def jacobi_normalized(n, a, b, x): r""" Jacobi polynomial :math:`P_n^{\left(\alpha, \beta\right)}(x)` jacobi_normalized(n, alpha, beta, x) gives the nth Jacobi polynomial in x, :math:`P_n^{\left(\alpha, \beta\right)}(x)`. The Jacobi polynomials are orthogonal on :math:`[-1, 1]` with respect to the weight :math:`\left(1-x\right)^\alpha \left(1+x\right)^\beta`. This functions returns the polynomials normilzed: .. math:: \int_{-1}^{1} P_m^{\left(\alpha, \beta\right)}(x) P_n^{\left(\alpha, \beta\right)}(x) (1-x)^{\alpha} (1+x)^{\beta} \mathrm{d}x = \delta_{m,n} Examples ======== >>> from sympy import jacobi_normalized >>> from sympy.abc import n,a,b,x >>> jacobi_normalized(n, a, b, x) jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)/((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))) See Also ======== gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] http://en.wikipedia.org/wiki/Jacobi_polynomials .. [2] http://mathworld.wolfram.com/JacobiPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/JacobiP/ """ nfactor = ( S(2) ** (a + b + 1) * (gamma(n + a + 1) * gamma(n + b + 1)) / (2 * n + a + b + 1) / (factorial(n) * gamma(n + a + b + 1)) ) return jacobi(n, a, b, x) / sqrt(nfactor)
def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return ( (3 ** (S(1) / 3) * x) ** (-n) * (3 ** (S(1) / 3) * x) ** (n + 1) * sin(pi * (2 * n / 3 + S(4) / 3)) * factorial(n) * gamma(n / 3 + S(2) / 3) / (sin(pi * (2 * n / 3 + S(2) / 3)) * factorial(n + 1) * gamma(n / 3 + S(1) / 3)) * p ) else: return ( S.One / (3 ** (S(2) / 3) * pi) * gamma((n + S.One) / S(3)) * sin(2 * pi * (n + S.One) / S(3)) / factorial(n) * (root(3, 3) * x) ** n )
def _eval_rewrite_as_polynomial(self, n, x): from sympy import Sum # TODO: Should make sure n is in N_0 k = Dummy("k") kern = RisingFactorial( -n, k) / (gamma(k + alpha + 1) * factorial(k)) * x**k return gamma(n + alpha + 1) / factorial(n) * Sum(kern, (k, 0, n))
def _eval_rewrite_as_polynomial(self, n, x): from sympy import Sum # Make sure n \in N_0 if n.is_negative or n.is_integer is False: raise ValueError("Error: n should be a non-negative integer.") k = Dummy("k") kern = RisingFactorial( -n, k) / (gamma(k + alpha + 1) * factorial(k)) * x**k return gamma(n + alpha + 1) / factorial(n) * Sum(kern, (k, 0, n))
def pdf(self, *args): from sympy.functions.special.gamma_functions import gamma mu, sigma = self.mu, self.shape_mat v = S(self.dof) k = S(len(mu)) sigma_inv = sigma.inv() args = ImmutableMatrix(args) x = args - mu return gamma((k + v)/2)/(gamma(v/2)*(v*pi)**(k/2)*sqrt(det(sigma)))\ *(1 + 1/v*(x.transpose()*sigma_inv*x)[0])**((-v - k)/2)
def eval(cls, z): if z is S.Zero: return pi / 2 elif z is S.Half: return 8 * pi ** (S(3) / 2) / gamma(-S(1) / 4) ** 2 elif z is S.One: return S.ComplexInfinity elif z is S.NegativeOne: return gamma(S(1) / 4) ** 2 / (4 * sqrt(2 * pi)) elif z in (S.Infinity, S.NegativeInfinity, I * S.Infinity, I * S.NegativeInfinity, S.ComplexInfinity): return S.Zero
def marginal_distribution(self, indices, *sym): from sympy.functions.special.gamma_functions import gamma if len(indices) == 2: return self.pdf(*sym) if indices[0] == 0: #For marginal over `x`, return non-standardized Student-T's #distribution x = sym[0] v, mu, sigma = self.alpha - S(1)/2, self.mu, \ S(self.beta)/(self.lamda * self.alpha) return Lambda(sym, gamma((v + 1)/2)/(gamma(v/2)*sqrt(pi*v)*sigma)*\ (1 + 1/v*((x - mu)/sigma)**2)**((-v -1)/2)) #For marginal over `tau`, return Gamma distribution as per construction from sympy.stats.crv_types import GammaDistribution return Lambda(sym, GammaDistribution(self.alpha, self.beta)(sym[0]))
def eval(cls, n, m, x): if m.could_extract_minus_sign(): # P^{-m}_n ---> F * P^m_n return S.NegativeOne**(-m) * (factorial(m + n)/factorial(n - m)) * assoc_legendre(n, -m, x) if m == 0: # P^0_n ---> L_n return legendre(n, x) if x == 0: return 2**m*sqrt(S.Pi) / (gamma((1 - m - n)/2)*gamma(1 - (m - n)/2)) if n.is_Number and m.is_Number and n.is_integer and m.is_integer: if n.is_negative: raise ValueError("%s : 1st index must be nonnegative integer (got %r)" % (cls, n)) if abs(m) > n: raise ValueError("%s : abs('2nd index') must be <= '1st index' (got %r, %r)" % (cls, n, m)) return cls._eval_at_order(int(n), abs(int(m))).subs(_x, x)
def pdf(self, x, tau): from sympy.functions.special.gamma_functions import gamma beta, alpha, lamda = self.beta, self.alpha, self.lamda mu = self.mu return beta**alpha*sqrt(lamda)/(gamma(alpha)*sqrt(2*pi))*\ tau**(alpha - S(1)/2)*exp(-1*beta*tau)*\ exp(-1*(lamda*tau*(x - mu)**2)/S(2))
def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Zero elif arg is S.Zero: return -S.One / (3 ** Rational(1, 3) * gamma(Rational(1, 3)))
def eval(cls, arg): if arg.is_Number: if arg is S.NaN: return S.NaN elif arg is S.Infinity: return S.Infinity elif arg is S.NegativeInfinity: return S.Zero elif arg is S.Zero: return 3 ** Rational(1, 6) / gamma(Rational(1, 3))
def taylor_term(n, x, *previous_terms): if n < 0: return S.Zero else: x = sympify(x) if len(previous_terms) > 1: p = previous_terms[-1] return (3**(S(1)/3)*x * Abs(sin(2*pi*(n + S.One)/S(3))) * C.factorial((n - S.One)/S(3)) / ((n + S.One) * Abs(cos(2*pi*(n + S.Half)/S(3))) * C.factorial((n - 2)/S(3))) * p) else: return (S.One/(root(3, 6)*pi) * gamma((n + S.One)/S(3)) * Abs(sin(2*pi*(n + S.One)/S(3))) / C.factorial(n) * (root(3, 3)*x)**n)
def eval(cls, n, x): if not n.is_Number: # Symbolic result L_n(x) # L_n(-x) ---> (-1)**n * L_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * legendre(n, -x) # L_{-n}(x) ---> L_{n-1}(x) if n.could_extract_minus_sign(): return legendre(-n - S.One, x) # We can evaluate for some special values of x if x == S.Zero: return sqrt(S.Pi)/(gamma(S.Half - n/2)*gamma(S.One + n/2)) elif x == S.One: return S.One elif x == S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial; # L_{-n}(x) ---> L_{n-1}(x) if n.is_negative: n = -n - S.One return cls._eval_at_order(n, x)
def eval(cls, n, a, b, x): # Simplify to other polynomials # P^{a, a}_n(x) if a == b: if a == -S.Half: return RisingFactorial(S.Half, n) / factorial(n) * chebyshevt(n, x) elif a == S.Zero: return legendre(n, x) elif a == S.Half: return RisingFactorial(3*S.Half, n) / factorial(n + 1) * chebyshevu(n, x) else: return RisingFactorial(a + 1, n) / RisingFactorial(2*a + 1, n) * gegenbauer(n, a + S.Half, x) elif b == -a: # P^{a, -a}_n(x) return gamma(n + a + 1) / gamma(n + 1) * (1 + x)**(a/2) / (1 - x)**(a/2) * assoc_legendre(n, -a, x) if not n.is_Number: # Symbolic result P^{a,b}_n(x) # P^{a,b}_n(-x) ---> (-1)**n * P^{b,a}_n(-x) if x.could_extract_minus_sign(): return S.NegativeOne**n * jacobi(n, b, a, -x) # We can evaluate for some special values of x if x == S.Zero: return (2**(-n) * gamma(a + n + 1) / (gamma(a + 1) * factorial(n)) * hyper([-b - n, -n], [a + 1], -1)) if x == S.One: return RisingFactorial(a + 1, n) / factorial(n) elif x == S.Infinity: if n.is_positive: # Make sure a+b+2*n \notin Z if (a + b + 2*n).is_integer: raise ValueError("Error. a + b + 2*n should not be an integer.") return RisingFactorial(a + b + n + 1, n) * S.Infinity else: # n is a given fixed integer, evaluate into polynomial return jacobi_poly(n, a, b, x)
