コード例 #1
0
def test_curvature():
    #For testing curvature conventions
    M = Manifold('Reisner-Nordstrom', 4)
    p = Patch('origin', M)
    cs = CoordSystem('spherical', p, ['t', 'r', 'theta', 'phi'])
    t, r, theta, phi = cs.coord_functions()
    dt, dr, dtheta, dphi = cs.base_oneforms()
    f = Function('f')
    metric = f(r)**2 * TP(dt, dt) - f(r)**(-2) * TP(dr, dr) - r**2 * TP(
        dtheta, dtheta) - r**2 * sin(theta)**2 * TP(dphi, dphi)
    ch_2nd = metric_to_Christoffel_2nd(metric)
    G = ToArray(metric)
    rm = TensorArray(components=metric_to_Riemann_components(metric),
                     variance=[-1, 1, 1, 1],
                     coordinate_system=cs)
    v = [Function(f) for f in ['v0', 'v1', 'v2', 'v3']]
    V = TensorArray(components=[f(t, r, theta, phi) for f in v],
                    variance=[-1],
                    coordinate_system=cs)
    dV = V.covD(ch_2nd)
    ddV = dV.covD(ch_2nd)
    #Commuted covariant derivative:
    D2V = ddV - ddV.braid(0, 1)
    rm = TensorArray(components=metric_to_Riemann_components(metric),
                     variance=[-1, 1, 1, 1],
                     coordinate_system=cs)
    rmv = rm.TensorProduct(V).contract(1, 4).braid(0, 1).braid(1, 2)
    rmvtensor = [(I, simplify(rmv.tensor[I])) for I in rmv.indices]
    rmvtensor = [(I, coeff) for (I, coeff) in rmvtensor if coeff != 0]
    rmvtensor.sort()
    D2Vtensor = [(I, simplify(D2V.tensor[I])) for I in D2V.indices]
    D2Vtensor = [(I, v) for (I, v) in D2Vtensor if v != 0]
    D2Vtensor.sort()
    for (a, b) in zip(rmvtensor, D2Vtensor):
        assert (a == b)
コード例 #2
0
def test_covar_deriv():
    ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
    assert cvd(R2.x) == 1
    assert cvd(R2.x * R2.e_x) == R2.e_x
    cvd = CovarDerivativeOp(R2.x * R2.e_x, ch)
    assert cvd(R2.x) == R2.x
    assert cvd(R2.x * R2.e_x) == R2.x * R2.e_x
コード例 #3
0
ファイル: test_diffgeom.py プロジェクト: aeberspaecher/sympy
def test_covar_deriv():
    ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
    assert cvd(R2.x) == 1
    assert cvd(R2.x*R2.e_x) == R2.e_x
    cvd = CovarDerivativeOp(R2.x*R2.e_x, ch)
    assert cvd(R2.x) == R2.x
    assert cvd(R2.x*R2.e_x) == R2.x*R2.e_x
コード例 #4
0
def test_covar_deriv():
    ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
    cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
    assert cvd(R2.x) == 1
    # This line fails if the cache is disabled:
    assert cvd(R2.x * R2.e_x) == R2.e_x
    cvd = CovarDerivativeOp(R2.x * R2.e_x, ch)
    assert cvd(R2.x) == R2.x
    assert cvd(R2.x * R2.e_x) == R2.x * R2.e_x
コード例 #5
0
ファイル: gde.py プロジェクト: imranal/DiffTens
def Christoffel_2nd(g=None,metric=None): # either g is supplied as arugment or the two-form
    from sympy.abc import u,v
    from sympy.diffgeom import metric_to_Christoffel_2nd
    from sympy import asin, acos, atan, cos, log, ln, exp, cosh, sin, sinh, sqrt, tan, tanh
    if metric is None: # if metric is not specified as two_form
        import tensor as t
        R = t.Riemann(g,g.shape[0])
        metric = R.metric
    C = sym.Matrix(eval(str(metric_to_Christoffel_2nd(metric))))
    return C
コード例 #6
0
def test_covD():
    M = Manifold('Reisner-Nordstrom', 4)
    p = Patch('origin', M)
    cs = CoordSystem('spherical', p, ['t', 'r', 'theta', 'phi'])
    t, r, theta, phi = cs.coord_functions()
    dt, dr, dtheta, dphi = cs.base_oneforms()
    f = Function('f')
    metric = f(r)**2 * TP(dt, dt) - f(r)**(-2) * TP(dr, dr) - r**2 * TP(
        dtheta, dtheta) - r**2 * sin(theta)**2 * TP(dphi, dphi)
    ch_2nd = metric_to_Christoffel_2nd(metric)
    G = ToArray(metric)
    assert (G.covD(ch_2nd).to_tensor() == 0)
コード例 #7
0
ファイル: gde.py プロジェクト: imranal/master_thesis
def Christoffel_2nd(
        g=None,
        metric=None):  # either g is supplied as arugment or the two-form
    from sympy.abc import u, v
    from sympy.diffgeom import metric_to_Christoffel_2nd
    from sympy import asin, acos, atan, cos, log, ln, exp, cosh, sin, sinh, sqrt, tan, tanh
    if metric is None:  # if metric is not specified as two_form
        import tensor as t
        R = t.Riemann(g, g.shape[0])
        metric = R.metric
    C = sym.Matrix(eval(str(metric_to_Christoffel_2nd(metric))))
    return C
コード例 #8
0
def test_helpers_and_coordinate_dependent():
    one_form = R2.dr + R2.dx
    two_form = Differential(R2.x * R2.dr + R2.r * R2.dx)
    three_form = Differential(R2.y * two_form) + Differential(
        R2.x * Differential(R2.r * R2.dr))
    metric = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dy, R2.dy)
    metric_ambig = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dr, R2.dr)
    misform_a = TensorProduct(R2.dr, R2.dr) + R2.dr
    misform_b = R2.dr**4
    misform_c = R2.dx * R2.dy
    twoform_not_sym = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dx, R2.dy)
    twoform_not_TP = WedgeProduct(R2.dx, R2.dy)

