コード例 #1
0
ファイル: test_diff.py プロジェクト: PWJ1900/Rlearncirq
def test_diff():
    assert Rational(1, 3).diff(x) is S.Zero
    assert I.diff(x) is S.Zero
    assert pi.diff(x) is S.Zero
    assert x.diff(x, 0) == x
    assert (x**2).diff(x, 2, x) == 0
    assert (x**2).diff((x, 2), x) == 0
    assert (x**2).diff((x, 1), x) == 2
    assert (x**2).diff((x, 1), (x, 1)) == 2
    assert (x**2).diff((x, 2)) == 2
    assert (x**2).diff(x, y, 0) == 2*x
    assert (x**2).diff(x, (y, 0)) == 2*x
    assert (x**2).diff(x, y) == 0
    raises(ValueError, lambda: x.diff(1, x))

    p = Rational(5)
    e = a*b + b**p
    assert e.diff(a) == b
    assert e.diff(b) == a + 5*b**4
    assert e.diff(b).diff(a) == Rational(1)
    e = a*(b + c)
    assert e.diff(a) == b + c
    assert e.diff(b) == a
    assert e.diff(b).diff(a) == Rational(1)
    e = c**p
    assert e.diff(c, 6) == Rational(0)
    assert e.diff(c, 5) == Rational(120)
    e = c**Rational(2)
    assert e.diff(c) == 2*c
    e = a*b*c
    assert e.diff(c) == a*b
コード例 #2
0
    def build_ideal(x, terms):
        """
        Build generators for our ideal. Terms is an iterable with elements of
        the form (fn, coeff), indicating that we have a generator fn(coeff*x).

        If any of the terms is trigonometric, sin(x) and cos(x) are guaranteed
        to appear in terms. Similarly for hyperbolic functions. For tan(n*x),
        sin(n*x) and cos(n*x) are guaranteed.
        """
        I = []
        y = Dummy('y')
        for fn, coeff in terms:
            for c, s, t, rel in ([cos, sin, tan,
                                  cos(x)**2 + sin(x)**2 - 1], [
                                      cosh, sinh, tanh,
                                      cosh(x)**2 - sinh(x)**2 - 1
                                  ]):
                if coeff == 1 and fn in [c, s]:
                    I.append(rel)
                elif fn == t:
                    I.append(t(coeff * x) * c(coeff * x) - s(coeff * x))
                elif fn in [c, s]:
                    cn = fn(coeff * y).expand(trig=True).subs(y, x)
                    I.append(fn(coeff * x) - cn)
        return list(set(I))
コード例 #3
0
def reduce_rational_inequalities_wrap(condition, var):
    if condition.is_Relational:
        return _reduce_inequalities([[condition]], var, relational=False)
    if isinstance(condition, Or):
        return Union(*[_reduce_inequalities([[arg]], var, relational=False)
            for arg in condition.args])
    if isinstance(condition, And):
        intervals = [_reduce_inequalities([[arg]], var, relational=False)
            for arg in condition.args]
        I = intervals[0]
        for i in intervals:
            I = I.intersect(i)
        return I
コード例 #4
0
ファイル: trigsimp.py プロジェクト: asmeurer/sympy
    def build_ideal(x, terms):
        """
        Build generators for our ideal. Terms is an iterable with elements of
        the form (fn, coeff), indicating that we have a generator fn(coeff*x).

        If any of the terms is trigonometric, sin(x) and cos(x) are guaranteed
        to appear in terms. Similarly for hyperbolic functions. For tan(n*x),
        sin(n*x) and cos(n*x) are guaranteed.
        """
        I = []
        y = Dummy('y')
        for fn, coeff in terms:
            for c, s, t, rel in (
                    [cos, sin, tan, cos(x)**2 + sin(x)**2 - 1],
                    [cosh, sinh, tanh, cosh(x)**2 - sinh(x)**2 - 1]):
                if coeff == 1 and fn in [c, s]:
                    I.append(rel)
                elif fn == t:
                    I.append(t(coeff*x)*c(coeff*x) - s(coeff*x))
                elif fn in [c, s]:
                    cn = fn(coeff*y).expand(trig=True).subs(y, x)
                    I.append(fn(coeff*x) - cn)
        return list(set(I))
コード例 #5
0
ファイル: test_limits.py プロジェクト: eagleoflqj/sympy
def test_issue_21721():
    a = Symbol('a', real=True)
    I = integrate(1/(pi*(1 + (x - a)**2)), x)
    assert I.limit(x, oo) == S.Half
コード例 #6
0
def test_issue_5486_bug():
    from sympy.core.expr import Expr
    from sympy.core.numbers import I
    assert abs(Expr._from_mpmath(I._to_mpmath(15), 15) - I) < 1.0e-15