def eval(cls, n, x): if not n.is_Number: # Symbolic result H_n(x) # H_n(-x) ---> (-1)**n * H_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * hermite(n, -x) # We can evaluate for some special values of x if x == S.Zero: return 2**n * sqrt(S.Pi) / gamma((S.One - n)/2) elif x == S.Infinity: return S.Infinity else: # n is a given fixed integer, evaluate into polynomial if n.is_negative: raise ValueError( "The index n must be nonnegative integer (got %r)" % n) else: return cls._eval_at_order(n, x)
def eval(cls, n, a, x): # For negative n the polynomials vanish # See http://functions.wolfram.com/Polynomials/GegenbauerC3/03/01/03/0012/ if n.is_negative: return S.Zero # Some special values for fixed a if a == S.Half: return legendre(n, x) elif a == S.One: return chebyshevu(n, x) elif a == S.NegativeOne: return S.Zero if not n.is_Number: # Handle this before the general sign extraction rule if x == S.NegativeOne: if (re(a) > S.Half) == True: return S.ComplexInfinity else: # No sec function available yet #return (cos(S.Pi*(a+n)) * sec(S.Pi*a) * gamma(2*a+n) / # (gamma(2*a) * gamma(n+1))) return None # Symbolic result C^a_n(x) # C^a_n(-x) ---> (-1)**n * C^a_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * gegenbauer(n, a, -x) # We can evaluate for some special values of x if x == S.Zero: return (2**n * sqrt(S.Pi) * gamma(a + S.Half*n) / (gamma((1 - n)/2) * gamma(n + 1) * gamma(a)) ) if x == S.One: return gamma(2*a + n) / (gamma(2*a) * gamma(n + 1)) elif x == S.Infinity: if n.is_positive: return RisingFactorial(a, n) * S.Infinity else: # n is a given fixed integer, evaluate into polynomial return gegenbauer_poly(n, a, x)
def eval(cls, n, a, x): # For negative n the polynomials vanish # See http://functions.wolfram.com/Polynomials/GegenbauerC3/03/01/03/0012/ if n.is_negative: return S.Zero # Some special values for fixed a if a == S.Half: return legendre(n, x) elif a == S.One: return chebyshevu(n, x) elif a == S.NegativeOne: return S.Zero if not n.is_Number: # Handle this before the general sign extraction rule if x == S.NegativeOne: if (re(a) > S.Half) == True: return S.ComplexInfinity else: # No sec function available yet #return (cos(S.Pi*(a+n)) * sec(S.Pi*a) * gamma(2*a+n) / # (gamma(2*a) * gamma(n+1))) return None # Symbolic result C^a_n(x) # C^a_n(-x) ---> (-1)**n * C^a_n(x) if x.could_extract_minus_sign(): return S.NegativeOne**n * gegenbauer(n, a, -x) # We can evaluate for some special values of x if x == S.Zero: return (2**n * sqrt(S.Pi) * gamma(a + S.Half * n) / (gamma( (1 - n) / 2) * gamma(n + 1) * gamma(a))) if x == S.One: return gamma(2 * a + n) / (gamma(2 * a) * gamma(n + 1)) elif x == S.Infinity: if n.is_positive: return RisingFactorial(a, n) * S.Infinity else: # n is a given fixed integer, evaluate into polynomial return gegenbauer_poly(n, a, x)
def eval(cls, n, a, b, x): # Simplify to other polynomials # P^{a, a}_n(x) if a == b: if a == -S.Half: return RisingFactorial(S.Half, n) / factorial(n) * chebyshevt( n, x) elif a == S.Zero: return legendre(n, x) elif a == S.Half: return RisingFactorial( 3 * S.Half, n) / factorial(n + 1) * chebyshevu(n, x) else: return RisingFactorial(a + 1, n) / RisingFactorial( 2 * a + 1, n) * gegenbauer(n, a + S.Half, x) elif b == -a: # P^{a, -a}_n(x) return gamma(n + a + 1) / gamma(n + 1) * (1 + x)**(a / 2) / ( 1 - x)**(a / 2) * assoc_legendre(n, -a, x) elif a == -b: # P^{-b, b}_n(x) return gamma(n - b + 1) / gamma(n + 1) * (1 - x)**(b / 2) / ( 1 + x)**(b / 2) * assoc_legendre(n, b, x) if not n.is_Number: # Symbolic result P^{a,b}_n(x) # P^{a,b}_n(-x) ---> (-1)**n * P^{b,a}_n(-x) if x.could_extract_minus_sign(): return S.NegativeOne**n * jacobi(n, b, a, -x) # We can evaluate for some special values of x if x == S.Zero: return (2**(-n) * gamma(a + n + 1) / (gamma(a + 1) * factorial(n)) * hyper([-b - n, -n], [a + 1], -1)) if x == S.One: return RisingFactorial(a + 1, n) / factorial(n) elif x == S.Infinity: if n.is_positive: # Make sure a+b+2*n \notin Z if (a + b + 2 * n).is_integer: raise ValueError( "Error. a + b + 2*n should not be an integer.") return RisingFactorial(a + b + n + 1, n) * S.Infinity else: # n is a given fixed integer, evaluate into polynomial return jacobi_poly(n, a, b, x)
def test_binomial(): x = Symbol('x') n = Symbol('n', integer=True) nz = Symbol('nz', integer=True, nonzero=True) k = Symbol('k', integer=True) kp = Symbol('kp', integer=True, positive=True) kn = Symbol('kn', integer=True, negative=True) u = Symbol('u', negative=True) v = Symbol('v', nonnegative=True) p = Symbol('p', positive=True) z = Symbol('z', zero=True) nt = Symbol('nt', integer=False) kt = Symbol('kt', integer=False) a = Symbol('a', integer=True, nonnegative=True) b = Symbol('b', integer=True, nonnegative=True) assert binomial(0, 0) == 1 assert binomial(1, 1) == 1 assert binomial(10, 10) == 1 assert binomial(n, z) == 1 assert binomial(1, 2) == 0 assert binomial(-1, 2) == 1 assert binomial(1, -1) == 0 assert binomial(-1, 1) == -1 assert binomial(-1, -1) == 0 assert binomial(S.Half, S.Half) == 1 assert binomial(-10, 1) == -10 assert binomial(-10, 7) == -11440 assert binomial( n, -1) == 0 # holds for all integers (negative, zero, positive) assert binomial(kp, -1) == 0 assert binomial(nz, 0) == 1 assert expand_func(binomial(n, 1)) == n assert expand_func(binomial(n, 2)) == n * (n - 1) / 2 assert expand_func(binomial(n, n - 2)) == n * (n - 1) / 2 assert expand_func(binomial(n, n - 1)) == n assert binomial(n, 3).func == binomial assert binomial(n, 3).expand(func=True) == n**3 / 6 - n**2 / 2 + n / 3 assert expand_func(binomial(n, 3)) == n * (n - 2) * (n - 1) / 6 assert binomial(n, n).func == binomial # e.g. (-1, -1) == 0, (2, 2) == 1 assert binomial(n, n + 1).func == binomial # e.g. (-1, 0) == 1 assert binomial(kp, kp + 1) == 0 assert binomial(kn, kn) == 0 # issue #14529 assert binomial(n, u).func == binomial assert binomial(kp, u).func == binomial assert binomial(n, p).func == binomial assert binomial(n, k).func == binomial assert binomial(n, n + p).func == binomial assert binomial(kp, kp + p).func == binomial assert expand_func(binomial(n, n - 3)) == n * (n - 2) * (n - 1) / 6 assert binomial(n, k).is_integer assert binomial(nt, k).is_integer is None assert binomial(x, nt).is_integer is False assert binomial( gamma(25), 6 ) == 79232165267303928292058750056084441948572511312165380965440075720159859792344339983120618959044048198214221915637090855535036339620413440000 assert binomial( 1324, 47 ) == 906266255662694632984994480774946083064699457235920708992926525848438478406790323869952 assert binomial( 1735, 43 ) == 190910140420204130794758005450919715396159959034348676124678207874195064798202216379800 assert binomial( 2512, 53 ) == 213894469313832631145798303740098720367984955243020898718979538096223399813295457822575338958939834177325304000 assert binomial( 3383, 52 ) == 27922807788818096863529701501764372757272890613101645521813434902890007725667814813832027795881839396839287659777235 assert binomial( 4321, 51 ) == 124595639629264868916081001263541480185227731958274383287107643816863897851139048158022599533438936036467601690983780576 assert binomial(a, b).is_nonnegative is True assert binomial(-1, 2, evaluate=False).is_nonnegative is True assert binomial(10, 5, evaluate=False).is_nonnegative is True assert binomial(10, -3, evaluate=False).is_nonnegative is True assert binomial(-10, -3, evaluate=False).is_nonnegative is True assert