    one_vector = R2.e_x + R2.e_y
    two_vector = TensorProduct(R2.e_x, R2.e_y)
    three_vector = TensorProduct(R2.e_x, R2.e_y, R2.e_x)
    two_wp = WedgeProduct(R2.e_x, R2.e_y)

    assert covariant_order(one_form) == 1
    assert covariant_order(two_form) == 2
    assert covariant_order(three_form) == 3
    assert covariant_order(two_form + metric) == 2
    assert covariant_order(two_form + metric_ambig) == 2
    assert covariant_order(two_form + twoform_not_sym) == 2
    assert covariant_order(two_form + twoform_not_TP) == 2

    assert contravariant_order(one_vector) == 1
    assert contravariant_order(two_vector) == 2
    assert contravariant_order(three_vector) == 3
    assert contravariant_order(two_vector + two_wp) == 2

    raises(ValueError, lambda: covariant_order(misform_a))
    raises(ValueError, lambda: covariant_order(misform_b))
    raises(ValueError, lambda: covariant_order(misform_c))

    assert twoform_to_matrix(metric) == Matrix([[1, 0], [0, 1]])
    assert twoform_to_matrix(twoform_not_sym) == Matrix([[1, 0], [1, 0]])
    assert twoform_to_matrix(twoform_not_TP) == Matrix([[0, -1], [1, 0]])

    raises(ValueError, lambda: twoform_to_matrix(one_form))
    raises(ValueError, lambda: twoform_to_matrix(three_form))
    raises(ValueError, lambda: twoform_to_matrix(metric_ambig))

