コード例 #1
0
def test_projection():
    p1 = Point(0, 0)
    p2 = Point3D(0, 0, 0)
    p3 = Point(-x1, x1)

    l1 = Line(p1, Point(1, 1))
    l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
    l3 = Line3D(p2, Point3D(1, 1, 1))

    r1 = Ray(Point(1, 1), Point(2, 2))

    assert Line(Point(x1, x1), Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
    assert Line(Point(x1, x1), Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
    assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
    assert Segment(Point(0, 4), Point(-2, 2)).projection(r1) == Segment(Point(0, 4), Point(-1, 3))
    assert l1.projection(p3) == p1
    assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0), Point(2, 2))
    assert l1.projection(Ray(p1, Point(-1, 1))) == p1
    assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
    assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
    assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))
    assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
    assert r1.projection(Ray(Point(0, 4), Point(-1, -5))) == Segment(Point(1, 1), Point(2, 2))
    assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(Point(1, 1), Point(2, 2))

    assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(Point3D(0, 0, 0), Point3D(4 / 3, 4 / 3, 4 / 3))
    assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(Point3D(0, 0, 0), Point3D(1 / 3, 1 / 3, 1 / 3))
    assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
    assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
コード例 #2
0
def test_distance_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    half = Rational(1, 2)

    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))

    r = Ray(p1, p2)

    assert s1.distance(Point(0, 0)) == 0
    assert s1.distance((0, 0)) == 0
    assert s2.distance(Point(0, 0)) == 2 ** half / 2
    assert s2.distance(Point(Rational(3) / 2, Rational(3) / 2)) == 2 ** half
    assert Line(p1, p2).distance(Point(-1, 1)) == sqrt(2)
    assert Line(p1, p2).distance(Point(1, -1)) == sqrt(2)
    assert Line(p1, p2).distance(Point(2, 2)) == 0
    assert Line(p1, p2).distance((-1, 1)) == sqrt(2)
    assert Line((0, 0), (0, 1)).distance(p1) == 0
    assert Line((0, 0), (0, 1)).distance(p2) == 1
    assert Line((0, 0), (1, 0)).distance(p1) == 0
    assert Line((0, 0), (1, 0)).distance(p2) == 1
    assert r.distance(Point(-1, -1)) == sqrt(2)
    assert r.distance(Point(1, 1)) == 0
    assert r.distance(Point(-1, 1)) == sqrt(2)
    assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
    assert r.distance((1, 1)) == 0
コード例 #3
0
def test_contains():
    p1 = Point(0, 0)

    r = Ray(p1, Point(4, 4))
    r1 = Ray3D(p1, Point3D(0, 0, -1))
    r2 = Ray3D(p1, Point3D(0, 1, 0))
    r3 = Ray3D(p1, Point3D(0, 0, 1))

    l = Line(Point(0, 1), Point(3, 4))
    # Segment contains
    assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
    assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
    assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
    assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
    assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
    assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
        Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
    # Line contains
    assert l.contains(Point(0, 1)) is True
    assert l.contains((0, 1)) is True
    assert l.contains((0, 0)) is False
    # Ray contains
    assert r.contains(p1) is True
    assert r.contains((1, 1)) is True
    assert r.contains((1, 3)) is False
    assert r.contains(Segment((1, 1), (2, 2))) is True
    assert r.contains(Segment((1, 2), (2, 5))) is False
    assert r.contains(Ray((2, 2), (3, 3))) is True
    assert r.contains(Ray((2, 2), (3, 5))) is False
    assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
    assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
    assert r2.contains(Point3D(0, 0, 0)) is True
    assert r3.contains(Point3D(0, 0, 0)) is True
    assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
    assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
    with warnings.catch_warnings(record=True) as w:
        assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
        assert len(w) == 1

    with warnings.catch_warnings(record=True) as w:
        assert r3.contains(Point(1.0, 1.0)) is False
        assert len(w) == 1
コード例 #4
0
ファイル: test_line.py プロジェクト: thesentenceiswrong/sympy
def test_arbitrary_point():
    l1 = Line3D(Point3D(0, 0, 0), Point3D(1, 1, 1))
    l2 = Line(Point(x1, x1), Point(y1, y1))
    assert l2.arbitrary_point() in l2
    assert Ray((1, 1), angle=pi / 4).arbitrary_point() == \
           Point(t + 1, t + 1)
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
    assert l1.perpendicular_segment(
        l1.arbitrary_point()) == l1.arbitrary_point()
    assert Ray3D((1, 1, 1), direction_ratio=[1, 2, 3]).arbitrary_point() == \
           Point3D(t + 1, 2 * t + 1, 3 * t + 1)
    assert Segment3D(Point3D(0, 0, 0), Point3D(1, 1, 1)).midpoint == \
           Point3D(Rational(1, 2), Rational(1, 2), Rational(1, 2))
    assert Segment3D(Point3D(x1, x1, x1),
                     Point3D(y1, y1, y1)).length == sqrt(3) * sqrt(
                         (x1 - y1)**2)
    assert Segment3D((1, 1, 1), (2, 3, 4)).arbitrary_point() == \
           Point3D(t + 1, 2 * t + 1, 3 * t + 1)
コード例 #5
0
ファイル: test_entity.py プロジェクト: vishalbelsare/sympy
def test_geometry_EvalfMixin():
    x = pi
    t = Symbol('t')
    for g in [
            Point(x, x),
            Plane(Point(0, x, 0), (0, 0, x)),
            Curve((x * t, x), (t, 0, x)),
            Ellipse((x, x), x, -x),
            Circle((x, x), x),
            Line((0, x), (x, 0)),
            Segment((0, x), (x, 0)),
            Ray((0, x), (x, 0)),
            Parabola((0, x), Line((-x, 0), (x, 0))),
            Polygon((0, 0), (0, x), (x, 0), (x, x)),
            RegularPolygon((0, x), x, 4, x),
            Triangle((0, 0), (x, 0), (x, x)),
    ]:
        assert str(g).replace('pi', '3.1') == str(g.n(2))
コード例 #6
0
ファイル: test_line.py プロジェクト: sharanry/sympy
def test_contains():
    p1 = Point(0, 0)

    r = Ray(p1, Point(4, 4))
    r1 = Ray3D(p1, Point3D(0, 0, -1))
    r2 = Ray3D(p1, Point3D(0, 1, 0))
    r3 = Ray3D(p1, Point3D(0, 0, 1))

    l = Line(Point(0, 1), Point(3, 4))
    # Segment contains
    assert Point(0, (a + b) / 2) in Segment((0, a), (0, b))
    assert Point((a + b) / 2, 0) in Segment((a, 0), (b, 0))
    assert Point3D(0, 1, 0) in Segment3D((0, 1, 0), (0, 1, 0))
    assert Point3D(1, 0, 0) in Segment3D((1, 0, 0), (1, 0, 0))
    assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains([]) is True
    assert Segment3D(Point3D(0, 0, 0), Point3D(1, 0, 0)).contains(
        Segment3D(Point3D(2, 2, 2), Point3D(3, 2, 2))) is False
    # Line contains
    assert l.contains(Point(0, 1)) is True
    assert l.contains((0, 1)) is True
    assert l.contains((0, 0)) is False
    # Ray contains
    assert r.contains(p1) is True
    assert r.contains((1, 1)) is True
    assert r.contains((1, 3)) is False
    assert r.contains(Segment((1, 1), (2, 2))) is True
    assert r.contains(Segment((1, 2), (2, 5))) is False
    assert r.contains(Ray((2, 2), (3, 3))) is True
    assert r.contains(Ray((2, 2), (3, 5))) is False
    assert r1.contains(Segment3D(p1, Point3D(0, 0, -10))) is True
    assert r1.contains(Segment3D(Point3D(1, 1, 1), Point3D(2, 2, 2))) is False
    assert r2.contains(Point3D(0, 0, 0)) is True
    assert r3.contains(Point3D(0, 0, 0)) is True
    assert Ray3D(Point3D(1, 1, 1), Point3D(1, 0, 0)).contains([]) is False
    assert Line3D((0, 0, 0), (x, y, z)).contains((2 * x, 2 * y, 2 * z))
    with warnings.catch_warnings(record=True) as w:
        assert Line3D(p1, Point3D(0, 1, 0)).contains(Point(1.0, 1.0)) is False
        assert len(w) == 1

    with warnings.catch_warnings(record=True) as w:
        assert r3.contains(Point(1.0, 1.0)) is False
        assert len(w) == 1
コード例 #7
0
def test_geometry():
    def do_test(*g, s=GeometrySeries, **kwargs):
        s1 = _build_series(*g, pt="g", **kwargs)
        assert isinstance(s1, s)
        # since the range could be None, it is imperative to test that label
        # receive the correct value.
        assert s1.label == str(g[0])
        s2 = _build_series(*g, **kwargs)
        assert isinstance(s2, s)
        assert s2.label == str(g[0])
        assert np.array_equal(s1.get_data(), s2.get_data(), equal_nan=True)

    x, y, z = symbols("x, y, z")
    do_test(Point2D(1, 2))
    do_test(Point3D(1, 2, 3))
    do_test(Ray((1, 2), (3, 4)))
    do_test(Segment((1, 2), (3, 4)))
    do_test(Line((1, 2), (3, 4)), (x, -5, 5))
    do_test(Ray3D((1, 2, 3), (3, 4, 5)))
    do_test(Segment3D((1, 2, 3), (3, 4, 5)))
    do_test(Line3D((1, 2, 3), (3, 4, 5)))
    do_test(Polygon((1, 2), 3, n=10))
    do_test(Circle((1, 2), 3))
    do_test(Ellipse((1, 2), hradius=3, vradius=2))
    do_test(Plane((0, 0, 0), (1, 1, 1)), (x, -5, 5), (y, -4, 4), (z, -3, 3),
            s=PlaneSeries)

    # Interactive series. Note that GeometryInteractiveSeries is an instance of
    # GeometrySeries
    do_test(Point2D(x, y), params={x: 1, y: 2})
    do_test(
        Plane((x, y, z), (1, 1, 1)),
        (x, -5, 5),
        (y, -4, 4),
        (z, -3, 3),
        params={
            x: 1,
            y: 2,
            z: 3
        },
        s=PlaneInteractiveSeries,
    )
コード例 #8
0
    def compute_right_segment(self):
        """
        Computing coordinates for right segment based on right angle and base info
        """
        base_right_p = self.base.points[1]
        right_ray = Ray(base_right_p, angle=self.right_angle / 180 * pi)
        x_diff = self.base.length * self.right_length_coef * cos(
            self.right_angle / 180 * pi)
        y_diff = self.base.length * self.right_length_coef * sin(
            self.right_angle / 180 * pi)
        if right_ray.xdirection == "oo":
            right_end_x = base_right_p.x + x_diff
        else:
            right_end_x = base_right_p.x - x_diff
        if right_ray.ydirection == "oo":
            right_end_y = base_right_p.y + y_diff
        else:
            right_end_y = base_right_p.y - y_diff

        self.right_segment = Segment(
            base_right_p, Point(float(right_end_x), float(right_end_y)))
コード例 #9
0
def compute_reflection_segment_simple(ray_array, segment, ray_intensity,
                                      r_factor):
    """
    Compute reflection of last part of the ray from given segment. This function is used in scenario with
     multiple reflective segments.

    :param ray_array: Array representing parts of ray
    :param segment: Segment that the ray should reflect from
    :param ray_intensity: Intensity of ray before reflection
    :param r_factor: Reflective factor of the material
    :return: Updated ray array and intensity
    """
    last_ray = ray_array[-1]
    intersection = segment.intersection(last_ray)
    if intersection:
        reflected_ray, ray_intensity = compute_reflection(
            last_ray, segment, ray_intensity, r_factor)
        new_ray_array = ray_array[:-1]
        new_ray_array.append(Ray(last_ray.p1, intersection[0]))
        new_ray_array.append(reflected_ray)
        ray_array = new_ray_array
    return ray_array, ray_intensity
コード例 #10
0
def test_subs():
    p = Point(x, 2)
    q = Point(1, 1)
    r = Point(3, 4)
    for o in [p,
              Segment(p, q),
              Ray(p, q),
              Line(p, q),
              Triangle(p, q, r),
              RegularPolygon(p, 3, 6),
              Polygon(p, q, r, Point(5, 4)),
              Circle(p, 3),
              Ellipse(p, 3, 4)]:
        assert 'y' in str(o.subs(x, y))
    assert p.subs({x: 1}) == Point(1, 2)
    assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs((1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4)
    assert Point(1, 2).subs(set([(1, 2)])) == Point(2, 2)
    raises(ValueError, lambda: Point(1, 2).subs(1))
    raises(ValueError, lambda: Point(1, 1).subs((Point(1, 1), Point(1,
           2)), 1, 2))
コード例 #11
0
def compute_reflection_segment_simple(ray_array, segment):
    """
    Compute reflection of last part of the ray from given segment. If there is an intersection of ray and segment,
    compute reflected ray, update ray intensity, update ray array. If there is not, return False and original values.