binomial(-10, 2, evaluate=False).is_nonnegative is True assert binomial(-10, 1, evaluate=False).is_nonnegative is False assert binomial(-10, 7, evaluate=False).is_nonnegative is False # issue #14625 for _ in (pi, -pi, nt, v, a): assert binomial(_, _) == 1 assert binomial(_, _ - 1) == _ assert isinstance(binomial(u, u), binomial) assert isinstance(binomial(u, u - 1), binomial) assert isinstance(binomial(x, x), binomial) assert isinstance(binomial(x, x - 1), binomial) #issue #18802 assert expand_func(binomial(x + 1, x)) == x + 1 assert expand_func(binomial(x, x - 1)) == x assert expand_func(binomial(x + 1, x - 1)) == x * (x + 1) / 2 assert expand_func(binomial(x**2 + 1, x**2)) == x**2 + 1 # issue #13980 and #13981 assert binomial(-7, -5) == 0 assert binomial(-23, -12) == 0 assert binomial(Rational(13, 2), -10) == 0 assert binomial(-49, -51) == 0 assert binomial(19, Rational(-7, 2)) == S(-68719476736) / (911337863661225 * pi) assert binomial(0, Rational(3, 2)) == S(-2) / (3 * pi) assert binomial(-3, Rational(-7, 2)) is zoo assert binomial(kn, kt) is zoo assert binomial(nt, kt).func == binomial assert binomial(nt, Rational( 15, 6)) == 8 * gamma(nt + 1) / (15 * sqrt(pi) * gamma(nt - Rational(3, 2))) assert binomial(Rational(20, 3), Rational(-10, 8)) == gamma(Rational( 23, 3)) / (gamma(Rational(-1, 4)) * gamma(Rational(107, 12))) assert binomial(Rational(19, 2), Rational(-7, 2)) == Rational(-1615, 8388608) assert binomial(Rational(-13, 5), Rational(-7, 8)) == gamma(Rational( -8, 5)) / (gamma(Rational(-29, 40)) * gamma(Rational(1, 8))) assert binomial(Rational(-19, 8), Rational(-13, 5)) == gamma( Rational(-11, 8)) / (gamma(Rational(-8, 5)) * gamma(Rational(49, 40))) # binomial for complexes assert binomial(I, Rational(-89, 8)) == gamma(1 + I) / (gamma(Rational(-81, 8)) * gamma(Rational(97, 8) + I)) assert binomial(I, 2 * I) == gamma(1 + I) / (gamma(1 - I) * gamma(1 + 2 * I)) assert binomial(-7, I) is zoo assert binomial(Rational(-7, 6), I) == gamma(Rational( -1, 6)) / (gamma(Rational(-1, 6) - I) * gamma(1 + I)) assert binomial( (1 + 2 * I), (1 + 3 * I)) == gamma(2 + 2 * I) / (gamma(1 - I) * gamma(2 + 3 * I)) assert binomial(I, 5) == Rational(1, 3) - I / S(12) assert binomial((2 * I + 3), 7) == -13 * I / S(63) assert isinstance(binomial(I, n), binomial) assert expand_func(binomial(3, 2, evaluate=False)) == 3 assert expand_func(binomial(n, 0, evaluate=False)) == 1 assert expand_func(binomial(n, -2, evaluate=False)) == 0 assert expand_func(binomial(n, k)) == binomial(n, k)
def test_sympy__functions__special__gamma_functions__gamma(): from sympy.functions.special.gamma_functions import gamma assert _test_args(gamma(x))
def pdf(self, *k): k0, p = self.k0, self.p term_1 = (gamma(k0 + sum(k))*(1 - sum(p))**k0)/gamma(k0) term_2 = Mul.fromiter(pi**ki/factorial(ki) for pi, ki in zip(p, k)) return term_1 * term_2
def gauss_gen_laguerre(n, alpha, n_digits): r""" Computes the generalized Gauss-Laguerre quadrature [1]_ points and weights. The generalized Gauss-Laguerre quadrature approximates the integral: .. math:: \int_{0}^\infty x^{\alpha} e^{-x} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i) The nodes `x_i` of an order `n` quadrature rule are the roots of `L^{\alpha}_n` and the weights `w_i` are given by: .. math:: w_i = \frac{\Gamma(\alpha+n)} {n \Gamma(n) L^{\alpha}_{n-1}(x_i) L^{\alpha+1}_{n-1}(x_i)} Parameters ========== n : the order of quadrature alpha : the exponent of the singularity, `\alpha > -1` n_digits : number of significant digits of the points and weights to return Returns ======= (x, w) : the ``x`` and ``w`` are lists of points and weights as Floats. The points `x_i` and weights `w_i` are returned as ``(x, w)`` tuple of lists. Examples ======== >>> from sympy import S >>> from sympy.integrals.quadrature import gauss_gen_laguerre >>> x, w = gauss_gen_laguerre(3, -S.Half, 5) >>> x [0.19016, 1.7845, 5.5253] >>> w [1.4493, 0.31413, 0.00906] >>> x, w = gauss_gen_laguerre(4, 3*S.Half, 5) >>> x [0.97851, 2.9904, 6.3193, 11.712] >>> w [0.53087, 0.67721, 0.11895, 0.0023152] See Also ======== gauss_legendre, gauss_laguerre, gauss_hermite, gauss_chebyshev_t, gauss_chebyshev_u, gauss_jacobi, gauss_lobatto References ========== .. [1] https://en.wikipedia.org/wiki/Gauss%E2%80%93Laguerre_quadrature .. [2] http://people.sc.fsu.edu/~jburkardt/cpp_src/gen_laguerre_rule/gen_laguerre_rule.html """ x = Dummy("x") p = laguerre_poly(n, x, alpha=alpha, polys=True) p1 = laguerre_poly(n - 1, x, alpha=alpha, polys=True) p2 = laguerre_poly(n - 1, x, alpha=alpha + 1, polys=True) xi = [] w = [] for r in p.real_roots(): if isinstance(r, RootOf): r = r.eval_rational(S(1) / 10**(n_digits + 2)) xi.append(r.n(n_digits)) w.append((gamma(alpha + n) / (n * gamma(n) * p1.subs(x, r) * p2.subs(x, r))).n(n_digits)) return xi, w
def gauss_jacobi(n, alpha, beta, n_digits): r""" Computes the Gauss-Jacobi quadrature [1]_ points and weights. The Gauss-Jacobi quadrature of the first kind approximates the integral: .. math:: \int_{-1}^1 (1-x)^\alpha (1+x)^\beta f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i) The nodes `x_i` of an order `n` quadrature rule are the roots of `P^{(\alpha,\beta)}_n` and the weights `w_i` are given by: .. math:: w_i = -\frac{2n+\alpha+\beta+2}{n+\alpha+\beta+1}\frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)} {\Gamma(n+\alpha+\beta+1)(n+1)!} \frac{2^{\alpha+\beta}}{P'_n(x_i) P^{(\alpha,\beta)}_{n+1}(x_i)} Parameters ========== n : the order of quadrature alpha : the first parameter of the Jacobi Polynomial, `\alpha > -1` beta : the second parameter of the Jacobi Polynomial, `\beta > -1` n_digits : number of significant digits of the points and weights to return Returns ======= (x, w) : the ``x`` and ``w`` are lists of points and weights as Floats. The points `x_i` and weights `w_i` are returned as ``(x, w)`` tuple of lists. Examples ======== >>> from sympy import S >>> from sympy.integrals.quadrature import gauss_jacobi >>> x, w = gauss_jacobi(3, S.Half, -S.Half, 5) >>> x [-0.90097, -0.22252, 0.62349] >>> w [1.7063, 1.0973, 0.33795] >>> x, w = gauss_jacobi(6, 1, 1, 5) >>> x [-0.87174, -0.5917, -0.2093, 0.2093, 0.5917, 0.87174] >>> w [0.050584, 0.22169, 0.39439, 0.39439, 0.22169, 0.050584] See Also ======== gauss_legendre, gauss_laguerre, gauss_hermite, gauss_gen_laguerre, gauss_chebyshev_t, gauss_chebyshev_u References ========== .. [1] http://en.wikipedia.org/wiki/Gauss%E2%80%93Jacobi_quadrature .. [2] http://people.sc.fsu.edu/~jburkardt/cpp_src/jacobi_rule/jacobi_rule.html .. [3] http://people.sc.fsu.edu/~jburkardt/cpp_src/gegenbauer_rule/gegenbauer_rule.html """ x = Dummy("x") p = jacobi_poly(n, alpha, beta, x, polys=True) pd = p.diff(x) pn = jacobi_poly(n+1, alpha, beta, x, polys=True) xi = [] w = [] for r in p.real_roots(): if isinstance(r, RootOf): r = r.eval_rational(S(1)/10**(n_digits+2)) xi.append(r.n(n_digits)) w.append(( - (2*n+alpha+beta+2) / (n+alpha+beta+S.One) * (gamma(n+alpha+1)*gamma(n+beta+1)) / (gamma(n+alpha+beta+S.One)*gamma(n+2)) * 2**(alpha+beta) / (pd.subs(x, r) * pn.subs(x, r)) ).n(n_digits)) return xi, w
def fdiff(self, argindex=1): from sympy.functions.special.gamma_functions import (gamma, polygamma) if argindex == 1: return gamma(self.args[0] + 1) * polygamma(0, self.args[0] + 1) else: raise ArgumentIndexError(self, argindex)
