def extract_leading_order(self, symbols, point=None): """ Returns the leading term and it's order. Examples ======== >>> from sympy.abc import x >>> (x + 1 + 1/x**5).extract_leading_order(x) ((x**(-5), O(x**(-5))),) >>> (1 + x).extract_leading_order(x) ((1, O(1)),) >>> (x + x**2).extract_leading_order(x) ((x, O(x)),) """ lst = [] symbols = list(symbols if is_sequence(symbols) else [symbols]) if not point: point = [0] * len(symbols) seq = [(f, C.Order(f, *zip(symbols, point))) for f in self.args] for ef, of in seq: for e, o in lst: if o.contains(of) and o != of: of = None break if of is None: continue new_lst = [(ef, of)] for e, o in lst: if of.contains(o) and o != of: continue new_lst.append((e, o)) lst = new_lst return tuple(lst)
def __new__(cls, *args, **options): args = list(map(_sympify, args)) args = [a for a in args if a is not cls.identity] if not options.pop('evaluate', True): return cls._from_args(args) if len(args) == 0: return cls.identity if len(args) == 1: return args[0] c_part, nc_part, order_symbols = cls.flatten(args) is_commutative = not nc_part obj = cls._from_args(c_part + nc_part, is_commutative) if order_symbols is not None: return C.Order(obj, *order_symbols) return obj