    :param ray_array: array representing parts of ray
    :param segment: segment that the ray should reflect from
    :param previous_intersection: previous intersection of given ray on this segment
    :param ray_intensity: intensity of ray before reflection
    :param r_factor: reflective factor
    :return: True/False whether the ray was reflected, possibly updated ray array, previous intersection and intensity
    """
    last_ray = ray_array[-1]
    intersection = segment.intersection(last_ray)
    if intersection:
        reflected_ray, ray_intensity = compute_reflection(
            last_ray, segment, 1, 1)
        new_ray_array = ray_array[:-1]
        new_ray_array.append(Ray(last_ray.p1, intersection[0]))
        new_ray_array.append(reflected_ray)
        ray_array = new_ray_array
    return ray_array
コード例 #12
0
def closest_segment(segments: List[Segment], ray: Ray,
                    last_reflection: Segment) -> Segment:
    """
    Find closest segment for given ray

    :param segments: List of segments
    :param ray: Ray
    :param last_reflection: Segment of last reflection
    :return: Closest segment
    """
    intersection_dict = {}
    for segment in segments:
        intersection = ray.intersection(segment)
        if intersection and segment != last_reflection:
            ray_segment = Segment(ray.p1, intersection[0])
            length = ray_segment.length
            intersection_dict.setdefault(segment, length)
    if intersection_dict == {}:
        return []
    min_value = min(intersection_dict.values())
    segment = [
        key for key in intersection_dict if intersection_dict[key] == min_value
    ]
    return segment
コード例 #13
0
def test_polygon():
    a, b, c = Point(0, 0), Point(2, 0), Point(3, 3)
    t = Triangle(a, b, c)
    assert Polygon(a, Point(1, 0), b, c) == t
    assert Polygon(Point(1, 0), b, c, a) == t
    assert Polygon(b, c, a, Point(1, 0)) == t
    # 2 "remove folded" tests
    assert Polygon(a, Point(3, 0), b, c) == t
    assert Polygon(a, b, Point(3, -1), b, c) == t
    raises(GeometryError, lambda: Polygon((0, 0), (1, 0), (0, 1), (1, 1)))

    p1 = Polygon(Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5),
                 Point(2, 3), Point(0, 3))
    p2 = Polygon(Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3),
                 Point(2, 3), Point(4, 5))
    p3 = Polygon(Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4))
    p4 = Polygon(Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0))
    p5 = Polygon(Point(0, 0), Point(4, 4), Point(0, 4))
    p6 = Polygon(Point(-11, 1), Point(-9, 6.6), Point(-4, -3),
                 Point(-8.4, -8.7))
    r = Ray(Point(-9, 6.6), Point(-9, 5.5))
    #
    # General polygon
    #
    assert p1 == p2
    assert len(p1.args) == 6
    assert len(p1.sides) == 6
    assert p1.perimeter == 5 + 2 * sqrt(10) + sqrt(29) + sqrt(8)
    assert p1.area == 22
    assert not p1.is_convex()
    # ensure convex for both CW and CCW point specification
    assert p3.is_convex()
    assert p4.is_convex()
    dict5 = p5.angles
    assert dict5[Point(0, 0)] == pi / 4
    assert dict5[Point(0, 4)] == pi / 2
    assert p5.encloses_point(Point(x, y)) is None
    assert p5.encloses_point(Point(1, 3))
    assert p5.encloses_point(Point(0, 0)) is False
    assert p5.encloses_point(Point(4, 0)) is False
    p5.plot_interval('x') == [x, 0, 1]
    assert p5.distance(Polygon(Point(10, 10), Point(14, 14),
                               Point(10, 14))) == 6 * sqrt(2)
    assert p5.distance(
        Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4
    warnings.filterwarnings(
        "error", message="Polygons may intersect producing erroneous output")
    raises(
        UserWarning,
        lambda: Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance(
            Polygon(Point(0, 0), Point(0, 1), Point(1, 1))))
    warnings.filterwarnings(
        "ignore", message="Polygons may intersect producing erroneous output")
    assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4)))
    assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0))
    assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5
    assert p5 != Point(0, 4)
    assert Point(0, 1) in p5
    assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \
        Point(0, 0)
    raises(
        ValueError, lambda: Polygon(Point(x, 0), Point(0, y), Point(x, y)).
        arbitrary_point('x'))
    assert p6.intersection(r) == [Point(-9, 33 / 5), Point(-9, -84 / 13)]
    #
    # Regular polygon
    #
    p1 = RegularPolygon(Point(0, 0), 10, 5)
    p2 = RegularPolygon(Point(0, 0), 5, 5)
    raises(GeometryError,
           lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1)))
    raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2))
    raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5))

    assert p1 != p2
    assert p1.interior_angle == 3 * pi / 5
    assert p1.exterior_angle == 2 * pi / 5
    assert p2.apothem == 5 * cos(pi / 5)
    assert p2.circumcenter == p1.circumcenter == Point(0, 0)
    assert p1.circumradius == p1.radius == 10
    assert p2.circumcircle == Circle(Point(0, 0), 5)
    assert p2.incircle == Circle(Point(0, 0), p2.apothem)
    assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4)
    p2.spin(pi / 10)
    dict1 = p2.angles
    assert dict1[Point(0, 5)] == 3 * pi / 5
    assert p1.is_convex()
    assert p1.rotation == 0
    assert p1.encloses_point(Point(0, 0))
    assert p1.encloses_point(Point(11, 0)) is False
    assert p2.encloses_point(Point(0, 4.9))
    p1.spin(pi / 3)
    assert p1.rotation == pi / 3
    assert p1.vertices[0] == Point(5, 5 * sqrt(3))
    for var in p1.args:
        if isinstance(var, Point):
            assert var == Point(0, 0)
        else:
            assert var == 5 or var == 10 or var == pi / 3
    assert p1 != Point(0, 0)
    assert p1 != p5

    # while spin works in place (notice that rotation is 2pi/3 below)
    # rotate returns a new object
    p1_old = p1
    assert p1.rotate(pi / 3) == RegularPolygon(Point(0, 0), 10, 5, 2 * pi / 3)
    assert p1 == p1_old

    assert p1.area == (-250 * sqrt(5) + 1250) / (4 * tan(pi / 5))
    assert p1.length == 20 * sqrt(-sqrt(5) / 8 + S(5) / 8)
    assert p1.scale(2, 2) == \
        RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation)
    assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \
        Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3))

    assert repr(p1) == str(p1)

    #
    # Angles
    #
    angles = p4.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    angles = p3.angles
    assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483"))
    assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544"))
    assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388"))
    assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449"))

    #
    # Triangle
    #
    p1 = Point(0, 0)
    p2 = Point(5, 0)
    p3 = Point(0, 5)
    t1 = Triangle(p1, p2, p3)
    t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4))))
    t3 = Triangle(p1, Point(x1, 0), Point(0, x1))
    s1 = t1.sides
    assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2)
    raises(GeometryError, lambda: Triangle(Point(0, 0)))

    # Basic stuff
    assert Triangle(p1, p1, p1) == p1
    assert Triangle(p2, p2 * 2, p2 * 3) == Segment(p2, p2 * 3)
    assert t1.area == Rational(25, 2)
    assert t1.is_right()
    assert t2.is_right() is False
    assert t3.is_right()
    assert p1 in t1
    assert t1.sides[0] in t1
    assert Segment((0, 0), (1, 0)) in t1
    assert Point(5, 5) not in t2
    assert t1.is_convex()
    assert feq(t1.angles[p1].evalf(), pi.evalf() / 2)

    assert t1.is_equilateral() is False
    assert t2.is_equilateral()
    assert t3.is_equilateral() is False
    assert are_similar(t1, t2) is False
    assert are_similar(t1, t3)
    assert are_similar(t2, t3) is False
    assert t1.is_similar(Point(0, 0)) is False

    # Bisectors
    bisectors = t1.bisectors()
    assert bisectors[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    ic = (250 - 125 * sqrt(2)) / 50
    assert t1.incenter == Point(ic, ic)

    # Inradius
    assert t1.inradius == t1.incircle.radius == 5 - 5 * sqrt(2) / 2
    assert t2.inradius == t2.incircle.radius == 5 * sqrt(3) / 6
    assert t3.inradius == t3.incircle.radius == x1**2 / (
        (2 + sqrt(2)) * Abs(x1))

    # Circumcircle
    assert t1.circumcircle.center == Point(2.5, 2.5)

    # Medians + Centroid
    m = t1.medians
    assert t1.centroid == Point(Rational(5, 3), Rational(5, 3))
    assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert t3.medians[p1] == Segment(p1, Point(x1 / 2, x1 / 2))
    assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid]
    assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5))

    # Perpendicular
    altitudes = t1.altitudes
    assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2)))
    assert altitudes[p2] == s1[0]
    assert altitudes[p3] == s1[2]
    assert t1.orthocenter == p1
    t = S('''Triangle(
    Point(100080156402737/5000000000000, 79782624633431/500000000000),
    Point(39223884078253/2000000000000, 156345163124289/1000000000000),
    Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''')
    assert t.orthocenter == S(
        '''Point(-780660869050599840216997'''
        '''79471538701955848721853/80368430960602242240789074233100000000000000,'''
        '''20151573611150265741278060334545897615974257/16073686192120448448157'''
        '''8148466200000000000)''')

    # Ensure
    assert len(intersection(*bisectors.values())) == 1
    assert len(intersection(*altitudes.values())) == 1
    assert len(intersection(*m.values())) == 1

    # Distance
    p1 = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1))
    p2 = Polygon(Point(0,
                       Rational(5) / 4), Point(1,
                                               Rational(5) / 4),
                 Point(1,
                       Rational(9) / 4), Point(0,
                                               Rational(9) / 4))
    p3 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
    p4 = Polygon(Point(1, 1), Point(Rational(6) / 5, 1),
                 Point(1,
                       Rational(6) / 5))
    pt1 = Point(half, half)
    pt2 = Point(1, 1)
    '''Polygon to Point'''
    assert p1.distance(pt1) == half
    assert p1.distance(pt2) == 0
    assert p2.distance(pt1) == Rational(3) / 4
    assert p3.distance(pt2) == sqrt(2) / 2
    '''Polygon to Polygon'''
    # p1.distance(p2) emits a warning
    # First, test the warning
    warnings.filterwarnings(
        "error", message="Polygons may intersect producing erroneous output")
    raises(UserWarning, lambda: p1.distance(p2))
    # now test the actual output
    warnings.filterwarnings(
        "ignore", message="Polygons may intersect producing erroneous output")
    assert p1.distance(p2) == half / 2

    assert p1.distance(p3) == sqrt(2) / 2
    assert p3.distance(p4) == (sqrt(2) / 2 - sqrt(Rational(2) / 25) / 2)
コード例 #14
0
ファイル: particle.py プロジェクト: mattdyer/particleevents
 def __init__(self, color, position):
     self.color = color
     self.position = position
     self.direction = Ray(position, (position[0], position[1] + 1))
     self.next_event_time = 0
コード例 #15
0
def test_closing_angle():
    a = Ray((0, 0), angle=0)
    b = Ray((1, 2), angle=pi/2)
    assert a.closing_angle(b) == -pi/2
    assert b.closing_angle(a) == pi/2
    assert a.closing_angle(a) == 0
コード例 #16
0
def test_intersection_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)

    l1 = Line(p1, p2)
    l3 = Line(Point(0, 0), Point(3, 4))

    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(0, 0), Point(3, 4))
    r4 = Ray(p1, p2)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))

    s1 = Segment(p1, p2)
    s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    s3 = Segment(Point(0, 0), Point(3, 4))

    assert intersection(l1, p1) == [p1]
    assert intersection(l1, Point(x1, 1 + x1)) == []
    assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
    assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
    assert intersection(l3, l3) == [l3]
    assert intersection(l3, r2) == [r2]
    assert intersection(l3, s3) == [s3]
    assert intersection(s3, l3) == [s3]
    assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
    assert intersection(r2, l3) == [r2]
    assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
    assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]

    assert r4.intersection(s2) == [s2]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(Ray(p2, p1)) == [s1]
    assert Ray(p2, p1).intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]
    assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
           [Segment(Point(0, 0), Point(0, 1))]

    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((1, 0), (2, 0)).intersection(
        Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((2, 0), (5, 0))) == [Segment3D((3, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
    assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
    assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
    assert s1.intersection(s2) == [s2]
    assert s2.intersection(s1) == [s2]
コード例 #17
0
ファイル: test_line.py プロジェクト: ytann/sympy
def test_dimension_normalization():
    with warnings.catch_warnings(record=True) as w:
        assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
        assert len(w) == 1
コード例 #18
0
ファイル: test_geometry.py プロジェクト: pernici/sympy
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)

    # Basic stuff
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l3.slope == oo
    assert p1 in l1 # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x-y, y-x)
    assert simplify(l3.equation()) in (x-x1, x1-x)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1 , l2) == False

    # Parallelity
    p2_1 = Point(-2*x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3,5), x1))
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4)