def test_issue_16722(): z = symbols('z', positive=True) assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1) z = symbols('z', positive=True, integer=True) assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1)
def test_issue_13571(): assert limit(uppergamma(x, 1) / gamma(x), x, oo) == 1
def test_basic1(): assert limit(x, x, oo) is oo assert limit(x, x, -oo) is -oo assert limit(-x, x, oo) is -oo assert limit(x**2, x, -oo) is oo assert limit(-x**2, x, oo) is -oo assert limit(x*log(x), x, 0, dir="+") == 0 assert limit(1/x, x, oo) == 0 assert limit(exp(x), x, oo) is oo assert limit(-exp(x), x, oo) is -oo assert limit(exp(x)/x, x, oo) is oo assert limit(1/x - exp(-x), x, oo) == 0 assert limit(x + 1/x, x, oo) is oo assert limit(x - x**2, x, oo) is -oo assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1 assert limit((1 + x)**oo, x, 0) == Limit((x + 1)**oo, x, 0) assert limit((1 + x)**oo, x, 0, dir='-') == Limit((x + 1)**oo, x, 0, dir='-') assert limit((1 + x + y)**oo, x, 0, dir='-') == Limit((1 + x + y)**oo, x, 0, dir='-') assert limit(y/x/log(x), x, 0) == -oo*sign(y) assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo assert limit(gamma(1/x + 3), x, oo) == 2 assert limit(S.NaN, x, -oo) is S.NaN assert limit(Order(2)*x, x, S.NaN) is S.NaN assert limit(1/(x - 1), x, 1, dir="+") is oo assert limit(1/(x - 1), x, 1, dir="-") is -oo assert limit(1/(5 - x)**3, x, 5, dir="+") is -oo assert limit(1/(5 - x)**3, x, 5, dir="-") is oo assert limit(1/sin(x), x, pi, dir="+") is -oo assert limit(1/sin(x), x, pi, dir="-") is oo assert limit(1/cos(x), x, pi/2, dir="+") is -oo assert limit(1/cos(x), x, pi/2, dir="-") is oo assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="+") is oo assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="-") is -oo assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="+") is -oo assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="-") is oo assert limit(tan(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) assert limit(cot(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) assert limit(sec(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) assert limit(csc(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity) # test bi-directional limits assert limit(sin(x)/x, x, 0, dir="+-") == 1 assert limit(x**2, x, 0, dir="+-") == 0 assert limit(1/x**2, x, 0, dir="+-") is oo # test failing bi-directional limits assert limit(1/x, x, 0, dir="+-") is zoo # approaching 0 # from dir="+" assert limit(1 + 1/x, x, 0) is oo # from dir='-' # Add assert limit(1 + 1/x, x, 0, dir='-') is -oo # Pow assert limit(x**(-2), x, 0, dir='-') is oo assert limit(x**(-3), x, 0, dir='-') is -oo assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I assert limit(x**2, x, 0, dir='-') == 0 assert limit(sqrt(x), x, 0, dir='-') == 0 assert limit(x**-pi, x, 0, dir='-') == oo/(-1)**pi assert limit((1 + cos(x))**oo, x, 0) == Limit((cos(x) + 1)**oo, x, 0) # test pull request 22491 assert limit(1/asin(x), x, 0, dir = '+') == oo assert limit(1/asin(x), x, 0, dir = '-') == -oo assert limit(1/sinh(x), x, 0, dir = '+') == oo assert limit(1/sinh(x), x, 0, dir = '-') == -oo assert limit(log(1/x) + 1/sin(x), x, 0, dir = '+') == oo assert limit(log(1/x) + 1/x, x, 0, dir = '+') == oo
def test_jacobi(): n = Symbol("n") a = Symbol("a") b = Symbol("b") assert jacobi(0, a, b, x) == 1 assert jacobi(1, a, b, x) == a / 2 - b / 2 + x * (a / 2 + b / 2 + 1) assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n) * gegenbauer( n, a + S.Half, x) / RisingFactorial(2 * a + 1, n) assert jacobi(n, a, -a, x) == ((-1)**a * (-x + 1)**(-a / 2) * (x + 1)**(a / 2) * assoc_legendre(n, a, x) * factorial(-a + n) * gamma(a + n + 1) / (factorial(a + n) * gamma(n + 1))) assert jacobi(n, -b, b, x) == ((-x + 1)**(b / 2) * (x + 1)**(-b / 2) * assoc_legendre(n, b, x) * gamma(-b + n + 1) / gamma(n + 1)) assert jacobi(n, 0, 0, x) == legendre(n, x) assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(Rational( 3, 2), n) * chebyshevu(n, x) / factorial(n + 1) assert jacobi( n, Rational(-1, 2), Rational(-1, 2), x) == RisingFactorial(S.Half, n) * chebyshevt(n, x) / factorial(n) X = jacobi(n, a, b, x) assert isinstance(X, jacobi) assert jacobi(n, a, b, -x) == (-1)**n * jacobi(n, b, a, x) assert jacobi(n, a, b, 0) == 2**(-n) * gamma(a + n + 1) * hyper( (-b - n, -n), (a + 1, ), -1) / (factorial(n) * gamma(a + 1)) assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n) / factorial(n) m = Symbol("m", positive=True) assert jacobi(m, a, b, oo) == oo * RisingFactorial(a + b + m + 1, m) assert unchanged(jacobi, n, a, b, oo) assert conjugate(jacobi(m, a, b, x)) == \ jacobi(m, conjugate(a), conjugate(b), conjugate(x)) _k = Dummy('k') assert diff(jacobi(n, a, b, x), n) == Derivative(jacobi(n, a, b, x), n) assert diff(jacobi(n, a, b, x), a).dummy_eq( Sum((jacobi(n, a, b, x) + (2 * _k + a + b + 1) * RisingFactorial(_k + b + 1, -_k + n) * jacobi(_k, a, b, x) / ((-_k + n) * RisingFactorial(_k + a + b + 1, -_k + n))) / (_k + a + b + n + 1), (_k, 0, n - 1))) assert diff(jacobi(n, a, b, x), b).dummy_eq( Sum(((-1)**(-_k + n) * (2 * _k + a + b + 1) * RisingFactorial(_k + a + 1, -_k + n) * jacobi(_k, a, b, x) / ((-_k + n) * RisingFactorial(_k + a + b + 1, -_k + n)) + jacobi(n, a, b, x)) / (_k + a + b + n + 1), (_k, 0, n - 1))) assert diff(jacobi(n, a, b, x), x) == \ (a/2 + b/2 + n/2 + S.Half)*jacobi(n - 1, a + 1, b + 1, x) assert jacobi_normalized(n, a, b, x) == \ (jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1) /((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1)))) raises(ValueError, lambda: jacobi(-2.1, a, b, x)) raises(ValueError, lambda: jacobi(Dummy(positive=True, integer=True), 1, 2, oo)) assert jacobi(n, a, b, x).rewrite("polynomial").dummy_eq( Sum((S.Half - x / 2)**_k * RisingFactorial(-n, _k) * RisingFactorial(_k + a + 1, -_k + n) * RisingFactorial(a + b + n + 1, _k) / factorial(_k), (_k, 0, n)) / factorial(n)) raises(ArgumentIndexError, lambda: jacobi(n, a, b, x).fdiff(5))
def _eval_rewrite_as_gamma(self, arg, piecewise=True, **kwargs): from sympy.functions.elementary.exponential import exp from sympy.functions.special.gamma_functions import (gamma, lowergamma) return (S.NegativeOne**(arg + 1) * exp(-I * pi * arg) * lowergamma(arg + 1, -1) + gamma(arg + 1)) * exp(-1)
def apply(n): n = sympify(n) x = Symbol.x(real=True) return Equality(Integral[x:0:pi / 2](cos(x)**(n - 1)), sqrt(pi) * gamma(n / 2) / (2 * gamma(n / 2 + S.One / 2)))
def _eval_expand_func(self, **hints): x, y = self.args return gamma(x)*gamma(y) / gamma(x + y)
