list_free_indices)
        size = gens[0].size
        size = n * (gens[0].size - 2) + 2
        return size, [], [_af_new(list(range(size)))]

    # if any(list_free_indices) one needs to compute the pointwise
    # stabilizer, so G is needed
    if any(list_free_indices):
        G = PermutationGroup(gens)
    else:
        G = None

    # no_free list of lists of indices for component tensors without fixed
    # indices
    no_free = []
    size = gens[0].size
    id_af = list(range(size))
    num_indices = size - 2
    if not list_free_indices[0]:
        no_free.append(list(range(num_indices)))
    res_base, res_gens = _get_bsgs(G, base, gens, list_free_indices[0])
    for i in range(1, len(list_free_indices)):
        base1, gens1 = _get_bsgs(G, base, gens, list_free_indices[i])
        res_base, res_gens = bsgs_direct_product(res_base, res_gens, base1,
                                                 gens1, 1)
        if not list_free_indices[i]:
            no_free.append(list(range(size - 2, size - 2 + num_indices)))
        size += num_indices
    nr = size - 2
    res_gens = [h for h in res_gens if h._array_form != id_af]
    # if sym there are no commuting tensors stop here
    if sym is None or not no_free:
        if not res_gens:
            res_gens = [_af_new(id_af)]
        return size, res_base, res_gens

    # if the component tensors have moinimal BSGS, so is their direct
    # product P; the slot symmetry group is S = P*C, where C is the group
    # to (anti)commute the component tensors with no free indices
    # a stabilizer has the property S_i = P_i*C_i;
    # the BSGS of P*C has SGS_P + SGS_C and the base is
    # the ordered union of the bases of P and C.
    # If P has minimal BSGS, so has S with this base.
    base_comm = []
    for i in range(len(no_free) - 1):
        ind1 = no_free[i]
        ind2 = no_free[i + 1]
        a = list(range(ind1[0]))
        a.extend(ind2)
        a.extend(ind1)
        base_comm.append(ind1[0])
        a.extend(list(range(ind2[-1] + 1, nr)))
        if sym == 0:
            a.extend([nr, nr + 1])
        else:
            a.extend([nr + 1, nr])
        res_gens.append(_af_new(a))
    res_base = list(res_base)
    # each base is ordered; order the union of the two bases
    for i in base_comm:
        if i not in res_base:
            res_base.append(i)
    res_base.sort()
    if not res_gens:
        res_gens = [_af_new(id_af)]

    return size, res_base, res_gens
コード例 #27
0
def test_is_group():
    assert PermutationGroup(Permutation(1, 2), Permutation(2,
                                                           4)).is_group == True
    assert SymmetricGroup(4).is_group == True
コード例 #28
0
def test_index():
    G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 3))
    H = G.subgroup([Permutation(0, 1, 3)])
    assert G.index(H) == 4
コード例 #29
0
def test_subgroup():
    G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 3))
    H = G.subgroup([Permutation(0, 1, 3)])
    assert H.is_subgroup(G)
コード例 #30
0
def DihedralGroup(n):
    r"""
    Generates the dihedral group `D_n` as a permutation group.

    Explanation
    ===========

    The dihedral group `D_n` is the group of symmetries of the regular
    ``n``-gon. The generators taken are the ``n``-cycle ``a = (0 1 2 ... n-1)``
    (a rotation of the ``n``-gon) and ``b = (0 n-1)(1 n-2)...``
    (a reflection of the ``n``-gon) in cycle rotation. It is easy to see that
    these satisfy ``a**n = b**2 = 1`` and ``bab = ~a`` so they indeed generate
    `D_n` (See [1]). After the group is generated, some of its basic properties
    are set.

    Examples
    ========

    >>> from sympy.combinatorics.named_groups import DihedralGroup
    >>> G = DihedralGroup(5)
    >>> G.is_group
    True
    >>> a = list(G.generate_dimino())
    >>> [perm.cyclic_form for perm in a]
    [[], [[0, 1, 2, 3, 4]], [[0, 2, 4, 1, 3]],
    [[0, 3, 1, 4, 2]], [[0, 4, 3, 2, 1]], [[0, 4], [1, 3]],
    [[1, 4], [2, 3]], [[0, 1], [2, 4]], [[0, 2], [3, 4]],
    [[0, 3], [1, 2]]]

    See Also
    ========

    SymmetricGroup, CyclicGroup, AlternatingGroup

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Dihedral_group

    """
    # small cases are special
    if n == 1:
        return PermutationGroup([Permutation([1, 0])])
    if n == 2:
        return PermutationGroup([
            Permutation([1, 0, 3, 2]),
            Permutation([2, 3, 0, 1]),
            Permutation([3, 2, 1, 0])
        ])

    a = list(range(1, n))
    a.append(0)
    gen1 = _af_new(a)
    a = list(range(n))
    a.reverse()
    gen2 = _af_new(a)
    G = PermutationGroup([gen1, gen2])
    # if n is a power of 2, group is nilpotent
    if n & (n - 1) == 0:
        G._is_nilpotent = True
    else:
        G._is_nilpotent = False
    G._is_abelian = False
    G._is_solvable = True
    G._degree = n
    G._is_transitive = True
    G._order = 2 * n
    return G