コード例 #1
0
def test_issue_14700():
    A, B, C, D, E, F, G, H = symbols('A B C D E F G H')
    q = ((B & D & H & ~F) | (B & H & ~C & ~D) | (B & H & ~C & ~F) |
         (B & H & ~D & ~G) | (B & H & ~F & ~G) | (C & G & ~B & ~D) |
         (C & G & ~D & ~H) | (C & G & ~F & ~H) | (D & F & H & ~B) |
         (D & F & ~G & ~H) | (B & D & F & ~C & ~H) | (D & E & F & ~B & ~C) |
         (D & F & ~A & ~B & ~C) | (D & F & ~A & ~C & ~H) |
         (A & B & D & F & ~E & ~H))
    soldnf = ((B & D & H & ~F) | (D & F & H & ~B) | (B & H & ~C & ~D) |
              (B & H & ~D & ~G) | (C & G & ~B & ~D) | (C & G & ~D & ~H) |
              (C & G & ~F & ~H) | (D & F & ~G & ~H) | (D & E & F & ~C & ~H) |
              (D & F & ~A & ~C & ~H) | (A & B & D & F & ~E & ~H))
    solcnf = ((B | C | D) & (B | D | G) & (C | D | H) & (C | F | H) &
              (D | G | H) & (F | G | H) & (B | F | ~D | ~H) &
              (~B | ~D | ~F | ~H) & (D | ~B | ~C | ~G | ~H) &
              (A | H | ~C | ~D | ~F | ~G) & (H | ~C | ~D | ~E | ~F | ~G) &
              (B | E | H | ~A | ~D | ~F | ~G))
    assert simplify_logic(q, "dnf") == soldnf
    assert simplify_logic(q, "cnf") == solcnf

    minterms = [[0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1],
                [0, 0, 1, 1], [1, 0, 1, 1]]
    dontcares = [[1, 0, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1]]
    assert SOPform([w, x, y, z], minterms) == (x & ~w) | (y & z & ~x)
    # Should not be more complicated with don't cares
    assert SOPform([w, x, y, z], minterms, dontcares) == \
        (x & ~w) | (y & z & ~x)
コード例 #2
0
ファイル: test_boolalg.py プロジェクト: asmeurer/sympy
def test_issue_14700():
    A, B, C, D, E, F, G, H = symbols('A B C D E F G H')
    q = ((B & D & H & ~F) | (B & H & ~C & ~D) | (B & H & ~C & ~F) |
         (B & H & ~D & ~G) | (B & H & ~F & ~G) | (C & G & ~B & ~D) |
         (C & G & ~D & ~H) | (C & G & ~F & ~H) | (D & F & H & ~B) |
         (D & F & ~G & ~H) | (B & D & F & ~C & ~H) | (D & E & F & ~B & ~C) |
         (D & F & ~A & ~B & ~C) | (D & F & ~A & ~C & ~H) |
         (A & B & D & F & ~E & ~H))
    soldnf = ((B & D & H & ~F) | (D & F & H & ~B) | (B & H & ~C & ~D) |
              (B & H & ~D & ~G) | (C & G & ~B & ~D) | (C & G & ~D & ~H) |
              (C & G & ~F & ~H) | (D & F & ~G & ~H) | (D & E & F & ~C & ~H) |
              (D & F & ~A & ~C & ~H) | (A & B & D & F & ~E & ~H))
    solcnf = ((B | C | D) & (B | D | G) & (C | D | H) & (C | F | H) &
              (D | G | H) & (F | G | H) & (B | F | ~D | ~H) &
              (~B | ~D | ~F | ~H) & (D | ~B | ~C | ~G | ~H) &
              (A | H | ~C | ~D | ~F | ~G) & (H | ~C | ~D | ~E | ~F | ~G) &
              (B | E | H | ~A | ~D | ~F | ~G))
    assert simplify_logic(q, "dnf") == soldnf
    assert simplify_logic(q, "cnf") == solcnf

    minterms = [[0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1],
                [0, 0, 1, 1], [1, 0, 1, 1]]
    dontcares = [[1, 0, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1]]
    assert SOPform([w, x, y, z], minterms) == (x & ~w) | (y & z & ~x)
    # Should not be more complicated with don't cares
    assert SOPform([w, x, y, z], minterms, dontcares) == \
        (x & ~w) | (y & z & ~x)
コード例 #3
0
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    from sympy.abc import w, x, y, z
    assert SOPform('xyz', set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform('xyz', set2)) == And(Or(Not(x), Not(z)), Or(x, z))
    assert POSform('xyz', set1 + set2) is True
    assert SOPform('xyz', set1 + set2) is True