    raises(ValueError, lambda: metric_to_Christoffel_1st(twoform_not_sym))
    raises(ValueError, lambda: metric_to_Christoffel_2nd(twoform_not_sym))
    raises(ValueError, lambda: metric_to_Riemann_components(twoform_not_sym))
    raises(ValueError, lambda: metric_to_Ricci_components(twoform_not_sym))
コード例 #9
0
def test_helpers_and_coordinate_dependent():
    one_form = R2.dr + R2.dx
    two_form = Differential(R2.x*R2.dr + R2.r*R2.dx)
    three_form = Differential(
        R2.y*two_form) + Differential(R2.x*Differential(R2.r*R2.dr))
    metric = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dy, R2.dy)
    metric_ambig = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dr, R2.dr)
    misform_a = TensorProduct(R2.dr, R2.dr) + R2.dr
    misform_b = R2.dr**4
    misform_c = R2.dx*R2.dy
    twoform_not_sym = TensorProduct(R2.dx, R2.dx) + TensorProduct(R2.dx, R2.dy)
    twoform_not_TP = WedgeProduct(R2.dx, R2.dy)

    one_vector = R2.e_x + R2.e_y
    two_vector = TensorProduct(R2.e_x, R2.e_y)
    three_vector = TensorProduct(R2.e_x, R2.e_y, R2.e_x)
    two_wp = WedgeProduct(R2.e_x,R2.e_y)

    assert covariant_order(one_form) == 1
    assert covariant_order(two_form) == 2
    assert covariant_order(three_form) == 3
    assert covariant_order(two_form + metric) == 2
    assert covariant_order(two_form + metric_ambig) == 2
    assert covariant_order(two_form + twoform_not_sym) == 2
    assert covariant_order(two_form + twoform_not_TP) == 2

    assert contravariant_order(one_vector) == 1
    assert contravariant_order(two_vector) == 2
    assert contravariant_order(three_vector) == 3
    assert contravariant_order(two_vector + two_wp) == 2

    raises(ValueError, lambda: covariant_order(misform_a))
    raises(ValueError, lambda: covariant_order(misform_b))
    raises(ValueError, lambda: covariant_order(misform_c))

    assert twoform_to_matrix(metric) == Matrix([[1, 0], [0, 1]])
    assert twoform_to_matrix(twoform_not_sym) == Matrix([[1, 0], [1, 0]])
    assert twoform_to_matrix(twoform_not_TP) == Matrix([[0, -1], [1, 0]])

    raises(ValueError, lambda: twoform_to_matrix(one_form))
    raises(ValueError, lambda: twoform_to_matrix(three_form))
    raises(ValueError, lambda: twoform_to_matrix(metric_ambig))

    raises(ValueError, lambda: metric_to_Christoffel_1st(twoform_not_sym))
    raises(ValueError, lambda: metric_to_Christoffel_2nd(twoform_not_sym))
    raises(ValueError, lambda: metric_to_Riemann_components(twoform_not_sym))
    raises(ValueError, lambda: metric_to_Ricci_components(twoform_not_sym))
コード例 #10
0
# Auxiliar terms for the metric.
dt_2 = TP(dt, dt)
dr_2 = TP(dr, dr)
dtheta_2 = TP(dtheta, dtheta)
dphi_2 = TP(dphi, dphi)
factor = (1 - r_s / r)

# Build the metric
metric = factor * c**2 * dt_2 - 1 / factor * dr_2 - r**2 * (
    dtheta_2 + sin(theta)**2 * dphi_2)
metric = factor * c**2 * dt_2 - 1 / factor * dr_2 - r**2 * (
    dtheta_2 + sin(theta)**2 * dphi_2)
metric = metric / c**2

# Get the Christoffel symbols of the second kind.
christoffel = metric_to_Christoffel_2nd(metric)

# Let's print this in an elegant way ;)
# for i in range(4):
#     for j in range(4):
#         for k in range(4):
#             if christoffel[i, j, k] != 0:
#                 display(Math('\Gamma^{}_{{{},{}}} = '.format(i, j, k) + latex(christoffel[i, j, k])))