    # Testing Rays and Segments (very similar to Lines)
    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1,2), Rational(1,2))
    assert s2.length == sqrt( 2*(x1**2) )
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3)/2, Rational(3)/2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2**(half)/2
    assert s2.distance(pt2) == 2**(half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10,10), Point(10,10))
    entity2 = Segment(Point(-5,-5), Point(-5,5))
    assert intersection(entity1, entity2) == []
コード例 #19
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, 'Line(Point(0, 0), Point(0, 0))')

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, 'Line((1, 1), 1)')
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1) == False
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(
        GeometryError,
        'Line(Point(0, 0), Point(1, 0)).projection(Circle(Point(0, 0), 1))')

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    # XXX don't know why this fails without str
    assert str(Ray(
        (1, 1),
        angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2,
                                                       1 + C.tan(0.2 * pi))))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, 'Ray((1, 1), 1)')

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol('t', real=True)
    assert Ray(
        (1, 1),
        angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t))

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1**2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s1]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(
        0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(
        0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols('a,b')
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s

    raises(Undecidable, "Point(2*a, 0) in s")

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2**(half) / 2
    assert s2.distance(pt2) == 2**(half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)

    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) == False
    assert (r1 in s1) == False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) == Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
コード例 #20
0
ファイル: test_line.py プロジェクト: msgoff/sympy
def test_projection():
    p1 = Point(0, 0)
    p2 = Point3D(0, 0, 0)
    p3 = Point(-x1, x1)

    l1 = Line(p1, Point(1, 1))
    l2 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
    l3 = Line3D(p2, Point3D(1, 1, 1))

    r1 = Ray(Point(1, 1), Point(2, 2))

    assert Line(Point(x1, x1),
                Point(y1, y1)).projection(Point(y1, y1)) == Point(y1, y1)
    assert Line(Point(x1, x1),
                Point(x1, 1 + x1)).projection(Point(1, 1)) == Point(x1, 1)
    assert Segment(Point(-2, 2),
                   Point(0,
                         4)).projection(r1) == Segment(Point(-1, 3),
                                                       Point(0, 4))
    assert Segment(Point(0, 4),
                   Point(-2,
                         2)).projection(r1) == Segment(Point(0, 4),
                                                       Point(-1, 3))
    assert l1.projection(p3) == p1
    assert l1.projection(Ray(p1, Point(-1, 5))) == Ray(Point(0, 0),
                                                       Point(2, 2))
    assert l1.projection(Ray(p1, Point(-1, 1))) == p1
    assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
    assert r1.projection(Ray(Point(0, 4),
                             Point(-1,
                                   -5))) == Segment(Point(1, 1), Point(2, 2))
    assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(
        Point(1, 1), Point(2, 2))
    assert r1.projection(Ray(Point(1, 1), Point(-1, -1))) == Point(1, 1)
    assert r1.projection(Ray(Point(0, 4),
                             Point(-1,
                                   -5))) == Segment(Point(1, 1), Point(2, 2))
    assert r1.projection(Segment(Point(-1, 5), Point(-5, -10))) == Segment(
        Point(1, 1), Point(2, 2))

    assert l3.projection(Ray3D(p2, Point3D(-1, 5, 0))) == Ray3D(
        Point3D(0, 0, 0),
        Point3D(Rational(4, 3), Rational(4, 3), Rational(4, 3)))
    assert l3.projection(Ray3D(p2, Point3D(-1, 1, 1))) == Ray3D(
        Point3D(0, 0, 0),
        Point3D(Rational(1, 3), Rational(1, 3), Rational(1, 3)))
    assert l2.projection(Point3D(5, 5, 0)) == Point3D(5, 0)
    assert l2.projection(Line3D(Point3D(0, 1, 0), Point3D(1, 1, 0))).equals(l2)
コード例 #21
0
ファイル: test_line.py プロジェクト: msgoff/sympy
def test_closing_angle():
    a = Ray((0, 0), angle=0)
    b = Ray((1, 2), angle=pi / 2)
    assert a.closing_angle(b) == -pi / 2
    assert b.closing_angle(a) == pi / 2
    assert a.closing_angle(a) == 0
コード例 #22
0
ファイル: test_line.py プロジェクト: msgoff/sympy
def test_dimension_normalization():
    with warns(UserWarning):
        assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
コード例 #23
0
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)

    # Basic stuff
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l3.slope == oo
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1**2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2**(half) / 2
    assert s2.distance(pt2) == 2**(half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []
コード例 #24
0
def test_line_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(TypeError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p1, p2)
    assert Line(p1, p2) != Line(p2, p1)
    assert l1 != l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in range(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1.args).equals(
        Line(Point(0, 0), Point(1, -1)))
    assert l1.perpendicular_line(p1).equals(Line(Point(0, 0), Point(1, -1)))
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) is False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1).equals(
        Line(Point(-x1, x1), Point(-y1, 2 * x1 - y1)))
    assert l2_1.parallel_line(p1.args).equals(Line(Point(0, 0), Point(0, -1)))
    assert l2_1.parallel_line(p1).equals(Line(Point(0, 0), Point(0, -1)))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) is False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.are_concurrent(l1) is False
    assert Line.are_concurrent(l1, l3)
    assert Line.are_concurrent(l1, l1, l1, l3)
    assert Line.are_concurrent(l1, l3, l3_1)
    assert Line.are_concurrent(l1, l1_1, l3) is False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(
        GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection(
            Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)
    a = Point(1, 2, 3, 4)
    b = a.orthogonal_direction
    o = a.origin
    assert Line(a, o).angle_between(Line(b, o)) == pi / 2

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=4.05 * pi) == Ray(
        Point(1, 1),
        Point(
            2, -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 -
            sqrt(2 * sqrt(5) + 10) / 4 + 2 + sqrt(5)))
    assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1),
                                               Point(2, 1 + tan(4.02 * pi)))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
    raises(TypeError, lambda: Ray((1, 1), 1))

    # issue 7963
    r = Ray((0, 0), angle=x)
    assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
    assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
    assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
    assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
    assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(Point(0, 0), Point(2, 2))
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol('t', real=True)
    assert Ray((1, 1), angle=pi/4).arbitrary_point() == \
        Point(t + 1, t + 1)
    r8 = Ray(Point(0, 0), Point(0, 4))
    r9 = Ray(Point(0, 1), Point(0, -1))
    assert r8.intersection(r9) == [Segment(Point(0, 0), Point(0, 1))]

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1**2))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)
    aline = Line(Point(1 / 2, 1 / 2), Point(3 / 2, -1 / 2))
    assert s1.perpendicular_bisector().equals(aline)
    on_line = Segment(Point(1 / 2, 1 / 2), Point(3 / 2, -1 / 2)).midpoint
    assert s1.perpendicular_bisector(on_line) == Segment(s1.midpoint, on_line)
    assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s3]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols('a,b', real=True)
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s

    raises(Undecidable, lambda: Point(2 * a, 0) in s)

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s1.distance((0, 0)) == 0
    assert s2.distance(pt1) == 2**(half) / 2
    assert s2.distance(pt2) == 2**(half)
    # Line to point
    p1, p2 = Point(0, 0), Point(1, 1)
    s = Line(p1, p2)
    assert s.distance(Point(-1, 1)) == sqrt(2)
    assert s.distance(Point(1, -1)) == sqrt(2)
    assert s.distance(Point(2, 2)) == 0
    assert s.distance((-1, 1)) == sqrt(2)
    assert Line((0, 0), (0, 1)).distance(p1) == 0
    assert Line((0, 0), (0, 1)).distance(p2) == 1
    assert Line((0, 0), (1, 0)).distance(p1) == 0
    assert Line((0, 0), (1, 0)).distance(p2) == 1
    m = symbols('m', real=True)
    l = Line((0, 5), slope=m)
    p = Point(2, 3)
    assert (l.distance(p) - 2 * abs(m + 1) / sqrt(m**2 + 1)).equals(0)
    # Ray to point
    r = Ray(p1, p2)
    assert r.distance(Point(-1, -1)) == sqrt(2)
    assert r.distance(Point(1, 1)) == 0
    assert r.distance(Point(-1, 1)) == sqrt(2)
    assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3 * sqrt(2) / 4
    assert r.distance((1, 1)) == 0

    #Line contains
    p1, p2 = Point(0, 1), Point(3, 4)
    l = Line(p1, p2)
    assert l.contains(p1) is True
    assert l.contains((0, 1)) is True
    assert l.contains((0, 0)) is False

    #Ray contains
    p1, p2 = Point(0, 0), Point(4, 4)
    r = Ray(p1, p2)
    assert r.contains(p1) is True
    assert r.contains((1, 1)) is True
    assert r.contains((1, 3)) is False
    s = Segment((1, 1), (2, 2))
    assert r.contains(s) is True
    s = Segment((1, 2), (2, 5))
    assert r.contains(s) is False
    r1 = Ray((2, 2), (3, 3))
    assert r.contains(r1) is True
    r1 = Ray((2, 2), (3, 5))
    assert r.contains(r1) is False

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and \
        p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)
    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) is False
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) != Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi/4).plot_interval() == \
        [t, 0, 10]
コード例 #25
0
def test_dimension_normalization():
    with warns(UserWarning, test_stacklevel=False):
        assert Ray((1, 1), (2, 1, 2)) == Ray((1, 1, 0), (2, 1, 2))
コード例 #26
0
ファイル: test_line.py プロジェクト: alexako/sympy
def test_line_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    x1 = Symbol('x1', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(TypeError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p1, p2)
    assert Line(p1, p2) != Line(p2, p1)
    assert l1 != l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in range(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1.args).equals( Line(Point(0, 0), Point(1, -1)) )
    assert l1.perpendicular_line(p1).equals( Line(Point(0, 0), Point(1, -1)) )
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) is False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1).equals( Line(Point(-x1, x1), Point(-y1, 2*x1 - y1)) )
    assert l2_1.parallel_line(p1.args).equals( Line(Point(0, 0), Point(0, -1)) )
    assert l2_1.parallel_line(p1).equals( Line(Point(0, 0), Point(0, -1)) )
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) is False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.are_concurrent(l1) is False
    assert Line.are_concurrent(l1, l3)
    assert Line.are_concurrent(l1, l1, l1, l3)
    assert Line.are_concurrent(l1, l3, l3_1)
    assert Line.are_concurrent(l1, l1_1, l3) is False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0))
           .projection(Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf()/4)
    a = Point(1, 2, 3, 4)
    b = a.orthogonal_direction
    o = a.origin
    assert Line(a, o).angle_between(Line(b, o)) == pi/2

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi/4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi/2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3*pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5*pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0*pi/2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0*pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0*pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=4.05*pi) == Ray(Point(1, 1),
               Point(2, -sqrt(5)*sqrt(2*sqrt(5) + 10)/4 - sqrt(2*sqrt(5) + 10)/4 + 2 + sqrt(5)))
    assert Ray((1, 1), angle=4.02*pi) == Ray(Point(1, 1),
               Point(2, 1 + tan(4.02*pi)))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))
    raises(TypeError, lambda: Ray((1, 1), 1))

    # issue 7963
    r = Ray((0, 0), angle=x)
    assert r.subs(x, 3*pi/4) == Ray((0, 0), (-1, 1))
    assert r.subs(x, 5*pi/4) == Ray((0, 0), (-1, -1))
    assert r.subs(x, -pi/4) == Ray((0, 0), (1, -1))
    assert r.subs(x, pi/2) == Ray((0, 0), (0, 1))
    assert r.subs(x, -pi/2) == Ray((0, 0), (0, -1))

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(Point(0, 0), Point(2, 2))
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol('t', real=True)
    assert Ray((1, 1), angle=pi/4).arbitrary_point() == \
        Point(t + 1, t + 1)
    r8 = Ray(Point(0, 0), Point(0, 4))
    r9 = Ray(Point(0, 1), Point(0, -1))
    assert r8.intersection(r9) == [Segment(Point(0, 0), Point(0, 1))]

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt( 2*(x1**2) )
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2*t)
    aline = Line(Point(1/2, 1/2), Point(3/2, -1/2))
    assert s1.perpendicular_bisector().equals(aline)
    on_line = Segment(Point(1/2, 1/2), Point(3/2, -1/2)).midpoint
    assert s1.perpendicular_bisector(on_line) == Segment(s1.midpoint, on_line)
    assert s1.perpendicular_bisector(on_line + (1, 0)).equals(aline)
    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s3]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == \
        [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols('a,b', real=True)
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b)/2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b)/2, 0) in s

    raises(Undecidable, lambda: Point(2*a, 0) in s)