def test_probability(): # various integrals from probability theory from sympy.core.function import expand_mul from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.complexes import Abs from sympy.simplify.gammasimp import gammasimp from sympy.simplify.powsimp import powsimp mu1, mu2 = symbols('mu1 mu2', nonzero=True) sigma1, sigma2 = symbols('sigma1 sigma2', positive=True) rate = Symbol('lambda', positive=True) def normal(x, mu, sigma): return 1 / sqrt(2 * pi * sigma**2) * exp(-(x - mu)**2 / 2 / sigma**2) def exponential(x, rate): return rate * exp(-rate * x) assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1 assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \ mu1 assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \ == mu1**2 + sigma1**2 assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \ == mu1**3 + 3*mu1*sigma1**2 assert integrate(normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 assert integrate(x * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1 assert integrate(y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu2 assert integrate(x * y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1 * mu2 assert integrate( (x + y + 1) * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 + mu1 + mu2 assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == \ -1 + mu1 + mu2 i = integrate(x**2 * normal(x, mu1, sigma1) * normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) assert not i.has(Abs) assert simplify(i) == mu1**2 + sigma1**2 assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == \ sigma2**2 + mu2**2 assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1 assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \ 1/rate assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \ 2/rate**2 def E(expr): res1 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1), (x, 0, oo), (y, -oo, oo), meijerg=True) res2 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1), (y, -oo, oo), (x, 0, oo), meijerg=True) assert expand_mul(res1) == expand_mul(res2) return res1 assert E(1) == 1 assert E(x * y) == mu1 / rate assert E(x * y**2) == mu1**2 / rate + sigma1**2 / rate ans = sigma1**2 + 1 / rate**2 assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans assert simplify(E((x + y)**2) - E(x + y)**2) == ans # Beta' distribution alpha, beta = symbols('alpha beta', positive=True) betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \ /gamma(alpha)/gamma(beta) assert integrate(betadist, (x, 0, oo), meijerg=True) == 1 i = integrate(x * betadist, (x, 0, oo), meijerg=True, conds='separate') assert (gammasimp(i[0]), i[1]) == (alpha / (beta - 1), 1 < beta) j = integrate(x**2 * betadist, (x, 0, oo), meijerg=True, conds='separate') assert j[1] == (beta > 2) assert gammasimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \ /(beta - 2)/(beta - 1)**2 # Beta distribution # NOTE: this is evaluated using antiderivatives. It also tests that # meijerint_indefinite returns the simplest possible answer. a, b = symbols('a b', positive=True) betadist = x**(a - 1) * (-x + 1)**(b - 1) * gamma(a + b) / (gamma(a) * gamma(b)) assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1 assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \ a/(a + b) assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \ a*(a + 1)/(a + b)/(a + b + 1) assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \ gamma(a + b)*gamma(a + y)/gamma(a)/gamma(a + b + y) # Chi distribution k = Symbol('k', integer=True, positive=True) chi = 2**(1 - k / 2) * x**(k - 1) * exp(-x**2 / 2) / gamma(k / 2) assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1 assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \ sqrt(2)*gamma((k + 1)/2)/gamma(k/2) assert simplify(integrate(x**2 * chi, (x, 0, oo), meijerg=True)) == k # Chi^2 distribution chisquared = 2**(-k / 2) / gamma(k / 2) * x**(k / 2 - 1) * exp(-x / 2) assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1 assert simplify(integrate(x * chisquared, (x, 0, oo), meijerg=True)) == k assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \ k*(k + 2) assert gammasimp( integrate(((x - k) / sqrt(2 * k))**3 * chisquared, (x, 0, oo), meijerg=True)) == 2 * sqrt(2) / sqrt(k) # Dagum distribution a, b, p = symbols('a b p', positive=True) # XXX (x/b)**a does not work dagum = a * p / x * (x / b)**(a * p) / (1 + x**a / b**a)**(p + 1) assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1 # XXX conditions are a mess arg = x * dagum assert simplify(integrate( arg, (x, 0, oo), meijerg=True, conds='none')) == a * b * gamma(1 - 1 / a) * gamma(p + 1 + 1 / a) / ( (a * p + 1) * gamma(p)) assert simplify(integrate( x * arg, (x, 0, oo), meijerg=True, conds='none')) == a * b**2 * gamma(1 - 2 / a) * gamma(p + 1 + 2 / a) / ( (a * p + 2) * gamma(p)) # F-distribution d1, d2 = symbols('d1 d2', positive=True) f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \ /gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2) assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1 # TODO conditions are a mess assert simplify(integrate(x * f, (x, 0, oo), meijerg=True, conds='none')) == d2 / (d2 - 2) assert simplify( integrate(x**2 * f, (x, 0, oo), meijerg=True, conds='none')) == d2**2 * (d1 + 2) / d1 / (d2 - 4) / (d2 - 2) # TODO gamma, rayleigh # inverse gaussian lamda, mu = symbols('lamda mu', positive=True) dist = sqrt(lamda / 2 / pi) * x**(Rational(-3, 2)) * exp( -lamda * (x - mu)**2 / x / 2 / mu**2) mysimp = lambda expr: simplify(expr.rewrite(exp)) assert mysimp(integrate(dist, (x, 0, oo))) == 1 assert mysimp(integrate(x * dist, (x, 0, oo))) == mu assert mysimp(integrate((x - mu)**2 * dist, (x, 0, oo))) == mu**3 / lamda assert mysimp(integrate((x - mu)**3 * dist, (x, 0, oo))) == 3 * mu**5 / lamda**2 # Levi c = Symbol('c', positive=True) assert integrate( sqrt(c / 2 / pi) * exp(-c / 2 / (x - mu)) / (x - mu)**S('3/2'), (x, mu, oo)) == 1 # higher moments oo # log-logistic alpha, beta = symbols('alpha beta', positive=True) distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1)/ \ (1 + x**beta/alpha**beta)**2 # FIXME: If alpha, beta are not declared as finite the line below hangs # after the changes in: # https://github.com/sympy/sympy/pull/16603 assert simplify(integrate(distn, (x, 0, oo))) == 1 # NOTE the conditions are a mess, but correctly state beta > 1 assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \ pi*alpha/beta/sin(pi/beta) # (similar comment for conditions applies) assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \ pi*alpha**y*y/beta/sin(pi*y/beta) # weibull k = Symbol('k', positive=True) n = Symbol('n', positive=True) distn = k / lamda * (x / lamda)**(k - 1) * exp(-(x / lamda)**k) assert simplify(integrate(distn, (x, 0, oo))) == 1 assert simplify(integrate(x**n*distn, (x, 0, oo))) == \ lamda**n*gamma(1 + n/k) # rice distribution from sympy.functions.special.bessel import besseli nu, sigma = symbols('nu sigma', positive=True) rice = x / sigma**2 * exp(-(x**2 + nu**2) / 2 / sigma**2) * besseli( 0, x * nu / sigma**2) assert integrate(rice, (x, 0, oo), meijerg=True) == 1 # can someone verify higher moments? # Laplace distribution mu = Symbol('mu', real=True) b = Symbol('b', positive=True) laplace = exp(-abs(x - mu) / b) / 2 / b assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1 assert integrate(x * laplace, (x, -oo, oo), meijerg=True) == mu assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \ 2*b**2 + mu**2 # TODO are there other distributions supported on (-oo, oo) that we can do? # misc tests k = Symbol('k', positive=True) assert gammasimp( expand_mul( integrate(log(x) * x**(k - 1) * exp(-x) / gamma(k), (x, 0, oo)))) == polygamma(0, k)