## Specify c and r_s
christoffel_ = christoffel.subs({c: 2, r_s: 1})


def F(t, y):
    u = y[0:4]
    v = y[4:8]
コード例 #11
0
def test_H2():
    TP = sympy.diffgeom.TensorProduct
    R2 = sympy.diffgeom.rn.R2
    y = R2.y
    dy = R2.dy
    dx = R2.dx
    g = (TP(dx, dx) + TP(dy, dy)) * y**(-2)
    automat = twoform_to_matrix(g)
    mat = diag(y**(-2), y**(-2))
    assert mat == automat

    gamma1 = metric_to_Christoffel_1st(g)
    assert gamma1[0][0][0] == 0
    assert gamma1[0][0][1] == -y**(-3)
    assert gamma1[0][1][0] == -y**(-3)
    assert gamma1[0][1][1] == 0

    assert gamma1[1][1][1] == -y**(-3)
    assert gamma1[1][1][0] == 0
    assert gamma1[1][0][1] == 0
    assert gamma1[1][0][0] == y**(-3)

    gamma2 = metric_to_Christoffel_2nd(g)
    assert gamma2[0][0][0] == 0
    assert gamma2[0][0][1] == -y**(-1)
    assert gamma2[0][1][0] == -y**(-1)
    assert gamma2[0][1][1] == 0

    assert gamma2[1][1][1] == -y**(-1)
    assert gamma2[1][1][0] == 0
    assert gamma2[1][0][1] == 0
    assert gamma2[1][0][0] == y**(-1)

    Rm = metric_to_Riemann_components(g)
    assert Rm[0][0][0][0] == 0
    assert Rm[0][0][0][1] == 0
    assert Rm[0][0][1][0] == 0
    assert Rm[0][0][1][1] == 0

    assert Rm[0][1][0][0] == 0
    assert Rm[0][1][0][1] == -y**(-2)
    assert Rm[0][1][1][0] == y**(-2)
    assert Rm[0][1][1][1] == 0

    assert Rm[1][0][0][0] == 0
    assert Rm[1][0][0][1] == y**(-2)
    assert Rm[1][0][1][0] == -y**(-2)
    assert Rm[1][0][1][1] == 0

    assert Rm[1][1][0][0] == 0
    assert Rm[1][1][0][1] == 0
    assert Rm[1][1][1][0] == 0
    assert Rm[1][1][1][1] == 0

    Ric = metric_to_Ricci_components(g)
    assert Ric[0][0] == -y**(-2)
    assert Ric[0][1] == 0
    assert Ric[1][0] == 0
    assert Ric[0][0] == -y**(-2)

    ## scalar curvature is -2
    #TODO - it would be nice to have index contraction built-in
    R = (Ric[0][0] + Ric[1][1]) * y**2
    assert R == -2

    ## Gauss curvature is -1
    assert R / 2 == -1
コード例 #12
0
ファイル: tensor.py プロジェクト: imranal/master_thesis
 def metric_to_Christoffel_2nd(self):
     from sympy.diffgeom import metric_to_Christoffel_2nd
     return metric_to_Christoffel_2nd(self.metric)
コード例 #13
0
def test_H2():
    TP = sympy.diffgeom.TensorProduct
    R2 = sympy.diffgeom.rn.R2
    y = R2.y
    dy = R2.dy
    dx = R2.dx
    g = (TP(dx, dx) + TP(dy, dy))*y**(-2)
    automat = twoform_to_matrix(g)
    mat = diag(y**(-2), y**(-2))
    assert mat == automat

    gamma1 = metric_to_Christoffel_1st(g)
    assert gamma1[0, 0, 0] == 0
    assert gamma1[0, 0, 1] == -y**(-3)
    assert gamma1[0, 1, 0] == -y**(-3)
    assert gamma1[0, 1, 1] == 0