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3)/2, Rational(3)/2)
    assert s1.distance(pt1) == 0
    assert s1.distance((0, 0)) == 0
    assert s2.distance(pt1) == 2**(half)/2
    assert s2.distance(pt2) == 2**(half)
    # Line to point
    p1, p2 = Point(0, 0), Point(1, 1)
    s = Line(p1, p2)
    assert s.distance(Point(-1, 1)) == sqrt(2)
    assert s.distance(Point(1, -1)) == sqrt(2)
    assert s.distance(Point(2, 2)) == 0
    assert s.distance((-1, 1)) == sqrt(2)
    assert Line((0, 0), (0, 1)).distance(p1) == 0
    assert Line((0, 0), (0, 1)).distance(p2) == 1
    assert Line((0, 0), (1, 0)).distance(p1) == 0
    assert Line((0, 0), (1, 0)).distance(p2) == 1
    m = symbols('m', real=True)
    l = Line((0, 5), slope=m)
    p = Point(2, 3)
    assert (l.distance(p) - 2*abs(m + 1)/sqrt(m**2 + 1)).equals(0)
    # Ray to point
    r = Ray(p1, p2)
    assert r.distance(Point(-1, -1)) == sqrt(2)
    assert r.distance(Point(1, 1)) == 0
    assert r.distance(Point(-1, 1)) == sqrt(2)
    assert Ray((1, 1), (2, 2)).distance(Point(1.5, 3)) == 3*sqrt(2)/4
    assert r.distance((1, 1)) == 0

    #Line contains
    p1, p2 = Point(0, 1), Point(3, 4)
    l = Line(p1, p2)
    assert l.contains(p1) is True
    assert l.contains((0, 1)) is True
    assert l.contains((0, 0)) is False

    #Ray contains
    p1, p2 = Point(0, 0), Point(4, 4)
    r = Ray(p1, p2)
    assert r.contains(p1) is True
    assert r.contains((1, 1)) is True
    assert r.contains((1, 3)) is False
    s = Segment((1, 1), (2, 2))
    assert r.contains(s) is True
    s = Segment((1, 2), (2, 5))
    assert r.contains(s) is False
    r1 = Ray((2, 2), (3, 3))
    assert r.contains(r1) is True
    r1 = Ray((2, 2), (3, 5))
    assert r.contains(r1) is False


    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and \
        p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)
    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) is False
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) != Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi/4).plot_interval() == \
        [t, 0, 10]
コード例 #27
0
ファイル: test_line.py プロジェクト: msgoff/sympy
def test_basic_properties_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p10 = Point(2000, 2000)
    p_r3 = Ray(p1, p2).random_point()
    p_r4 = Ray(p2, p1).random_point()

    l1 = Line(p1, p2)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
    l4 = Line(p1, Point(1, 0))

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)

    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()

    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
    assert Line(p1, p2) == Line(p1, p2)
    assert Line(p1, p2) != Line(p2, p1)
    assert l1 != Line(Point(x1, x1), Point(y1, y1))
    assert l1 != l3
    assert Line(p1, p10) != Line(p10, p1)
    assert Line(p1, p10) != p1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert s1 in Line(p1, p10)
    assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
    assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
    assert Segment(p1, p2).midpoint == Point(S.Half, S.Half)
    assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1**2))

    assert l1.slope == 1
    assert l3.slope is oo
    assert l4.slope == 0
    assert Line(p1, Point(0, 1)).slope is oo
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert (Segment(Point(0, -1),
                    Segment(p1, Point(0, 1)).random_point()).slope == Segment(
                        p1, Point(0, 1)).slope)

    assert l4.coefficients == (0, 1, 0)
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
    assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
    # issue 7963
    r = Ray((0, 0), angle=x)
    assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
    assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
    assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
    assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
    assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))

    for ind in range(0, 5):
        assert l3.random_point() in l3

    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
    assert hash(s1) != hash(Segment(p10, p1))

    assert s1.plot_interval() == [t, 0, 1]
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
コード例 #28
0
ファイル: test_line.py プロジェクト: shubhsherl/sympy
def test_intersection_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)

    l1 = Line(p1, p2)
    l3 = Line(Point(0, 0), Point(3, 4))

    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(0, 0), Point(3, 4))
    r4 = Ray(p1, p2)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))

    s1 = Segment(p1, p2)
    s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    s3 = Segment(Point(0, 0), Point(3, 4))

    assert intersection(l1, p1) == [p1]
    assert intersection(l1, Point(x1, 1 + x1)) == []
    assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
    assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
    assert intersection(l3, l3) == [l3]
    assert intersection(l3, r2) == [r2]
    assert intersection(l3, s3) == [s3]
    assert intersection(s3, l3) == [s3]
    assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
    assert intersection(r2, l3) == [r2]
    assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
    assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]

    assert r4.intersection(s2) == [s2]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(Ray(p2, p1)) == [s1]
    assert Ray(p2, p1).intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]
    assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
           [Segment(Point(0, 0), Point(0, 1))]

    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((1, 0), (2, 0)).intersection(
        Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
    assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
    assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
    assert s1.intersection(s2) == [s2]
    assert s2.intersection(s1) == [s2]

    assert asa(120, 8, 52) == \
           Triangle(
               Point(0, 0),
               Point(8, 0),
               Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
                     4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
    assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
    assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
    assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
    assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)]

    # 16628 - this should be fast
    p0 = Point2D(Rational(249, 5), Rational(497999, 10000))
    p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
        20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
        /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
        + 1991998000*sqrt(630547164901) + 1622561172902000),
        (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
        90004251917891999 +
        496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
        + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
        8112805864510000))
    p2 = Point2D(Rational(497, 10), Rational(-497, 10))
    p3 = Point2D(Rational(-497, 10), Rational(-497, 10))
    l = Line(p0, p1)
    s = Segment(p2, p3)
    n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
        9803028531*sqrt(630547164901) +
        33200*sqrt(255775022850776494562626))
    d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
        630547164901) + sqrt(255775022850776494562626)
    assert intersection(l, s) == [
        Point2D(n/d*Rational(3, 2000), Rational(-497, 10))]
コード例 #29
0
ファイル: test_line.py プロジェクト: msgoff/sympy
def test_intersection_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)

    l1 = Line(p1, p2)
    l3 = Line(Point(0, 0), Point(3, 4))

    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(0, 0), Point(3, 4))
    r4 = Ray(p1, p2)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))

    s1 = Segment(p1, p2)
    s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    s3 = Segment(Point(0, 0), Point(3, 4))

    assert intersection(l1, p1) == [p1]
    assert intersection(l1, Point(x1, 1 + x1)) == []
    assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
    assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
    assert intersection(l3, l3) == [l3]
    assert intersection(l3, r2) == [r2]
    assert intersection(l3, s3) == [s3]
    assert intersection(s3, l3) == [s3]
    assert (intersection(Segment(Point(-10, 10), Point(10, 10)),
                         Segment(Point(-5, -5), Point(-5, 5))) == [])
    assert intersection(r2, l3) == [r2]
    assert intersection(r1,
                        Ray(Point(2, 2),
                            Point(0,
                                  0))) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
    assert intersection(r1, Segment(Point(0, 0), Point(
        2, 2))) == [Segment(Point(1, 1), Point(2, 2))]

    assert r4.intersection(s2) == [s2]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(
        0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(Ray(p2, p1)) == [s1]
    assert Ray(p2, p1).intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]
    assert Ray3D((0, 0), (3, 0)).intersection(Ray3D(
        (1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray3D((1, 0), (3, 0)).intersection(Ray3D(
        (0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray(Point(0, 0), Point(0, 4)).intersection(
        Ray(Point(0, 1), Point(0, -1))) == [Segment(Point(0, 0), Point(0, 1))]

    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((1, 0), (2, 0)).intersection(Segment3D(
        (0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (3, 0), (4, 0))) == [Point3D((3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(Segment3D(
        (-2, 0), (0, 0))) == [Point3D(0, 0)]
    assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
    assert s1.intersection(Segment(Point(0.5, 0.5), Point(
        1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(
        0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
    assert s1.intersection(s2) == [s2]
    assert s2.intersection(s1) == [s2]

    assert asa(120, 8, 52) == Triangle(
        Point(0, 0),
        Point(8, 0),
        Point(
            -4 * cos(19 * pi / 90) / sin(2 * pi / 45),
            4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45),
        ),
    )
    assert Line((0, 0), (1, 1)).intersection(Ray((1, 0),
                                                 (1, 2))) == [Point(1, 1)]
    assert Line((0, 0), (1, 1)).intersection(Segment((1, 0),
                                                     (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0),
                                                (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0),
                                                    (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
    assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))
    assert s1.intersection(Ray((1, 1), (4, 4))) == [Point(1, 1)]
コード例 #30
0
ファイル: photon.py プロジェクト: mlazaric/Photon
class Photon:
    position: Point
    imprecise_position: Point
    ray: Ray
    checked_circles: List[Circle]
    distance: Rational

    def __init__(self, position: Point, angle: float,
                 distance: Rational) -> None:
        """
        Creates a new photon with the given current position, angle and distance to cover.

        :param position: starting position of the photon
        :param angle: starting angle of the photon
        :param distance: distance to cover
        :rtype: None
        """

        # Current position which one changes when the src hits a circle.
        self.position = position

        # Imprecise current position used for ray tracing.
        self.imprecise_position = Point(position, evaluate=False)

        # Current heading of the src.
        self.ray = Ray(position, angle=angle)

        # Circles we have already checked before, after the last reflection, so we don't have to do it again.
        self.checked_circles = []

        # Distance left to cover.
        self.distance = distance

    def jump_to_position(self) -> None:
        """
        Draws a line from the current turtle position to self.position.
        Sets current turtle position to self.position.

        :rtype: None
        """

        set_position(float(self.position.x), float(self.position.y))

    def invisible_jump_to_position(self) -> None:
        """
        Sets current turtle position to self.position without drawing a line.

        :rtype: None
        """

        inv_set_position(float(self.position.x), float(self.position.y))

    def raytrace(self) -> None:
        """
        Moves imprecise_position STEP distance in the direction of the photon.

        :rtype: None
        """

        self.imprecise_position = self.imprecise_position.translate(
            (STEP * self.ray.direction.x).evalf(PRECISION),
            (STEP * self.ray.direction.y).evalf(PRECISION))

    def check_nearby_circles(self) -> None:
        """
        Checks the circles around the photon to see if it has collided with any of them.

        If it has, it sets the new position and calls self.reflect with the previous position and the collided circle.
        Otherwise, it adds the circle to checked_circles.

        :rtype: None
        """

        for (x, y) in self.possible_centers():
            center = Point(x, y)
            circle = Circle(center, RADIUS)

            # If we already checked that circle after the last reflection.
            if circle in self.checked_circles:
                continue

            intersect = intersection(self.ray, circle)

            prev_position = self.position

            # If intersection returns one Point, set position to it.
            if len(intersect) == 1:
                self.position = intersect[0]

                self.reflect(prev_position, circle)
                break

            # If intersection returns two Points, find the closer one and set position to it.
            elif len(intersect) == 2:
                if (self.position.distance(intersect[0]).evalf(PRECISION)) < \
                        (self.position.distance(intersect[1]).evalf(PRECISION)):
                    self.position = intersect[0]
                else:
                    self.position = intersect[1]

                self.reflect(prev_position, circle)
                break

            # Otherwise we have not collided with that circle, so we add it to the circles list.
            else:
                self.checked_circles.append(circle)

    def reflect(self, prev_position: Point, circle: Circle) -> None:
        """
        Reflects the photon on the given circle.

         - calculates distance covered and subtracts it from self.distance
         - calculates new direction vector
         - jumps to the new position and prints it

        :rtype: None
        """
        if prev_position.distance(self.position) > self.distance:
            self.position = prev_position.translate(
                self.ray.direction.x * self.distance,
                self.ray.direction.y * self.distance)
            self.distance = 0
            return

        self.distance -= prev_position.distance(self.position).evalf(PRECISION)
        self.checked_circles = [circle]

        tangent = circle.tangent_lines(self.position)[0]
        self.position = Point(self.position.x.evalf(PRECISION),
                              self.position.y.evalf(PRECISION))
        self.imprecise_position = self.position

        direction = self.position + self.ray.reflect(tangent).direction
        direction = Point(direction.x.evalf(PRECISION),
                          direction.y.evalf(PRECISION))

        self.ray = Ray(self.position, direction)

        self.jump_to_position()
        dot()
        self.print_position()

    def possible_centers(self) -> Generator[Tuple[float, float], None, None]:
        """
        Returns the possible centers of the circles around the photon as a generator.

        :return: a generator for the possible circle centers
        :rtype: Generator[Tuple[float, float]]
        """

        # The only circles we have to check are the ones with these center coordinates.
        possible_center_x = [
            floor(self.imprecise_position.x),
            ceil(self.imprecise_position.x)
        ]

        possible_center_y = [
            floor(self.imprecise_position.y),
            ceil(self.imprecise_position.y)
        ]

        for center_x in possible_center_x:
            for center_y in possible_center_y:
                yield (center_x, center_y)

    def print_position(self) -> None:
        """
        Print coordinates of the current position.