def jacobi_normalized(n, a, b, x): r""" Jacobi polynomial $P_n^{\left(\alpha, \beta\right)}(x)$. Explanation =========== ``jacobi_normalized(n, alpha, beta, x)`` gives the $n$th Jacobi polynomial in $x$, $P_n^{\left(\alpha, \beta\right)}(x)$. The Jacobi polynomials are orthogonal on $[-1, 1]$ with respect to the weight $\left(1-x\right)^\alpha \left(1+x\right)^\beta$. This functions returns the polynomials normilzed: .. math:: \int_{-1}^{1} P_m^{\left(\alpha, \beta\right)}(x) P_n^{\left(\alpha, \beta\right)}(x) (1-x)^{\alpha} (1+x)^{\beta} \mathrm{d}x = \delta_{m,n} Examples ======== >>> from sympy import jacobi_normalized >>> from sympy.abc import n,a,b,x >>> jacobi_normalized(n, a, b, x) jacobi(n, a, b, x)/sqrt(2**(a + b + 1)*gamma(a + n + 1)*gamma(b + n + 1)/((a + b + 2*n + 1)*factorial(n)*gamma(a + b + n + 1))) Parameters ========== n : integer degree of polynomial a : alpha value b : beta value x : symbol See Also ======== gegenbauer, chebyshevt_root, chebyshevu, chebyshevu_root, legendre, assoc_legendre, hermite, laguerre, assoc_laguerre, sympy.polys.orthopolys.jacobi_poly, sympy.polys.orthopolys.gegenbauer_poly sympy.polys.orthopolys.chebyshevt_poly sympy.polys.orthopolys.chebyshevu_poly sympy.polys.orthopolys.hermite_poly sympy.polys.orthopolys.legendre_poly sympy.polys.orthopolys.laguerre_poly References ========== .. [1] https://en.wikipedia.org/wiki/Jacobi_polynomials .. [2] http://mathworld.wolfram.com/JacobiPolynomial.html .. [3] http://functions.wolfram.com/Polynomials/JacobiP/ """ nfactor = (S(2)**(a + b + 1) * (gamma(n + a + 1) * gamma(n + b + 1)) / (2 * n + a + b + 1) / (factorial(n) * gamma(n + a + b + 1))) return jacobi(n, a, b, x) / sqrt(nfactor)
def test_issue_19067(): x = Symbol('x') assert limit(gamma(x)/(gamma(x - 1)*gamma(x + 2)), x, 0) == -1
def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = z**2 / (2 * root(3, 6) * gamma(S(2) / 3)) pf2 = root(3, 6) / gamma(S(1) / 3) return pf1 * hyper([], [S(5) / 3], z**3 / 9) + pf2 * hyper( [], [S(1) / 3], z**3 / 9)
def _eval_rewrite_as_hyper(self, z): pf1 = S.One / (root(3, 6) * gamma(S(2) / 3)) pf2 = z * root(3, 6) / gamma(S(1) / 3) return pf1 * hyper([], [S(2) / 3], z ** 3 / 9) + pf2 * hyper([], [S(4) / 3], z ** 3 / 9)
def test_gammasimp(): R = Rational # was part of test_combsimp_gamma() in test_combsimp.py assert gammasimp(gamma(x)) == gamma(x) assert gammasimp(gamma(x + 1) / x) == gamma(x) assert gammasimp(gamma(x) / (x - 1)) == gamma(x - 1) assert gammasimp(x * gamma(x)) == gamma(x + 1) assert gammasimp((x + 1) * gamma(x + 1)) == gamma(x + 2) assert gammasimp(gamma(x + y) * (x + y)) == gamma(x + y + 1) assert gammasimp(x / gamma(x + 1)) == 1 / gamma(x) assert gammasimp((x + 1)**2 / gamma(x + 2)) == (x + 1) / gamma(x + 1) assert gammasimp(x*gamma(x) + gamma(x + 3)/(x + 2)) == \ (x + 2)*gamma(x + 1) assert gammasimp(gamma(2 * x) * x) == gamma(2 * x + 1) / 2 assert gammasimp(gamma(2 * x) / (x - S.Half)) == 2 * gamma(2 * x - 1) assert gammasimp(gamma(x) * gamma(1 - x)) == pi / sin(pi * x) assert gammasimp(gamma(x) * gamma(-x)) == -pi / (x * sin(pi * x)) assert gammasimp(1/gamma(x + 3)/gamma(1 - x)) == \ sin(pi*x)/(pi*x*(x + 1)*(x + 2)) assert gammasimp(factorial(n + 2)) == gamma(n + 3) assert gammasimp(binomial(n, k)) == \ gamma(n + 1)/(gamma(k + 1)*gamma(-k + n + 1)) assert powsimp(gammasimp( gamma(x)*gamma(x + S.Half)*gamma(y)/gamma(x + y))) == \ 2**(-2*x + 1)*sqrt(pi)*gamma(2*x)*gamma(y)/gamma(x + y) assert gammasimp(1/gamma(x)/gamma(x - Rational(1, 3))/gamma(x + Rational(1, 3))) == \ 3**(3*x - Rational(3, 2))/(2*pi*gamma(3*x - 1)) assert simplify( gamma(S.Half + x / 2) * gamma(1 + x / 2) / gamma(1 + x) / sqrt(pi) * 2**x) == 1 assert gammasimp(gamma(Rational(-1, 4)) * gamma(Rational(-3, 4))) == 16 * sqrt(2) * pi / 3 assert powsimp(gammasimp(gamma(2*x)/gamma(x))) == \ 2**(2*x - 1)*gamma(x + S.Half)/sqrt(pi) # issue 6792 e = (-gamma(k) * gamma(k + 2) + gamma(k + 1)**2) / gamma(k)**2 assert gammasimp(e) == -k assert gammasimp(1 / e) == -1 / k e = (gamma(x) + gamma(x + 1)) / gamma(x) assert gammasimp(e) == x + 1 assert gammasimp(1 / e) == 1 / (x + 1) e = (gamma(x) + gamma(x + 2)) * (gamma(x - 1) + gamma(x)) / gamma(x) assert gammasimp(e) == (x**2 + x + 1) * gamma(x + 1) / (x - 1) e = (-gamma(k) * gamma(k + 2) + gamma(k + 1)**2) / gamma(k)**2 assert gammasimp(e**2) == k**2 assert gammasimp(e**2 / gamma(k + 1)) == k / gamma(k) a = R(1, 2) + R(1, 3) b = a + R(1, 3) assert gammasimp(gamma(2 * k) / gamma(k) * gamma(k + a) * gamma(k + b)) == 3 * 2**(2 * k + 1) * 3**( -3 * k - 2) * sqrt(pi) * gamma(3 * k + R(3, 2)) / 2 # issue 9699 assert gammasimp( (x + 1) * factorial(x) / gamma(y)) == gamma(x + 2) / gamma(y) assert gammasimp(rf(x + n, k) * binomial(n, k)).simplify() == Piecewise( (gamma(n + 1) * gamma(k + n + x) / (gamma(k + 1) * gamma(n + x) * gamma(-k + n + 1)), n > -x), ((-1)**k * gamma(n + 1) * gamma(-n - x + 1) / (gamma(k + 1) * gamma(-k + n + 1) * gamma(-k - n - x + 1)), True)) A, B = symbols('A B', commutative=False) assert gammasimp(e * B * A) == gammasimp(e) * B * A # check iteration assert gammasimp(gamma(2 * k) / gamma(k) * gamma(-k - R(1, 2))) == (-2**(2 * k + 1) * sqrt(pi) / (2 * ((2 * k + 1) * cos(pi * k)))) assert gammasimp( gamma(k) * gamma(k + R(1, 3)) * gamma(k + R(2, 3)) / gamma(k * R(3, 2))) == (3 * 2**(3 * k + 1) * 3**(-3 * k - S.Half) * sqrt(pi) * gamma(k * R(3, 2) + S.Half) / 2) # issue 6153 assert gammasimp(gamma(Rational(1, 4)) / gamma(Rational(5, 4))) == 4 # was part of test_combsimp() in test_combsimp.py assert gammasimp(binomial(n + 2, k + S.Half)) == gamma(n + 3)/ \ (gamma(k + R(3, 2))*gamma(-k + n + R(5, 2))) assert gammasimp(binomial(n + 2, k + 2.0)) == \ gamma(n + 3)/(gamma(k + 3.0)*gamma(-k + n + 1)) # issue 11548 assert gammasimp(binomial(0, x)) == sin(pi * x) / (pi * x) e = gamma(n + Rational(1, 3)) * gamma(n + R(2, 3)) assert gammasimp(e) == e assert gammasimp(gamma(4*n + S.Half)/gamma(2*n - R(3, 4))) == \ 2**(4*n - R(5, 2))*(8*n - 3)*gamma(2*n + R(3, 4))/sqrt(pi) i, m = symbols('i m', integer=True) e = gamma(exp(i)) assert gammasimp(e) == e e = gamma(m + 3) assert gammasimp(e) == e e = gamma(m + 1) / (gamma(i + 1) * gamma(-i + m + 1)) assert gammasimp(e) == e p = symbols("p", integer=True, positive=True) assert gammasimp(gamma(-p + 4)) == gamma(-p + 4)
def _eval_rewrite_as_hyper(self, z): pf1 = z ** 2 / (2 * 3 ** (S(2) / 3) * gamma(S(2) / 3)) pf2 = 1 / (root(3, 3) * gamma(S(1) / 3)) return pf1 * hyper([], [S(5) / 3], z ** 3 / 9) - pf2 * hyper([], [S(1) / 3], z ** 3 / 9)
def gauss_gen_laguerre(n, alpha, n_digits): r""" Computes the generalized Gauss-Laguerre quadrature [1]_ points and weights. The generalized Gauss-Laguerre quadrature approximates the integral: .. math:: \int_{0}^\infty x^{\alpha} e^{-x} f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i) The nodes `x_i` of an order `n` quadrature rule are the roots of `L^{\alpha}_n` and the weights `w_i` are given by: .. math:: w_i = \frac{\Gamma(\alpha+n)}{n \Gamma(n) L^{\alpha}_{n-1}(x_i) L^{\alpha+1}_{n-1}(x_i)} Parameters ========== n : the order of quadrature alpha : the exponent of the singularity, `\alpha > -1` n_digits : number of significant digits of the points and weights to return Returns ======= (x, w) : the ``x`` and ``w`` are lists of points and weights as Floats. The points `x_i` and weights `w_i` are returned as ``(x, w)`` tuple of lists. Examples ======== >>> from sympy import S >>> from sympy.integrals.quadrature import gauss_gen_laguerre >>> x, w = gauss_gen_laguerre(3, -S.Half, 5) >>> x [0.19016, 1.7845, 5.5253] >>> w [1.4493, 0.31413, 0.00906] >>> x, w = gauss_gen_laguerre(4, 3*S.Half, 5) >>> x [0.97851, 2.9904, 6.3193, 11.712] >>> w [0.53087, 0.67721, 0.11895, 0.0023152] See Also ======== gauss_legendre, gauss_laguerre, gauss_hermite, gauss_chebyshev_t, gauss_chebyshev_u, gauss_jacobi References ========== .. [1] http://en.wikipedia.org/wiki/Gauss%E2%80%93Laguerre_quadrature .. [2] http://people.sc.fsu.edu/~jburkardt/cpp_src/gen_laguerre_rule/gen_laguerre_rule.html """ x = Dummy("x") p = laguerre_poly(n, x, alpha=alpha, polys=True) p1 = laguerre_poly(n-1, x, alpha=alpha, polys=True) p2 = laguerre_poly(n-1, x, alpha=alpha+1, polys=True) xi = [] w = [] for r in p.real_roots(): if isinstance(r, RootOf): r = r.eval_rational(S(1)/10**(n_digits+2)) xi.append(r.n(n_digits)) w.append((gamma(alpha+n)/(n*gamma(n)*p1.subs(x, r)*p2.subs(x, r))).n(n_digits)) return xi, w