    assert gamma1[1, 1, 1] == -y**(-3)
    assert gamma1[1, 1, 0] == 0
    assert gamma1[1, 0, 1] == 0
    assert gamma1[1, 0, 0] == y**(-3)

    gamma2 = metric_to_Christoffel_2nd(g)
    assert gamma2[0, 0, 0] == 0
    assert gamma2[0, 0, 1] == -y**(-1)
    assert gamma2[0, 1, 0] == -y**(-1)
    assert gamma2[0, 1, 1] == 0

    assert gamma2[1, 1, 1] == -y**(-1)
    assert gamma2[1, 1, 0] == 0
    assert gamma2[1, 0, 1] == 0
    assert gamma2[1, 0, 0] == y**(-1)

    Rm = metric_to_Riemann_components(g)
    assert Rm[0, 0, 0, 0] == 0
    assert Rm[0, 0, 0, 1] == 0
    assert Rm[0, 0, 1, 0] == 0
    assert Rm[0, 0, 1, 1] == 0

    assert Rm[0, 1, 0, 0] == 0
    assert Rm[0, 1, 0, 1] == -y**(-2)
    assert Rm[0, 1, 1, 0] == y**(-2)
    assert Rm[0, 1, 1, 1] == 0

    assert Rm[1, 0, 0, 0] == 0
    assert Rm[1, 0, 0, 1] == y**(-2)
    assert Rm[1, 0, 1, 0] == -y**(-2)
    assert Rm[1, 0, 1, 1] == 0

    assert Rm[1, 1, 0, 0] == 0
    assert Rm[1, 1, 0, 1] == 0
    assert Rm[1, 1, 1, 0] == 0
    assert Rm[1, 1, 1, 1] == 0

    Ric = metric_to_Ricci_components(g)
    assert Ric[0, 0] == -y**(-2)
    assert Ric[0, 1] == 0
    assert Ric[1, 0] == 0
    assert Ric[0, 0] == -y**(-2)

    assert Ric == ImmutableDenseNDimArray([-y**(-2), 0, 0, -y**(-2)], (2, 2))

    ## scalar curvature is -2
    #TODO - it would be nice to have index contraction built-in
    R = (Ric[0, 0] + Ric[1, 1])*y**2
    assert R == -2

    ## Gauss curvature is -1
    assert R/2 == -1
コード例 #14
0
ファイル: tensor.py プロジェクト: imranal/DiffTens
 def metric_to_Christoffel_2nd(self):
     from sympy.diffgeom import metric_to_Christoffel_2nd
     return metric_to_Christoffel_2nd(self.metric)
コード例 #15
0
ファイル: diffgeometry.py プロジェクト: f1rst-is/bmstu-fun
def diffgeometryEx2(request):
    typesym = request.GET.get('typesym')
    metric_input = request.GET.get('metric')

    if not check_args(typesym, metric_input):
        return {'is_valid': False}

    def get_unique(lst):
        lst = set(lst)
        lst = list(lst)
        lst.sort()
        return lst

    def replace_in_metric(m, lst1, lst2):
        for i in range(len(lst1)):
            m = m.replace(lst1[i], lst2[i])
        return m

    TP = TensorProduct
    R = [R2.x, R2.y]
    dR2 = [TP(R2.dx, R2.dx), TP(R2.dy, R2.dy)]
    dR = (TP(R2.dx, R2.dy) + TP(R2.dy, R2.dx)) / 2

    metric = re.sub(r'\^', '**', str(metric_input))
    metric = re.sub(r'd\*s\*\*2=', '', metric)