        :rtype: None
        """

        x = self.position.x.evalf(PRECISION)
        y = self.position.y.evalf(PRECISION)

        print(f'{x: 1.15f} {y: 1.15f}')
コード例 #31
0
ファイル: test_line.py プロジェクト: msgoff/sympy
def test_ray_generation():
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=4.05 * pi) == Ray(
        Point(1, 1),
        Point(
            2,
            -sqrt(5) * sqrt(2 * sqrt(5) + 10) / 4 -
            sqrt(2 * sqrt(5) + 10) / 4 + 2 + sqrt(5),
        ),
    )
    assert Ray((1, 1), angle=4.02 * pi) == Ray(Point(1, 1),
                                               Point(2, 1 + tan(4.02 * pi)))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + tan(5)))

    assert Ray3D((1, 1, 1),
                 direction_ratio=[4, 4, 4]) == Ray3D(Point3D(1, 1, 1),
                                                     Point3D(5, 5, 5))
    assert Ray3D((1, 1, 1),
                 direction_ratio=[1, 2, 3]) == Ray3D(Point3D(1, 1, 1),
                                                     Point3D(2, 3, 4))
    assert Ray3D((1, 1, 1),
                 direction_ratio=[1, 1, 1]) == Ray3D(Point3D(1, 1, 1),
                                                     Point3D(2, 2, 2))
コード例 #32
0
def test_basic_properties_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p10 = Point(2000, 2000)
    p_r3 = Ray(p1, p2).random_point()
    p_r4 = Ray(p2, p1).random_point()

    l1 = Line(p1, p2)
    l3 = Line(Point(x1, x1), Point(x1, 1 + x1))
    l4 = Line(p1, Point(1, 0))

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)

    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()

    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    assert Line(p1, p2).scale(2, 1) == Line(p1, Point(2, 1))
    assert Line(p1, p2) == Line(p1, p2)
    assert Line(p1, p2) != Line(p2, p1)
    assert l1 != Line(Point(x1, x1), Point(y1, y1))
    assert l1 != l3
    assert Line(p1, p10) != Line(p10, p1)
    assert Line(p1, p10) != p1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert s1 in Line(p1, p10)
    assert Ray(Point(0, 0), Point(0, 1)) in Ray(Point(0, 0), Point(0, 2))
    assert Ray(Point(0, 0), Point(0, 2)) in Ray(Point(0, 0), Point(0, 1))
    assert (r1 in s1) is False
    assert Segment(p1, p2) in s1
    assert Ray(Point(x1, x1), Point(x1, 1 + x1)) != Ray(p1, Point(-1, 5))
    assert Segment(p1, p2).midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert Segment(p1, Point(-x1, x1)).length == sqrt(2 * (x1 ** 2))

    assert l1.slope == 1
    assert l3.slope == oo
    assert l4.slope == 0
    assert Line(p1, Point(0, 1)).slope == oo
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), Segment(p1, Point(0, 1)).random_point()).slope == Segment(p1, Point(0, 1)).slope

    assert l4.coefficients == (0, 1, 0)
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)
    assert Line(p1, Point(0, 1)).coefficients == (1, 0, 0)
    # issue 7963
    r = Ray((0, 0), angle=x)
    assert r.subs(x, 3 * pi / 4) == Ray((0, 0), (-1, 1))
    assert r.subs(x, 5 * pi / 4) == Ray((0, 0), (-1, -1))
    assert r.subs(x, -pi / 4) == Ray((0, 0), (1, -1))
    assert r.subs(x, pi / 2) == Ray((0, 0), (0, 1))
    assert r.subs(x, -pi / 2) == Ray((0, 0), (0, -1))

    for ind in range(0, 5):
        assert l3.random_point() in l3

    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    assert p1.x <= p_s1.x <= p10.x and p1.y <= p_s1.y <= p10.y
    assert hash(s1) == hash(Segment(p10, p1))

    assert s1.plot_interval() == [t, 0, 1]
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 10]
コード例 #33
0
ファイル: test_geometry.py プロジェクト: addisonc/sympy
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, "Line((1, 1), 1)")
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    # XXX don't know why this fails without str
    assert str(Ray((1, 1), angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2, 1 + C.tan(0.2 * pi))))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, "Ray((1, 1), 1)")

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol("t", real=True)
    assert Ray((1, 1), angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t))

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1 ** 2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # Segment contains
    a, b = symbols("a,b")
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s
    assert (Point(2 * a, 0) in s) is False  # XXX should be None?

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2 ** (half) / 2
    assert s2.distance(pt2) == 2 ** (half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []
コード例 #34
0
ファイル: test_ellipse.py プロジェクト: woshiwushupei/sympy
def test_ellipse_geom():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    t = Symbol('t', real=True)
    y1 = Symbol('y1', real=True)
    half = Rational(1, 2)
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)
    l1 = Line(p1, p2)

    # Test creation with three points
    cen, rad = Point(3*half, 2), 5*half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    assert Circle(Point(0, 0), Point(1, 1), Point(2, 2)) == Segment2D(Point2D(0, 0), Point2D(2, 2))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert e1 != l1
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*y1*abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2*pi*y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]

    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    assert Ellipse((1, 1), 0, 0) == Point(1, 1)
    assert Ellipse((1, 1), 1, 0) == Segment(Point(0, 1), Point(2, 1))
    assert Ellipse((1, 1), 0, 1) == Segment(Point(1, 0), Point(1, 2))

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(Point(S(3)/2, 1), Point(S(3)/2, S(1)/2))]
    assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(S(5)/4, 2))]
    assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is True
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
    assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(S(77)/25, S(132)/25)),
     Line(Point(0, 0), Point(S(33)/5, S(22)/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    # for numerical calculations, we shouldn't demand exact equality,
    # so only test up to the desired precision
    def lines_close(l1, l2, prec):
        """ tests whether l1 and 12 are within 10**(-prec)
        of each other """
        return abs(l1.p1 - l2.p1) < 10**(-prec) and abs(l1.p2 - l2.p2) < 10**(-prec)
    def line_list_close(ll1, ll2, prec):
        return all(lines_close(l1, l2, prec) for l1, l2 in zip(ll1, ll2))

    e = Ellipse(Point(0, 0), 2, 1)
    assert e.normal_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines(Point(1, 0)) == \
        [Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines((0, 1)) == \
        [Line(Point(0, 0), Point(0, 1))]
    assert line_list_close(e.normal_lines(Point(1, 1), 2), [
        Line(Point(-S(51)/26, -S(1)/5), Point(-S(25)/26, S(17)/83)),
        Line(Point(S(28)/29, -S(7)/8), Point(S(57)/29, -S(9)/2))], 2)
    # test the failure of Poly.intervals and checks a point on the boundary
    p = Point(sqrt(3), S.Half)
    assert p in e
    assert line_list_close(e.normal_lines(p, 2), [
        Line(Point(-S(341)/171, -S(1)/13), Point(-S(170)/171, S(5)/64)),
        Line(Point(S(26)/15, -S(1)/2), Point(S(41)/15, -S(43)/26))], 2)
    # be sure to use the slope that isn't undefined on boundary
    e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
    assert line_list_close(e.normal_lines((1, 1), 2), [
        Line(Point(-S(64)/33, -S(20)/71), Point(-S(31)/33, S(2)/13)),
        Line(Point(1, -1), Point(2, -4))], 2)
    # general ellipse fails except under certain conditions
    e = Ellipse((0, 0), x, 1)
    assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
    raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))
    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)
    assert e4.semilatus_rectum == major*(1 - ecc ** 2)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(Point(5, 0), 1, 1)) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1
    assert intersection(Ellipse(Point(0, 0), 2, 1), Ellipse(Point(3, 0), 1, 2)) == [Point(2, 0)]
    assert intersection(Circle(Point(0, 0), 2), Circle(Point(3, 0), 1)) == [Point(2, 0)]
    assert intersection(Circle(Point(0, 0), 2), Circle(Point(7, 0), 1)) == []
    assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 1, 0.2)) == [Point(5, 0)]
    assert intersection(Ellipse(Point(0, 0), 5, 17), Ellipse(Point(4, 0), 0.999, 0.2)) == []
    assert Circle((0, 0), S(1)/2).intersection(
        Triangle((-1, 0), (1, 0), (0, 1))) == [
        Point(-S(1)/2, 0), Point(S(1)/2, 0)]
    raises(TypeError, lambda: intersection(e2, Line((0, 0, 0), (0, 0, 1))))
    raises(TypeError, lambda: intersection(e2, Rational(12)))
    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v/2, v/2) in points
    assert Point(v/2, -v/2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = S(53)/17
    c = 2*sqrt(3991)/17
    ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [Point(-c/68 + a, 2*c/17 + a/2), Point(c/68 + a, -2*c/17 + a/2)]
    assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
        Line(Point(10, 0), Point(S(14)/5, S(18)/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(
        e.center + Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(
        e.center + Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi) == e
    assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
    raises(NotImplementedError, lambda: e.rotate(pi/3))

    # Circle rotation tests (Issue #11743)
    # Link - https://github.com/sympy/sympy/issues/11743
    cir = Circle(Point(1, 0), 1)
    assert cir.rotate(pi/2) == Circle(Point(0, 1), 1)
    assert cir.rotate(pi/3) == Circle(Point(S(1)/2, sqrt(3)/2), 1)
    assert cir.rotate(pi/3, Point(1, 0)) == Circle(Point(1, 0), 1)
    assert cir.rotate(pi/3, Point(0, 1)) == Circle(Point(S(1)/2 + sqrt(3)/2, S(1)/2 + sqrt(3)/2), 1)
コード例 #35
0
def test_plane():
    x, y, z, u, v = symbols('x y z u v', real=True)
    p1 = Point3D(0, 0, 0)
    p2 = Point3D(1, 1, 1)
    p3 = Point3D(1, 2, 3)
    pl3 = Plane(p1, p2, p3)
    pl4 = Plane(p1, normal_vector=(1, 1, 1))
    pl4b = Plane(p1, p2)
    pl5 = Plane(p3, normal_vector=(1, 2, 3))
    pl6 = Plane(Point3D(2, 3, 7), normal_vector=(2, 2, 2))
    pl7 = Plane(Point3D(1, -5, -6), normal_vector=(1, -2, 1))
    pl8 = Plane(p1, normal_vector=(0, 0, 1))
    pl9 = Plane(p1, normal_vector=(0, 12, 0))
    pl10 = Plane(p1, normal_vector=(-2, 0, 0))
    pl11 = Plane(p2, normal_vector=(0, 0, 1))
    l1 = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1))
    l2 = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1))
    l3 = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9))

    assert Plane(p1, p2, p3) != Plane(p1, p3, p2)
    assert Plane(p1, p2, p3).is_coplanar(Plane(p1, p3, p2))
    assert pl3 == Plane(Point3D(0, 0, 0), normal_vector=(1, -2, 1))
    assert pl3 != pl4
    assert pl4 == pl4b
    assert pl5 == Plane(Point3D(1, 2, 3), normal_vector=(1, 2, 3))

    assert pl5.equation(x, y, z) == x + 2*y + 3*z - 14
    assert pl3.equation(x, y, z) == x - 2*y + z

    assert pl3.p1 == p1
    assert pl4.p1 == p1
    assert pl5.p1 == p3

    assert pl4.normal_vector == (1, 1, 1)
    assert pl5.normal_vector == (1, 2, 3)

    assert p1 in pl3
    assert p1 in pl4
    assert p3 in pl5

    assert pl3.projection(Point(0, 0)) == p1
    p = pl3.projection(Point3D(1, 1, 0))
    assert p == Point3D(7/6, 2/3, 1/6)
    assert p in pl3

    l = pl3.projection_line(Line(Point(0, 0), Point(1, 1)))
    assert l == Line3D(Point3D(0, 0, 0), Point3D(7/6, 2/3, 1/6))
    assert l in pl3
    # get a segment that does not intersect the plane which is also
    # parallel to pl3's normal veector
    t = Dummy()
    r = pl3.random_point()
    a = pl3.perpendicular_line(r).arbitrary_point(t)
    s = Segment3D(a.subs(t, 1), a.subs(t, 2))
    assert s.p1 not in pl3 and s.p2 not in pl3
    assert pl3.projection_line(s).equals(r)
    assert pl3.projection_line(Segment(Point(1, 0), Point(1, 1))) == \
               Segment3D(Point3D(5/6, 1/3, -1/6), Point3D(7/6, 2/3, 1/6))
    assert pl6.projection_line(Ray(Point(1, 0), Point(1, 1))) == \
               Ray3D(Point3D(14/3, 11/3, 11/3), Point3D(13/3, 13/3, 10/3))
    assert pl3.perpendicular_line(r.args) == pl3.perpendicular_line(r)

    assert pl3.is_parallel(pl6) is False
    assert pl4.is_parallel(pl6)
    assert pl6.is_parallel(l1) is False

    assert pl3.is_perpendicular(pl6)
    assert pl4.is_perpendicular(pl7)
    assert pl6.is_perpendicular(pl7)
    assert pl6.is_perpendicular(l1) is False