def gauss_jacobi(n, alpha, beta, n_digits): r""" Computes the Gauss-Jacobi quadrature [1]_ points and weights. The Gauss-Jacobi quadrature of the first kind approximates the integral: .. math:: \int_{-1}^1 (1-x)^\alpha (1+x)^\beta f(x)\,dx \approx \sum_{i=1}^n w_i f(x_i) The nodes `x_i` of an order `n` quadrature rule are the roots of `P^{(\alpha,\beta)}_n` and the weights `w_i` are given by: .. math:: w_i = -\frac{2n+\alpha+\beta+2}{n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)} {\Gamma(n+\alpha+\beta+1)(n+1)!} \frac{2^{\alpha+\beta}}{P'_n(x_i) P^{(\alpha,\beta)}_{n+1}(x_i)} Parameters ========== n : the order of quadrature alpha : the first parameter of the Jacobi Polynomial, `\alpha > -1` beta : the second parameter of the Jacobi Polynomial, `\beta > -1` n_digits : number of significant digits of the points and weights to return Returns ======= (x, w) : the ``x`` and ``w`` are lists of points and weights as Floats. The points `x_i` and weights `w_i` are returned as ``(x, w)`` tuple of lists. Examples ======== >>> from sympy import S >>> from sympy.integrals.quadrature import gauss_jacobi >>> x, w = gauss_jacobi(3, S.Half, -S.Half, 5) >>> x [-0.90097, -0.22252, 0.62349] >>> w [1.7063, 1.0973, 0.33795] >>> x, w = gauss_jacobi(6, 1, 1, 5) >>> x [-0.87174, -0.5917, -0.2093, 0.2093, 0.5917, 0.87174] >>> w [0.050584, 0.22169, 0.39439, 0.39439, 0.22169, 0.050584] See Also ======== gauss_legendre, gauss_laguerre, gauss_hermite, gauss_gen_laguerre, gauss_chebyshev_t, gauss_chebyshev_u, gauss_lobatto References ========== .. [1] https://en.wikipedia.org/wiki/Gauss%E2%80%93Jacobi_quadrature .. [2] http://people.sc.fsu.edu/~jburkardt/cpp_src/jacobi_rule/jacobi_rule.html .. [3] http://people.sc.fsu.edu/~jburkardt/cpp_src/gegenbauer_rule/gegenbauer_rule.html """ x = Dummy("x") p = jacobi_poly(n, alpha, beta, x, polys=True) pd = p.diff(x) pn = jacobi_poly(n + 1, alpha, beta, x, polys=True) xi = [] w = [] for r in p.real_roots(): if isinstance(r, RootOf): r = r.eval_rational(S(1) / 10**(n_digits + 2)) xi.append(r.n(n_digits)) w.append( (-(2 * n + alpha + beta + 2) / (n + alpha + beta + S.One) * (gamma(n + alpha + 1) * gamma(n + beta + 1)) / (gamma(n + alpha + beta + S.One) * gamma(n + 2)) * 2**(alpha + beta) / (pd.subs(x, r) * pn.subs(x, r))).n(n_digits)) return xi, w
def test_ff_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert ff(nan, y) is nan assert ff(x, nan) is nan assert unchanged(ff, x, y) assert ff(oo, 0) == 1 assert ff(-oo, 0) == 1 assert ff(oo, 6) is oo assert ff(-oo, 7) is -oo assert ff(-oo, 6) is oo assert ff(oo, -6) is oo assert ff(-oo, -7) is oo assert ff(x, 0) == 1 assert ff(x, 1) == x assert ff(x, 2) == x * (x - 1) assert ff(x, 3) == x * (x - 1) * (x - 2) assert ff(x, 5) == x * (x - 1) * (x - 2) * (x - 3) * (x - 4) assert ff(x, -1) == 1 / (x + 1) assert ff(x, -2) == 1 / ((x + 1) * (x + 2)) assert ff(x, -3) == 1 / ((x + 1) * (x + 2) * (x + 3)) assert ff(100, 100) == factorial(100) assert ff(2 * x**2 - 5 * x, 2) == (2 * x**2 - 5 * x) * (2 * x**2 - 5 * x - 1) assert isinstance(ff(2 * x**2 - 5 * x, 2), Mul) assert ff(x**2 + 3 * x, -2) == 1 / ((x**2 + 3 * x + 1) * (x**2 + 3 * x + 2)) assert ff(Poly(2 * x**2 - 5 * x, x), 2) == Poly(4 * x**4 - 28 * x**3 + 59 * x**2 - 35 * x, x) assert isinstance(ff(Poly(2 * x**2 - 5 * x, x), 2), Poly) raises(ValueError, lambda: ff(Poly(2 * x**2 - 5 * x, x, y), 2)) assert ff(Poly(x**2 + 3 * x, x), -2) == 1 / (x**4 + 12 * x**3 + 49 * x**2 + 78 * x + 40) raises(ValueError, lambda: ff(Poly(x**2 + 3 * x, x, y), -2)) assert ff(x, m).is_integer is None assert ff(n, k).is_integer is None assert ff(n, m).is_integer is True assert ff(n, k + pi).is_integer is False assert ff(n, m + pi).is_integer is False assert ff(pi, m).is_integer is False assert isinstance(ff(x, x), ff) assert ff(n, n) == factorial(n) def check(x, k, o, n): a, b = Dummy(), Dummy() r = lambda x, k: o(a, b).rewrite(n).subs({a: x, b: k}) for i in range(-5, 5): for j in range(-5, 5): assert o(i, j) == r(i, j), (o, n) check(x, k, ff, rf) check(x, k, ff, gamma) check(n, k, ff, factorial) check(x, k, ff, binomial) check(x, y, ff, factorial) check(x, y, ff, binomial) assert ff(x, k).rewrite(rf) == rf(x - k + 1, k) assert ff(x, k).rewrite(gamma) == Piecewise( (gamma(x + 1) / gamma(-k + x + 1), x >= 0), ((-1)**k * gamma(k - x) / gamma(-x), True)) assert ff(5, k).rewrite(gamma) == 120 / gamma(6 - k) assert ff(n, k).rewrite(factorial) == Piecewise( (factorial(n) / factorial(-k + n), n >= 0), ((-1)**k * factorial(k - n - 1) / factorial(-n - 1), True)) assert ff(5, k).rewrite(factorial) == 120 / factorial(5 - k) assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k) assert ff(x, y).rewrite(factorial) == ff(x, y) assert ff(x, y).rewrite(binomial) == ff(x, y) import random from mpmath import ff as mpmath_ff for i in range(100): x = -500 + 500 * random.random() k = -500 + 500 * random.random() a = mpmath_ff(x, k) b = ff(x, k) assert (abs(a - b) < abs(a) * 10**(-15))
def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs): from sympy.functions.special.gamma_functions import gamma return gamma(n + 1)
def _eval_expand_func(self, **hints): x, y = self.args return gamma(x) * gamma(y) / gamma(x + y)
def _eval_rewrite_as_hyper(self, z): pf1 = S.One / (root(3, 6) * gamma(S(2) / 3)) pf2 = z * root(3, 6) / gamma(S(1) / 3) return pf1 * hyper([], [S(2) / 3], z**3 / 9) + pf2 * hyper( [], [S(4) / 3], z**3 / 9)
def _eval_rewrite_as_zeta(self, s, **kwargs): from sympy.functions.special.gamma_functions import gamma return s*(s - 1)*gamma(s/2)*zeta(s)/(2*pi**(s/2))