    # get vars from string-metric
    variables = re.findall(r'd\*(\w+)', metric)
    variables = get_unique(variables)
    # get differentials from string-metric and replace 'd*x' to 'dx'
    zamena_diff = re.findall(r'd\*\w+', metric)
    zamena_diff = get_unique(zamena_diff)

    zamena_diff_new = [el.replace('*', '') for el in zamena_diff]

    metric = replace_in_metric(metric, zamena_diff, zamena_diff_new)
    # get differentials at the 2 power
    diffs2 = re.findall(r'd\w+\*\*2', metric)
    diffs2 = get_unique(diffs2)
    # get differentials 'dx*dy' and replace to 'dxdy'
    diffs_diff = re.findall(r'd\w+\*d\w+', metric)
    diffs_diff = get_unique(diffs_diff)

    diffs_diff_new = [el.replace('*', '') for el in diffs_diff]

    metric = replace_in_metric(metric, diffs_diff, diffs_diff_new)
    # get sympy-eval from string-metric
    transformations = standard_transformations + (function_exponentiation, implicit_application,)
    try:
        metric_sym = parse_expr(metric, transformations=transformations)
    except:
        return {'is_valid': False}

    metric_input = latex(metric_sym)
    # replace variables to 'R2.x' and "R2.y'
    metric_sym = replace_in_metric(metric_sym, variables, R)
    # replace differentials at the 2 power to 'TP(dx, dx)' and 'TP(dy, dy)'
    metric_sym = replace_in_metric(metric_sym, diffs2, dR2)
    # replace 'dxdy' to 'TP(dx, dy)'
    for el in diffs_diff_new:
        metric_sym = metric_sym.replace(el, dR)
    metric_sym = expand(metric_sym)
    #generate metric-matrix
    metric_matrix = [latex(metric_sym.coeff(TP(a, b))) for a in [R2.dx, R2.dy] for b in [R2.dx, R2.dy]]

    if typesym == '1':
        try:
            Christoffel = simplify(metric_to_Christoffel_1st(metric_sym))
        except ValueError:
            return {'is_valid': False}

    elif typesym == '2':
        try:
            Christoffel = simplify(metric_to_Christoffel_2nd(metric_sym))
        except ValueError:
            return {'is_valid': False}

    else:
        return {'is_valid': False}

    Christoffel = list(Christoffel)
    # replace 'R2.x,y' to variables
    index = list(map(''.join, product('12', repeat=3)))
    answer = [('_{%s,%s%s}=' if typesym == '1' else '^%s_{ \ %s%s}=') % (index[i][0], index[i][1], index[i][2]) +
              latex(el.subs([(R[i], variables[i]) for i in range(len(variables))], simultaneous=True))
              for i, el in enumerate(Christoffel)]

    return {'answer': answer, 'metric': metric_input, 'typesym': typesym, 'metric_matrix': metric_matrix, 'is_valid': True}
コード例 #16
0
from sympy.diffgeom.rn import R2
LieDerivative(R2.e_x, R2.y)
LieDerivative(R2.e_x, R2.x)
LieDerivative(R2.e_x, R2.e_x)
# The Lie derivative of a tensor field by another tensor field is equal to their commutator:
LieDerivative(R2.e_x, R2.e_r)
LieDerivative(R2.e_x + R2.e_y, R2.x)
tp = TensorProduct(R2.dx, R2.dy)
LieDerivative(R2.e_x, tp)
LieDerivative(R2.e_x, tp).doit()
#BaseCovarDerivativeOp
from sympy.diffgeom.rn import R2, R2_r
from sympy.diffgeom import BaseCovarDerivativeOp
from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
TP = TensorProduct
ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
ch
cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
cvd(R2.x)
cvd(R2.x*R2.e_x)
#CovarDerivativeOp
from sympy.diffgeom.rn import R2
from sympy.diffgeom import CovarDerivativeOp
from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
TP = TensorProduct
ch = metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
ch
cvd = CovarDerivativeOp(R2.x*R2.e_x, ch)
cvd(R2.x)
cvd(R2.x*R2.e_x)
#intcurve_series