    assert pl6.distance(pl6.arbitrary_point(u, v)) == 0
    assert pl7.distance(pl7.arbitrary_point(u, v)) == 0
    assert pl6.distance(pl6.arbitrary_point(t)) == 0
    assert pl7.distance(pl7.arbitrary_point(t)) == 0
    assert pl6.p1.distance(pl6.arbitrary_point(t)).simplify() == 1
    assert pl7.p1.distance(pl7.arbitrary_point(t)).simplify() == 1
    assert pl3.arbitrary_point(t) == Point3D(-sqrt(30)*sin(t)/30 + \
        2*sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/15 + sqrt(5)*cos(t)/5, sqrt(30)*sin(t)/6)
    assert pl3.arbitrary_point(u, v) == Point3D(2*u - v, u + 2*v, 5*v)

    assert pl7.distance(Point3D(1, 3, 5)) == 5*sqrt(6)/6
    assert pl6.distance(Point3D(0, 0, 0)) == 4*sqrt(3)
    assert pl6.distance(pl6.p1) == 0
    assert pl7.distance(pl6) == 0
    assert pl7.distance(l1) == 0
    assert pl6.distance(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == 0
    pl6.distance(Plane(Point3D(5, 5, 5), normal_vector=(8, 8, 8))) == sqrt(3)

    assert pl6.angle_between(pl3) == pi/2
    assert pl6.angle_between(pl6) == 0
    assert pl6.angle_between(pl4) == 0
    assert pl7.angle_between(Line3D(Point3D(2, 3, 5), Point3D(2, 4, 6))) == \
        -asin(sqrt(3)/6)
    assert pl6.angle_between(Ray3D(Point3D(2, 4, 1), Point3D(6, 5, 3))) == \
        asin(sqrt(7)/3)
    assert pl7.angle_between(Segment3D(Point3D(5, 6, 1), Point3D(1, 2, 4))) == \
        asin(7*sqrt(246)/246)

    assert are_coplanar(l1, l2, l3) is False
    assert are_coplanar(l1) is False
    assert are_coplanar(Point3D(2, 7, 2), Point3D(0, 0, 2),
        Point3D(1, 1, 2), Point3D(1, 2, 2))
    assert are_coplanar(Plane(p1, p2, p3), Plane(p1, p3, p2))
    assert Plane.are_concurrent(pl3, pl4, pl5) is False
    assert Plane.are_concurrent(pl6) is False
    raises(ValueError, lambda: Plane.are_concurrent(Point3D(0, 0, 0)))
    raises(ValueError, lambda: Plane((1, 2, 3), normal_vector=(0, 0, 0)))

    assert pl3.parallel_plane(Point3D(1, 2, 5)) == Plane(Point3D(1, 2, 5), \
                                                      normal_vector=(1, -2, 1))

    # perpendicular_plane
    p = Plane((0, 0, 0), (1, 0, 0))
    # default
    assert p.perpendicular_plane() == Plane(Point3D(0, 0, 0), (0, 1, 0))
    # 1 pt
    assert p.perpendicular_plane(Point3D(1, 0, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 1, 0))
    # pts as tuples
    assert p.perpendicular_plane((1, 0, 1), (1, 1, 1)) == \
        Plane(Point3D(1, 0, 1), (0, 0, -1))

    a, b = Point3D(0, 0, 0), Point3D(0, 1, 0)
    Z = (0, 0, 1)
    p = Plane(a, normal_vector=Z)
    # case 4
    assert p.perpendicular_plane(a, b) == Plane(a, (1, 0, 0))
    n = Point3D(*Z)
    # case 1
    assert p.perpendicular_plane(a, n) == Plane(a, (-1, 0, 0))
    # case 2
    assert Plane(a, normal_vector=b.args).perpendicular_plane(a, a + b) == \
        Plane(Point3D(0, 0, 0), (1, 0, 0))
    # case 1&3
    assert Plane(b, normal_vector=Z).perpendicular_plane(b, b + n) == \
        Plane(Point3D(0, 1, 0), (-1, 0, 0))
    # case 2&3
    assert Plane(b, normal_vector=b.args).perpendicular_plane(n, n + b) == \
        Plane(Point3D(0, 0, 1), (1, 0, 0))

    assert pl6.intersection(pl6) == [pl6]
    assert pl4.intersection(pl4.p1) == [pl4.p1]
    assert pl3.intersection(pl6) == [
        Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6))]
    assert pl3.intersection(Line3D(Point3D(1,2,4), Point3D(4,4,2))) == [
        Point3D(2, 8/3, 10/3)]
    assert pl3.intersection(Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3))
        ) == [Line3D(Point3D(-24, -12, 0), Point3D(-25, -13, -1))]
    assert pl6.intersection(Ray3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
        Point3D(-1, 3, 10)]
    assert pl6.intersection(Segment3D(Point3D(2, 3, 1), Point3D(1, 3, 4))) == [
        Point3D(-1, 3, 10)]
    assert pl7.intersection(Line(Point(2, 3), Point(4, 2))) == [
        Point3D(13/2, 3/4, 0)]
    r = Ray(Point(2, 3), Point(4, 2))
    assert Plane((1,2,0), normal_vector=(0,0,1)).intersection(r) == [
        Ray3D(Point(2, 3), Point(4, 2))]
    assert pl9.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, 0))]
    assert pl10.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(0, 2, 1))]
    assert pl4.intersection(pl8) == [Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
    assert pl11.intersection(pl8) == []
    assert pl9.intersection(pl11) == [Line3D(Point3D(0, 0, 1), Point3D(12, 0, 1))]
    assert pl9.intersection(pl4) == [Line3D(Point3D(0, 0, 0), Point3D(12, 0, -12))]
    assert pl3.random_point() in pl3

    # test geometrical entity using equals
    assert pl4.intersection(pl4.p1)[0].equals(pl4.p1)
    assert pl3.intersection(pl6)[0].equals(Line3D(Point3D(8, 4, 0), Point3D(2, 4, 6)))
    pl8 = Plane((1, 2, 0), normal_vector=(0, 0, 1))
    assert pl8.intersection(Line3D(p1, (1, 12, 0)))[0].equals(Line((0, 0, 0), (0.1, 1.2, 0)))
    assert pl8.intersection(Ray3D(p1, (1, 12, 0)))[0].equals(Ray((0, 0, 0), (1, 12, 0)))
    assert pl8.intersection(Segment3D(p1, (21, 1, 0)))[0].equals(Segment3D(p1, (21, 1, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(0, 0, 112)))[0].equals(pl8)
    assert pl8.intersection(Plane(p1, normal_vector=(0, 12, 0)))[0].equals(
        Line3D(p1, direction_ratio=(112 * pi, 0, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(11, 0, 1)))[0].equals(
        Line3D(p1, direction_ratio=(0, -11, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(1, 0, 11)))[0].equals(
        Line3D(p1, direction_ratio=(0, 11, 0)))
    assert pl8.intersection(Plane(p1, normal_vector=(-1, -1, -11)))[0].equals(
        Line3D(p1, direction_ratio=(1, -1, 0)))
    assert pl3.random_point() in pl3
    assert len(pl8.intersection(Ray3D(Point3D(0, 2, 3), Point3D(1, 0, 3)))) is 0
    # check if two plane are equals
    assert pl6.intersection(pl6)[0].equals(pl6)
    assert pl8.equals(Plane(p1, normal_vector=(0, 12, 0))) is False
    assert pl8.equals(pl8)
    assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12)))
    assert pl8.equals(Plane(p1, normal_vector=(0, 0, -12*sqrt(3))))

    # issue 8570
    l2 = Line3D(Point3D(S(50000004459633)/5000000000000,
                        -S(891926590718643)/1000000000000000,
                        S(231800966893633)/100000000000000),
                Point3D(S(50000004459633)/50000000000000,
                        -S(222981647679771)/250000000000000,
                        S(231800966893633)/100000000000000))

    p2 = Plane(Point3D(S(402775636372767)/100000000000000,
                       -S(97224357654973)/100000000000000,
                       S(216793600814789)/100000000000000),
               (-S('9.00000087501922'), -S('4.81170658872543e-13'),
                S('0.0')))

    assert str([i.n(2) for i in p2.intersection(l2)]) == \
           '[Point3D(4.0, -0.89, 2.3)]'
コード例 #36
0
ファイル: particle.py プロジェクト: mattdyer/particleevents
 def set_random_direction(self):
     self.direction = Ray(self.position,
                          (random.uniform(0, 1) + self.position[0],
                           random.uniform(0, 1) + self.position[1]))
コード例 #37
0
def test_ellipse():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)

    # Test creation with three points
    cen, rad = Point(3 * half, 2), 5 * half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    raises(GeometryError, "Circle(Point(0,0), Point(1,1), Point(2,2))")

    raises(ValueError, "Ellipse(None, None, None, 1)")
    raises(GeometryError, "Circle(Point(0,0))")

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi / 2
    assert e3.area == pi * (y1**2)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2 * pi * y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2 * pi
    assert c1.minor == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) == False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) == True
    assert e1.encloses(Line(p1, p2)) == False
    assert e1.encloses(Ray(p1, p2)) == False
    assert e1.encloses(e1) == False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) == True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) == True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) == False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) == False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == \
        4*M*C.Integral(sqrt((1 - _x**2*(M**2 - m**2)/M**2)/(1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(p1_2, p2 + Point(half, 1))]
    assert e2.tangent_lines(p1_3) == [Line(p1_3, p2 + Point(half, 1))]
    assert c1.tangent_lines(p1_1) == [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) == False
    assert c1.is_tangent(e1) == False
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) == True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, -1), Point(2,
                                                                  0))) == True
    assert c1.is_tangent(Polygon(Point(1, 1), Point(1, 0), Point(2,
                                                                 0))) == False


    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
    [Line(Point(0, 0), Point(S(77)/25, S(132)/25)),
     Line(Point(0, 0), Point(S(33)/5, S(22)/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
    [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
    [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
    [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))),]

    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major * (1 - ecc)
    assert e4.apoapsis == major * (1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [
        Point(sqrt(2) / 2,
              sqrt(2) / 2),
        Point(-sqrt(2) / 2, -sqrt(2) / 2)
    ]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) in [[(1, 0), (0, 1)], [(0, 1), (1, 0)]]
    assert intersection(c1, c3) == [(sqrt(2) / 2, sqrt(2) / 2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(
        Point(5, 0),
        1,
        1,
    )) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1

    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v / 2, v / 2) in points
    assert Point(v / 2, -v / 2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3,
                                    0)) == [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = S(53) / 17
    c = 2 * sqrt(3991) / 17
    ans = [Point(a - c / 8, a / 2 + c), Point(a + c / 8, a / 2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    ans = list(reversed(ans))
    assert [p.subs({x: 2, y: 1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
       [Line(Point(10, 0), Point(1, 0)),
        Line(Point(10, 0), Point(S(14)/5, S(18)/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(e.center +
                            Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True
コード例 #38
0
def test_ellipse_geom():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p4 = Point(0, 1)

    e1 = Ellipse(p1, 1, 1)
    e2 = Ellipse(p2, half, 1)
    e3 = Ellipse(p1, y1, y1)
    c1 = Circle(p1, 1)
    c2 = Circle(p2, 1)
    c3 = Circle(Point(sqrt(2), sqrt(2)), 1)

    # Test creation with three points
    cen, rad = Point(3*half, 2), 5*half
    assert Circle(Point(0, 0), Point(3, 0), Point(0, 4)) == Circle(cen, rad)
    raises(
        GeometryError, lambda: Circle(Point(0, 0), Point(1, 1), Point(2, 2)))

    raises(ValueError, lambda: Ellipse(None, None, None, 1))
    raises(GeometryError, lambda: Circle(Point(0, 0)))

    # Basic Stuff
    assert Ellipse(None, 1, 1).center == Point(0, 0)
    assert e1 == c1
    assert e1 != e2
    assert p4 in e1
    assert p2 not in e2
    assert e1.area == pi
    assert e2.area == pi/2
    assert e3.area == pi*y1*abs(y1)
    assert c1.area == e1.area
    assert c1.circumference == e1.circumference
    assert e3.circumference == 2*pi*y1
    assert e1.plot_interval() == e2.plot_interval() == [t, -pi, pi]
    assert e1.plot_interval(x) == e2.plot_interval(x) == [x, -pi, pi]
    assert Ellipse(None, 1, None, 1).circumference == 2*pi
    assert c1.minor == 1
    assert c1.major == 1
    assert c1.hradius == 1
    assert c1.vradius == 1

    # Private Functions
    assert hash(c1) == hash(Circle(Point(1, 0), Point(0, 1), Point(0, -1)))
    assert c1 in e1
    assert (Line(p1, p2) in e1) is False
    assert e1.__cmp__(e1) == 0
    assert e1.__cmp__(Point(0, 0)) > 0

    # Encloses
    assert e1.encloses(Segment(Point(-0.5, -0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(Line(p1, p2)) is False
    assert e1.encloses(Ray(p1, p2)) is False
    assert e1.encloses(e1) is False
    assert e1.encloses(
        Polygon(Point(-0.5, -0.5), Point(-0.5, 0.5), Point(0.5, 0.5))) is True
    assert e1.encloses(RegularPolygon(p1, 0.5, 3)) is True
    assert e1.encloses(RegularPolygon(p1, 5, 3)) is False
    assert e1.encloses(RegularPolygon(p2, 5, 3)) is False