def test_rf_eval_apply(): x, y = symbols('x,y') n, k = symbols('n k', integer=True) m = Symbol('m', integer=True, nonnegative=True) assert rf(nan, y) is nan assert rf(x, nan) is nan assert unchanged(rf, x, y) assert rf(oo, 0) == 1 assert rf(-oo, 0) == 1 assert rf(oo, 6) is oo assert rf(-oo, 7) is -oo assert rf(-oo, 6) is oo assert rf(oo, -6) is oo assert rf(-oo, -7) is oo assert rf(-1, pi) == 0 assert rf(-5, 1 + I) == 0 assert unchanged(rf, -3, k) assert unchanged(rf, x, Symbol('k', integer=False)) assert rf(-3, Symbol('k', integer=False)) == 0 assert rf(Symbol('x', negative=True, integer=True), Symbol('k', integer=False)) == 0 assert rf(x, 0) == 1 assert rf(x, 1) == x assert rf(x, 2) == x * (x + 1) assert rf(x, 3) == x * (x + 1) * (x + 2) assert rf(x, 5) == x * (x + 1) * (x + 2) * (x + 3) * (x + 4) assert rf(x, -1) == 1 / (x - 1) assert rf(x, -2) == 1 / ((x - 1) * (x - 2)) assert rf(x, -3) == 1 / ((x - 1) * (x - 2) * (x - 3)) assert rf(1, 100) == factorial(100) assert rf(x**2 + 3 * x, 2) == (x**2 + 3 * x) * (x**2 + 3 * x + 1) assert isinstance(rf(x**2 + 3 * x, 2), Mul) assert rf(x**3 + x, -2) == 1 / ((x**3 + x - 1) * (x**3 + x - 2)) assert rf(Poly(x**2 + 3 * x, x), 2) == Poly(x**4 + 8 * x**3 + 19 * x**2 + 12 * x, x) assert isinstance(rf(Poly(x**2 + 3 * x, x), 2), Poly) raises(ValueError, lambda: rf(Poly(x**2 + 3 * x, x, y), 2)) assert rf(Poly(x**3 + x, x), -2) == 1 / (x**6 - 9 * x**5 + 35 * x**4 - 75 * x**3 + 94 * x**2 - 66 * x + 20) raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2)) assert rf(x, m).is_integer is None assert rf(n, k).is_integer is None assert rf(n, m).is_integer is True assert rf(n, k + pi).is_integer is False assert rf(n, m + pi).is_integer is False assert rf(pi, m).is_integer is False def check(x, k, o, n): a, b = Dummy(), Dummy() r = lambda x, k: o(a, b).rewrite(n).subs({a: x, b: k}) for i in range(-5, 5): for j in range(-5, 5): assert o(i, j) == r(i, j), (o, n, i, j) check(x, k, rf, ff) check(x, k, rf, binomial) check(n, k, rf, factorial) check(x, y, rf, factorial) check(x, y, rf, binomial) assert rf(x, k).rewrite(ff) == ff(x + k - 1, k) assert rf(x, k).rewrite(gamma) == Piecewise( (gamma(k + x) / gamma(x), x > 0), ((-1)**k * gamma(1 - x) / gamma(-k - x + 1), True)) assert rf(5, k).rewrite(gamma) == gamma(k + 5) / 24 assert rf(x, k).rewrite(binomial) == factorial(k) * binomial(x + k - 1, k) assert rf(n, k).rewrite(factorial) == Piecewise( (factorial(k + n - 1) / factorial(n - 1), n > 0), ((-1)**k * factorial(-n) / factorial(-k - n), True)) assert rf(5, k).rewrite(factorial) == factorial(k + 4) / 24 assert rf(x, y).rewrite(factorial) == rf(x, y) assert rf(x, y).rewrite(binomial) == rf(x, y) import random from mpmath import rf as mpmath_rf for i in range(100): x = -500 + 500 * random.random() k = -500 + 500 * random.random() assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15))
def _eval_rewrite_as_hyper(self, z): pf1 = S.One / (3 ** (S(2) / 3) * gamma(S(2) / 3)) pf2 = z / (root(3, 3) * gamma(S(1) / 3)) return pf1 * hyper([], [S(2) / 3], z ** 3 / 9) - pf2 * hyper([], [S(4) / 3], z ** 3 / 9)
def test_meijerint(): from sympy.core.function import expand from sympy.core.symbol import symbols from sympy.functions.elementary.complexes import arg s, t, mu = symbols('s t mu', real=True) assert integrate( meijerg([], [], [0], [], s * t) * meijerg([], [], [mu / 2], [-mu / 2], t**2 / 4), (t, 0, oo)).is_Piecewise s = symbols('s', positive=True) assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \ gamma(s + 1) assert integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=True) == gamma(s + 1) assert isinstance( integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=False), Integral) assert meijerint_indefinite(exp(x), x) == exp(x) # TODO what simplifications should be done automatically? # This tests "extra case" for antecedents_1. a, b = symbols('a b', positive=True) assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \ b**(a + 1)/(a + 1) # This tests various conditions and expansions: assert meijerint_definite((x + 1)**3 * exp(-x), x, 0, oo) == (16, True) # Again, how about simplifications? sigma, mu = symbols('sigma mu', positive=True) i, c = meijerint_definite(exp(-((x - mu) / (2 * sigma))**2), x, 0, oo) assert simplify(i) == sqrt(pi) * sigma * (2 - erfc(mu / (2 * sigma))) assert c == True i, _ = meijerint_definite(exp(-mu * x) * exp(sigma * x), x, 0, oo) # TODO it would be nice to test the condition assert simplify(i) == 1 / (mu - sigma) # Test substitutions to change limits assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True) # Note: causes a NaN in _check_antecedents assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1 assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \ 1 - exp(-exp(I*arg(x))*abs(x)) # Test -oo to oo assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True) assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True) assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \ (sqrt(pi)/2, True) assert meijerint_definite(exp(-abs(2 * x - 3)), x, -oo, oo) == (1, True) assert meijerint_definite( exp(-((x - mu) / sigma)**2 / 2) / sqrt(2 * pi * sigma**2), x, -oo, oo) == (1, True) assert meijerint_definite(sinc(x)**2, x, -oo, oo) == (pi, True) # Test one of the extra conditions for 2 g-functinos assert meijerint_definite(exp(-x) * sin(x), x, 0, oo) == (S.Half, True) # Test a bug def res(n): return (1 / (1 + x**2)).diff(x, n).subs(x, 1) * (-1)**n for n in range(6): assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \ res(n) # This used to test trigexpand... now it is done by linear substitution assert simplify(integrate(exp(-x) * sin(x + a), (x, 0, oo), meijerg=True)) == sqrt(2) * sin(a + pi / 4) / 2 # Test the condition 14 from prudnikov. # (This is besselj*besselj in disguise, to stop the product from being # recognised in the tables.) a, b, s = symbols('a b s') from sympy.functions.elementary.complexes import re assert meijerint_definite( meijerg([], [], [a / 2], [-a / 2], x / 4) * meijerg([], [], [b / 2], [-b / 2], x / 4) * x**(s - 1), x, 0, oo) == ((4 * 2**(2 * s - 2) * gamma(-2 * s + 1) * gamma(a / 2 + b / 2 + s) / (gamma(-a / 2 + b / 2 - s + 1) * gamma(a / 2 - b / 2 - s + 1) * gamma(a / 2 + b / 2 - s + 1)), (re(s) < 1) & (re(s) < S(1) / 2) & (re(a) / 2 + re(b) / 2 + re(s) > 0))) # test a bug assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \ Integral(sin(x**a)*sin(x**b), (x, 0, oo)) # test better hyperexpand assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \ (sqrt(pi)*polygamma(0, S.Half)/4).expand() # Test hyperexpand bug. from sympy.functions.special.gamma_functions import lowergamma n = symbols('n', integer=True) assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \ lowergamma(n + 1, x) # Test a bug with argument 1/x alpha = symbols('alpha', positive=True) assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \ (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + S.Half, alpha/2 + 1)), ((0, 0, S.Half), (Rational(-1, 2),)), alpha**2/16)/4, True) # test a bug related to 3016 a, s = symbols('a s', positive=True) assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \ a**(-s/2 - S.Half)*((-1)**s + 1)*gamma(s/2 + S.Half)/2
def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = S.One / (3**(S(2) / 3) * gamma(S(2) / 3)) pf2 = z / (root(3, 3) * gamma(S(1) / 3)) return pf1 * hyper([], [S(2) / 3], z**3 / 9) - pf2 * hyper( [], [S(4) / 3], z**3 / 9)
def pdf(self, *syms): alpha = self.alpha B = Mul.fromiter(map(gamma, alpha))/gamma(Add(*alpha)) return Mul.fromiter(sym**(a_k - 1) for a_k, sym in zip(alpha, syms))/B
def _eval_rewrite_as_hyper(self, z, **kwargs): pf1 = z**2 / (2 * 3**(S(2) / 3) * gamma(S(2) / 3)) pf2 = 1 / (root(3, 3) * gamma(S(1) / 3)) return pf1 * hyper([], [S(5) / 3], z**3 / 9) - pf2 * hyper( [], [S(1) / 3], z**3 / 9)
def _eval_rewrite_as_hyper(self, z): pf1 = z ** 2 / (2 * root(3, 6) * gamma(S(2) / 3)) pf2 = root(3, 6) / gamma(S(1) / 3) return pf1 * hyper([], [S(5) / 3], z ** 3 / 9) + pf2 * hyper([], [S(1) / 3], z ** 3 / 9)
def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs): from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.gamma_functions import gamma return 2**(n / 2) * gamma(n / 2 + 1) * Piecewise( (1, Eq(Mod(n, 2), 0)), (sqrt(2 / pi), Eq(Mod(n, 2), 1)))