    # with generic symbols, the hradius is assumed to contain the major radius
    M = Symbol('M')
    m = Symbol('m')
    c = Ellipse(p1, M, m).circumference
    _x = c.atoms(Dummy).pop()
    assert c == 4*M*Integral(
        sqrt((1 - _x**2*(M**2 - m**2)/M**2)/(1 - _x**2)), (_x, 0, 1))

    assert e2.arbitrary_point() in e2

    # Foci
    f1, f2 = Point(sqrt(12), 0), Point(-sqrt(12), 0)
    ef = Ellipse(Point(0, 0), 4, 2)
    assert ef.foci in [(f1, f2), (f2, f1)]

    # Tangents
    v = sqrt(2) / 2
    p1_1 = Point(v, v)
    p1_2 = p2 + Point(half, 0)
    p1_3 = p2 + Point(0, 1)
    assert e1.tangent_lines(p4) == c1.tangent_lines(p4)
    assert e2.tangent_lines(p1_2) == [Line(Point(3/2, 1), Point(3/2, 1/2))]
    assert e2.tangent_lines(p1_3) == [Line(Point(1, 2), Point(5/4, 2))]
    assert c1.tangent_lines(p1_1) != [Line(p1_1, Point(0, sqrt(2)))]
    assert c1.tangent_lines(p1) == []
    assert e2.is_tangent(Line(p1_2, p2 + Point(half, 1)))
    assert e2.is_tangent(Line(p1_3, p2 + Point(half, 1)))
    assert c1.is_tangent(Line(p1_1, Point(0, sqrt(2))))
    assert e1.is_tangent(Line(Point(0, 0), Point(1, 1))) is False
    assert c1.is_tangent(e1) is False
    assert c1.is_tangent(Ellipse(Point(2, 0), 1, 1)) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, -1), Point(2, 0))) is True
    assert c1.is_tangent(
        Polygon(Point(1, 1), Point(1, 0), Point(2, 0))) is False
    assert Circle(Point(5, 5), 3).is_tangent(Circle(Point(0, 5), 1)) is False

    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(77/25, 132/25)),
     Line(Point(0, 0), Point(33/5, 22/5))]
    assert Ellipse(Point(5, 5), 2, 1).tangent_lines(Point(3, 4)) == \
        [Line(Point(3, 4), Point(4, 4)), Line(Point(3, 4), Point(3, 5))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(3, 3)) == \
        [Line(Point(3, 3), Point(4, 3)), Line(Point(3, 3), Point(3, 4))]
    assert Circle(Point(5, 5), 2).tangent_lines(Point(5 - 2*sqrt(2), 5)) == \
        [Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 - sqrt(2))),
     Line(Point(5 - 2*sqrt(2), 5), Point(5 - sqrt(2), 5 + sqrt(2))), ]

    e = Ellipse(Point(0, 0), 2, 1)
    assert e.normal_lines(Point(0, 0)) == \
        [Line(Point(0, 0), Point(0, 1)), Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines(Point(1, 0)) == \
        [Line(Point(0, 0), Point(1, 0))]
    assert e.normal_lines((0, 1)) == \
        [Line(Point(0, 0), Point(0, 1))]
    assert e.normal_lines(Point(1, 1), 2) == [
        Line(Point(-51/26, -1/5), Point(-25/26, 17/83)),
        Line(Point(28/29, -7/8), Point(57/29, -9/2))]
    # test the failure of Poly.intervals and checks a point on the boundary
    p = Point(sqrt(3), S.Half)
    assert p in e
    assert e.normal_lines(p, 2) == [
        Line(Point(-341/171, -1/13), Point(-170/171, 5/64)),
        Line(Point(26/15, -1/2), Point(41/15, -43/26))]
    # be sure to use the slope that isn't undefined on boundary
    e = Ellipse((0, 0), 2, 2*sqrt(3)/3)
    assert e.normal_lines((1, 1), 2) == [
        Line(Point(-64/33, -20/71), Point(-31/33, 2/13)),
        Line(Point(1, -1), Point(2, -4))]
    # general ellipse fails except under certain conditions
    e = Ellipse((0, 0), x, 1)
    assert e.normal_lines((x + 1, 0)) == [Line(Point(0, 0), Point(1, 0))]
    raises(NotImplementedError, lambda: e.normal_lines((x + 1, 1)))


    # Properties
    major = 3
    minor = 1
    e4 = Ellipse(p2, minor, major)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)
    # independent of orientation
    e4 = Ellipse(p2, major, minor)
    assert e4.focus_distance == sqrt(major**2 - minor**2)
    ecc = e4.focus_distance / major
    assert e4.eccentricity == ecc
    assert e4.periapsis == major*(1 - ecc)
    assert e4.apoapsis == major*(1 + ecc)

    # Intersection
    l1 = Line(Point(1, -5), Point(1, 5))
    l2 = Line(Point(-5, -1), Point(5, -1))
    l3 = Line(Point(-1, -1), Point(1, 1))
    l4 = Line(Point(-10, 0), Point(0, 10))
    pts_c1_l3 = [Point(sqrt(2)/2, sqrt(2)/2), Point(-sqrt(2)/2, -sqrt(2)/2)]

    assert intersection(e2, l4) == []
    assert intersection(c1, Point(1, 0)) == [Point(1, 0)]
    assert intersection(c1, l1) == [Point(1, 0)]
    assert intersection(c1, l2) == [Point(0, -1)]
    assert intersection(c1, l3) in [pts_c1_l3, [pts_c1_l3[1], pts_c1_l3[0]]]
    assert intersection(c1, c2) == [Point(0, 1), Point(1, 0)]
    assert intersection(c1, c3) == [Point(sqrt(2)/2, sqrt(2)/2)]
    assert e1.intersection(l1) == [Point(1, 0)]
    assert e2.intersection(l4) == []
    assert e1.intersection(Circle(Point(0, 2), 1)) == [Point(0, 1)]
    assert e1.intersection(Circle(Point(5, 0), 1)) == []
    assert e1.intersection(Ellipse(Point(2, 0), 1, 1)) == [Point(1, 0)]
    assert e1.intersection(Ellipse(Point(5, 0), 1, 1,)) == []
    assert e1.intersection(Point(2, 0)) == []
    assert e1.intersection(e1) == e1

    # some special case intersections
    csmall = Circle(p1, 3)
    cbig = Circle(p1, 5)
    cout = Circle(Point(5, 5), 1)
    # one circle inside of another
    assert csmall.intersection(cbig) == []
    # separate circles
    assert csmall.intersection(cout) == []
    # coincident circles
    assert csmall.intersection(csmall) == csmall

    v = sqrt(2)
    t1 = Triangle(Point(0, v), Point(0, -v), Point(v, 0))
    points = intersection(t1, c1)
    assert len(points) == 4
    assert Point(0, 1) in points
    assert Point(0, -1) in points
    assert Point(v/2, v/2) in points
    assert Point(v/2, -v/2) in points

    circ = Circle(Point(0, 0), 5)
    elip = Ellipse(Point(0, 0), 5, 20)
    assert intersection(circ, elip) in \
        [[Point(5, 0), Point(-5, 0)], [Point(-5, 0), Point(5, 0)]]
    assert elip.tangent_lines(Point(0, 0)) == []
    elip = Ellipse(Point(0, 0), 3, 2)
    assert elip.tangent_lines(Point(3, 0)) == \
        [Line(Point(3, 0), Point(3, -12))]

    e1 = Ellipse(Point(0, 0), 5, 10)
    e2 = Ellipse(Point(2, 1), 4, 8)
    a = 53/17
    c = 2*sqrt(3991)/17
    ans = [Point(a - c/8, a/2 + c), Point(a + c/8, a/2 - c)]
    assert e1.intersection(e2) == ans
    e2 = Ellipse(Point(x, y), 4, 8)
    c = sqrt(3991)
    ans = [Point(-c/68 + a, 2*c/17 + a/2), Point(c/68 + a, -2*c/17 + a/2)]
    assert [p.subs({x: 2, y:1}) for p in e1.intersection(e2)] == ans

    # Combinations of above
    assert e3.is_tangent(e3.tangent_lines(p1 + Point(y1, 0))[0])

    e = Ellipse((1, 2), 3, 2)
    assert e.tangent_lines(Point(10, 0)) == \
        [Line(Point(10, 0), Point(1, 0)),
        Line(Point(10, 0), Point(14/5, 18/5))]

    # encloses_point
    e = Ellipse((0, 0), 1, 2)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(
        e.center + Point(e.hradius + Rational(1, 10), 0)) is False
    e = Ellipse((0, 0), 2, 1)
    assert e.encloses_point(e.center)
    assert e.encloses_point(e.center + Point(0, e.vradius - Rational(1, 10)))
    assert e.encloses_point(e.center + Point(e.hradius - Rational(1, 10), 0))
    assert e.encloses_point(e.center + Point(e.hradius, 0)) is False
    assert e.encloses_point(
        e.center + Point(e.hradius + Rational(1, 10), 0)) is False
    assert c1.encloses_point(Point(1, 0)) is False
    assert c1.encloses_point(Point(0.3, 0.4)) is True

    assert e.scale(2, 3) == Ellipse((0, 0), 4, 3)
    assert e.scale(3, 6) == Ellipse((0, 0), 6, 6)
    assert e.rotate(pi) == e
    assert e.rotate(pi, (1, 2)) == Ellipse(Point(2, 4), 2, 1)
    raises(NotImplementedError, lambda: e.rotate(pi/3))

    # transformations
    c = Circle((1, 1), 2)
    assert c.scale(-1) == Circle((-1, 1), 2)
    assert c.scale(y=-1) == Circle((1, -1), 2)
    assert c.scale(2) == Ellipse((2, 1), 4, 2)
コード例 #39
0
ファイル: test_geometry.py プロジェクト: flacjacket/sympy
def test_line():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)
    p5 = Point(x1, 1 + x1)
    p6 = Point(1, 0)
    p7 = Point(0, 1)
    p8 = Point(2, 0)
    p9 = Point(2, 1)

    l1 = Line(p1, p2)
    l2 = Line(p3, p4)
    l3 = Line(p3, p5)
    l4 = Line(p1, p6)
    l5 = Line(p1, p7)
    l6 = Line(p8, p9)
    l7 = Line(p2, p9)
    raises(ValueError, lambda: Line(Point(0, 0), Point(0, 0)))

    # Basic stuff
    assert Line((1, 1), slope=1) == Line((1, 1), (2, 2))
    assert Line((1, 1), slope=oo) == Line((1, 1), (1, 2))
    assert Line((1, 1), slope=-oo) == Line((1, 1), (1, 2))
    raises(ValueError, lambda: Line((1, 1), 1))
    assert Line(p1, p2) == Line(p2, p1)
    assert l1 == l2
    assert l1 != l3
    assert l1.slope == 1
    assert l1.length == oo
    assert l3.slope == oo
    assert l4.slope == 0
    assert l4.coefficients == (0, 1, 0)
    assert l4.equation(x=x, y=y) == y
    assert l5.slope == oo
    assert l5.coefficients == (1, 0, 0)
    assert l5.equation() == x
    assert l6.equation() == x - 2
    assert l7.equation() == y - 1
    assert p1 in l1  # is p1 on the line l1?
    assert p1 not in l3
    assert Line((-x, x), (-x + 1, x - 1)).coefficients == (1, 1, 0)

    assert simplify(l1.equation()) in (x - y, y - x)
    assert simplify(l3.equation()) in (x - x1, x1 - x)

    assert Line(p1, p2).scale(2, 1) == Line(p1, p9)

    assert l2.arbitrary_point() in l2
    for ind in xrange(0, 5):
        assert l3.random_point() in l3

    # Orthogonality
    p1_1 = Point(-x1, x1)
    l1_1 = Line(p1, p1_1)
    assert l1.perpendicular_line(p1) == l1_1
    assert Line.is_perpendicular(l1, l1_1)
    assert Line.is_perpendicular(l1, l2) == False
    p = l1.random_point()
    assert l1.perpendicular_segment(p) == p

    # Parallelity
    p2_1 = Point(-2 * x1, 0)
    l2_1 = Line(p3, p5)
    assert l2.parallel_line(p1_1) == Line(p2_1, p1_1)
    assert l2_1.parallel_line(p1) == Line(p1, Point(0, 2))
    assert Line.is_parallel(l1, l2)
    assert Line.is_parallel(l2, l3) == False
    assert Line.is_parallel(l2, l2.parallel_line(p1_1))
    assert Line.is_parallel(l2_1, l2_1.parallel_line(p1))

    # Intersection
    assert intersection(l1, p1) == [p1]
    assert intersection(l1, p5) == []
    assert intersection(l1, l2) in [[l1], [l2]]
    assert intersection(l1, l1.parallel_line(p5)) == []

    # Concurrency
    l3_1 = Line(Point(5, x1), Point(-Rational(3, 5), x1))
    assert Line.is_concurrent(l1) == False
    assert Line.is_concurrent(l1, l3)
    assert Line.is_concurrent(l1, l3, l3_1)
    assert Line.is_concurrent(l1, l1_1, l3) == False

    # Projection
    assert l2.projection(p4) == p4
    assert l1.projection(p1_1) == p1
    assert l3.projection(p2) == Point(x1, 1)
    raises(GeometryError, lambda: Line(Point(0, 0), Point(1, 0)).projection(Circle(Point(0, 0), 1)))

    # Finding angles
    l1_1 = Line(p1, Point(5, 0))
    assert feq(Line.angle_between(l1, l1_1).evalf(), pi.evalf() / 4)

    # Testing Rays and Segments (very similar to Lines)
    assert Ray((1, 1), angle=pi / 4) == Ray((1, 1), (2, 2))
    assert Ray((1, 1), angle=pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=-pi / 2) == Ray((1, 1), (1, 0))
    assert Ray((1, 1), angle=-3 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=5.0 * pi / 2) == Ray((1, 1), (1, 2))
    assert Ray((1, 1), angle=pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=3.0 * pi) == Ray((1, 1), (0, 1))
    assert Ray((1, 1), angle=4.0 * pi) == Ray((1, 1), (2, 1))
    assert Ray((1, 1), angle=0) == Ray((1, 1), (2, 1))
    # XXX don't know why this fails without str
    assert str(Ray((1, 1), angle=4.2 * pi)) == str(Ray(Point(1, 1), Point(2, 1 + C.tan(0.2 * pi))))
    assert Ray((1, 1), angle=5) == Ray((1, 1), (2, 1 + C.tan(5)))
    raises(ValueError, lambda: Ray((1, 1), 1))

    r1 = Ray(p1, Point(-1, 5))
    r2 = Ray(p1, Point(-1, 1))
    r3 = Ray(p3, p5)
    r4 = Ray(p1, p2)
    r5 = Ray(p2, p1)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))
    assert l1.projection(r1) == Ray(p1, p2)
    assert l1.projection(r2) == p1
    assert r3 != r1
    t = Symbol("t", real=True)
    assert Ray((1, 1), angle=pi / 4).arbitrary_point() == Point(1 / (1 - t), 1 / (1 - t))

    s1 = Segment(p1, p2)
    s2 = Segment(p1, p1_1)
    assert s1.midpoint == Point(Rational(1, 2), Rational(1, 2))
    assert s2.length == sqrt(2 * (x1 ** 2))
    assert s1.perpendicular_bisector() == Line(Point(0, 1), Point(1, 0))
    assert Segment((1, 1), (2, 3)).arbitrary_point() == Point(1 + t, 1 + 2 * t)

    # intersections
    assert s1.intersection(Line(p6, p9)) == []
    s3 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    assert s1.intersection(s3) == [s1]
    assert s3.intersection(s1) == [s3]
    assert r4.intersection(s3) == [s3]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    s3 = Segment(Point(1, 1), Point(2, 2))
    assert s1.intersection(s3) == [Point(1, 1)]
    s3 = Segment(Point(0.5, 0.5), Point(1.5, 1.5))
    assert s1.intersection(s3) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(r5) == [s1]
    assert r5.intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]

    # Segment contains
    a, b = symbols("a,b")
    s = Segment((0, a), (0, b))
    assert Point(0, (a + b) / 2) in s
    s = Segment((a, 0), (b, 0))
    assert Point((a + b) / 2, 0) in s

    raises(Undecidable, lambda: Point(2 * a, 0) in s)

    # Testing distance from a Segment to an object
    s1 = Segment(Point(0, 0), Point(1, 1))
    s2 = Segment(Point(half, half), Point(1, 0))
    pt1 = Point(0, 0)
    pt2 = Point(Rational(3) / 2, Rational(3) / 2)
    assert s1.distance(pt1) == 0
    assert s2.distance(pt1) == 2 ** (half) / 2
    assert s2.distance(pt2) == 2 ** (half)

    # Special cases of projection and intersection
    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(2, 2), Point(0, 0))
    r3 = Ray(Point(1, 1), Point(-1, -1))
    r4 = Ray(Point(0, 4), Point(-1, -5))
    r5 = Ray(Point(2, 2), Point(3, 3))
    assert intersection(r1, r2) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, r3) == [Point(1, 1)]
    assert r1.projection(r3) == Point(1, 1)
    assert r1.projection(r4) == Segment(Point(1, 1), Point(2, 2))

    r5 = Ray(Point(0, 0), Point(0, 1))
    r6 = Ray(Point(0, 0), Point(0, 2))
    assert r5 in r6
    assert r6 in r5

    s1 = Segment(Point(0, 0), Point(2, 2))
    s2 = Segment(Point(-1, 5), Point(-5, -10))
    s3 = Segment(Point(0, 4), Point(-2, 2))
    assert intersection(r1, s1) == [Segment(Point(1, 1), Point(2, 2))]
    assert r1.projection(s2) == Segment(Point(1, 1), Point(2, 2))
    assert s3.projection(r1) == Segment(Point(0, 4), Point(-1, 3))

    l1 = Line(Point(0, 0), Point(3, 4))
    r1 = Ray(Point(0, 0), Point(3, 4))
    s1 = Segment(Point(0, 0), Point(3, 4))
    assert intersection(l1, l1) == [l1]
    assert intersection(l1, r1) == [r1]
    assert intersection(l1, s1) == [s1]
    assert intersection(r1, l1) == [r1]
    assert intersection(s1, l1) == [s1]

    entity1 = Segment(Point(-10, 10), Point(10, 10))
    entity2 = Segment(Point(-5, -5), Point(-5, 5))
    assert intersection(entity1, entity2) == []

    r1 = Ray(p1, Point(0, 1))
    r2 = Ray(Point(0, 1), p1)
    r3 = Ray(p1, p2)
    r4 = Ray(p2, p1)
    s1 = Segment(p1, Point(0, 1))
    assert Line(r1.source, r1.random_point()).slope == r1.slope
    assert Line(r2.source, r2.random_point()).slope == r2.slope
    assert Segment(Point(0, -1), s1.random_point()).slope == s1.slope
    p_r3 = r3.random_point()
    p_r4 = r4.random_point()
    assert p_r3.x >= p1.x and p_r3.y >= p1.y
    assert p_r4.x <= p2.x and p_r4.y <= p2.y
    p10 = Point(2000, 2000)
    s1 = Segment(p1, p10)
    p_s1 = s1.random_point()
    assert p1.x <= p_s1.x and p_s1.x <= p10.x and p1.y <= p_s1.y and p_s1.y <= p10.y
    s2 = Segment(p10, p1)

    assert hash(s1) == hash(s2)
    p11 = p10.scale(2, 2)
    assert s1.is_similar(Segment(p10, p11))
    assert s1.is_similar(r1) == False
    assert (r1 in s1) == False
    assert Segment(p1, p2) in s1
    assert s1.plot_interval() == [t, 0, 1]
    assert s1 in Line(p1, p10)
    assert Line(p1, p10) == Line(p10, p1)
    assert Line(p1, p10) != p1
    assert Line(p1, p10).plot_interval() == [t, -5, 5]
    assert Ray((0, 0), angle=pi / 4).plot_interval() == [t, 0, 5 * sqrt(2) / (1 + 5 * sqrt(2))]
コード例 #40
0
ファイル: test_line.py プロジェクト: bjodah/sympy
def test_intersection_2d():
    p1 = Point(0, 0)
    p2 = Point(1, 1)
    p3 = Point(x1, x1)
    p4 = Point(y1, y1)

    l1 = Line(p1, p2)
    l3 = Line(Point(0, 0), Point(3, 4))

    r1 = Ray(Point(1, 1), Point(2, 2))
    r2 = Ray(Point(0, 0), Point(3, 4))
    r4 = Ray(p1, p2)
    r6 = Ray(Point(0, 1), Point(1, 2))
    r7 = Ray(Point(0.5, 0.5), Point(1, 1))

    s1 = Segment(p1, p2)
    s2 = Segment(Point(0.25, 0.25), Point(0.5, 0.5))
    s3 = Segment(Point(0, 0), Point(3, 4))

    assert intersection(l1, p1) == [p1]
    assert intersection(l1, Point(x1, 1 + x1)) == []
    assert intersection(l1, Line(p3, p4)) in [[l1], [Line(p3, p4)]]
    assert intersection(l1, l1.parallel_line(Point(x1, 1 + x1))) == []
    assert intersection(l3, l3) == [l3]
    assert intersection(l3, r2) == [r2]
    assert intersection(l3, s3) == [s3]
    assert intersection(s3, l3) == [s3]
    assert intersection(Segment(Point(-10, 10), Point(10, 10)), Segment(Point(-5, -5), Point(-5, 5))) == []
    assert intersection(r2, l3) == [r2]
    assert intersection(r1, Ray(Point(2, 2), Point(0, 0))) == [Segment(Point(1, 1), Point(2, 2))]
    assert intersection(r1, Ray(Point(1, 1), Point(-1, -1))) == [Point(1, 1)]
    assert intersection(r1, Segment(Point(0, 0), Point(2, 2))) == [Segment(Point(1, 1), Point(2, 2))]

    assert r4.intersection(s2) == [s2]
    assert r4.intersection(Segment(Point(2, 3), Point(3, 4))) == []
    assert r4.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert r4.intersection(Ray(p2, p1)) == [s1]
    assert Ray(p2, p1).intersection(r6) == []
    assert r4.intersection(r7) == r7.intersection(r4) == [r7]
    assert Ray3D((0, 0), (3, 0)).intersection(Ray3D((1, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray3D((1, 0), (3, 0)).intersection(Ray3D((0, 0), (3, 0))) == [Ray3D((1, 0), (3, 0))]
    assert Ray(Point(0, 0), Point(0, 4)).intersection(Ray(Point(0, 1), Point(0, -1))) == \
           [Segment(Point(0, 0), Point(0, 1))]

    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((1, 0), (2, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((1, 0), (2, 0)).intersection(
        Segment3D((0, 0), (3, 0))) == [Segment3D((1, 0), (2, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((3, 0), (4, 0))) == [Point3D((3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((2, 0), (5, 0))) == [Segment3D((2, 0), (3, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (1, 0))) == [Segment3D((0, 0), (1, 0))]
    assert Segment3D((0, 0), (3, 0)).intersection(
        Segment3D((-2, 0), (0, 0))) == [Point3D(0, 0)]
    assert s1.intersection(Segment(Point(1, 1), Point(2, 2))) == [Point(1, 1)]
    assert s1.intersection(Segment(Point(0.5, 0.5), Point(1.5, 1.5))) == [Segment(Point(0.5, 0.5), p2)]
    assert s1.intersection(Segment(Point(4, 4), Point(5, 5))) == []
    assert s1.intersection(Segment(Point(-1, -1), p1)) == [p1]
    assert s1.intersection(Segment(Point(-1, -1), Point(0.5, 0.5))) == [Segment(p1, Point(0.5, 0.5))]
    assert s1.intersection(Line(Point(1, 0), Point(2, 1))) == []
    assert s1.intersection(s2) == [s2]
    assert s2.intersection(s1) == [s2]

    assert asa(120, 8, 52) == \
           Triangle(
               Point(0, 0),
               Point(8, 0),
               Point(-4 * cos(19 * pi / 90) / sin(2 * pi / 45),
                     4 * sqrt(3) * cos(19 * pi / 90) / sin(2 * pi / 45)))
    assert Line((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
    assert Line((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (1, 1)).intersection(Ray((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (1, 1)).intersection(Segment((1, 0), (1, 2))) == [Point(1, 1)]
    assert Ray((0, 0), (10, 10)).contains(Segment((1, 1), (2, 2))) is True
    assert Segment((1, 1), (2, 2)) in Line((0, 0), (10, 10))

    # 16628 - this should be fast
    p0 = Point2D(S(249)/5, S(497999)/10000)
    p1 = Point2D((-58977084786*sqrt(405639795226) + 2030690077184193 +
        20112207807*sqrt(630547164901) + 99600*sqrt(255775022850776494562626))
        /(2000*sqrt(255775022850776494562626) + 1991998000*sqrt(405639795226)
        + 1991998000*sqrt(630547164901) + 1622561172902000),
        (-498000*sqrt(255775022850776494562626) - 995999*sqrt(630547164901) +
        90004251917891999 +
        496005510002*sqrt(405639795226))/(10000*sqrt(255775022850776494562626)
        + 9959990000*sqrt(405639795226) + 9959990000*sqrt(630547164901) +
        8112805864510000))
    p2 = Point2D(S(497)/10, -S(497)/10)
    p3 = Point2D(-S(497)/10, -S(497)/10)
    l = Line(p0, p1)
    s = Segment(p2, p3)
    n = (-52673223862*sqrt(405639795226) - 15764156209307469 -
        9803028531*sqrt(630547164901) +
        33200*sqrt(255775022850776494562626))
    d = sqrt(405639795226) + 315274080450 + 498000*sqrt(
        630547164901) + sqrt(255775022850776494562626)
    assert intersection(l, s) == [
        Point2D(n/d*S(3)/2000, -S(497)/10)]