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
        [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (
        SOPform('wxyz', minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform('wxyz', minterms, dontcares) == And(Or(Not(w), y), z)

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic('A & (B | C)') == ans
    assert simplify_logic('(A & B) | (A & C)') == ans

    # check input
    ans = SOPform('xy', [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform(['x', 'y'], [[1, 0]]) == ans
コード例 #4
0
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    from sympy.abc import w, x, y, z
    assert SOPform('xyz', set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform('xyz', set2)) == Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform('xyz', set1 + set2) is true
    assert SOPform('xyz', set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
        [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (
        SOPform('wxyz', minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform('wxyz', minterms, dontcares) == And(Or(Not(w), y), z)

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic('A & (B | C)') == ans
    assert simplify_logic('(A & B) | (A & C)') == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
           Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
           == And(Equality(A, 3), Or(B, C))
    e = And(A, x**2 - x)
    assert simplify_logic(e) == And(A, x*(x - 1))
    assert simplify_logic(e, deep=False) == e

    # check input
    ans = SOPform('xy', [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform(['x', 'y'], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform('x', [[1]], [[1]]))
    assert SOPform('x', [[1]], [[0]]) is true
    assert SOPform('x', [[0]], [[1]]) is true
    assert SOPform('x', [], []) is false

    raises(ValueError, lambda: POSform('x', [[1]], [[1]]))
    assert POSform('x', [[1]], [[0]]) is true
    assert POSform('x', [[0]], [[1]]) is true
    assert POSform('x', [], []) is false

    # check working of simplify
    assert simplify('(A & B) | (A & C)') == sympify('And(A, Or(B, C))')
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
コード例 #5
0
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform([x, y, z], set2)) == Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform([x, y, z], set1 + set2) is true
    assert SOPform([x, y, z], set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
        [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic(A & (B | C)) == ans
    assert simplify_logic((A & B) | (A & C)) == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
           Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) is S.false
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
           == And(Equality(A, 3), Or(B, C))
    b = (~x & ~y & ~z) | ( ~x & ~y & z)
    e = And(A, b)
    assert simplify_logic(e) == A & ~x & ~y

    # check input
    ans = SOPform([x, y], [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform([x, y], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
    assert SOPform([x], [[1]], [[0]]) is true
    assert SOPform([x], [[0]], [[1]]) is true
    assert SOPform([x], [], []) is false

    raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
    assert POSform([x], [[1]], [[0]]) is true
    assert POSform([x], [[0]], [[1]]) is true
    assert POSform([x], [], []) is false

    # check working of simplify
    assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
コード例 #6
0
ファイル: test_boolalg.py プロジェクト: sunny94/sympy
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    from sympy.abc import w, x, y, z
    assert SOPform('xyz', set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform('xyz', set2)) == Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform('xyz', set1 + set2) is true
    assert SOPform('xyz', set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
        [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (
        SOPform('wxyz', minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform('wxyz', minterms, dontcares) == And(Or(Not(w), y), z)

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic('A & (B | C)') == ans
    assert simplify_logic('(A & B) | (A & C)') == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
           Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
           == And(Equality(A, 3), Or(B, C))
    e = And(A, x**2 - x)
    assert simplify_logic(e) == And(A, x*(x - 1))
    assert simplify_logic(e, deep=False) == e

    # check input
    ans = SOPform('xy', [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform(['x', 'y'], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform('x', [[1]], [[1]]))
    assert SOPform('x', [[1]], [[0]]) is true
    assert SOPform('x', [[0]], [[1]]) is true
    assert SOPform('x', [], []) is false

    raises(ValueError, lambda: POSform('x', [[1]], [[1]]))
    assert POSform('x', [[1]], [[0]]) is true
    assert POSform('x', [[0]], [[1]]) is true
    assert POSform('x', [], []) is false

    # check working of simplify
    assert simplify('(A & B) | (A & C)') == sympify('And(A, Or(B, C))')
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
コード例 #7
0
ファイル: graph.py プロジェクト: asteroidhouse/equibel
    def __eq__(self, other):
        """Tests this graph for equality with ``other``. Two graphs are equal
        if they contain the same nodes, edges, and formulas at each node.

        This operation can be expensive, since it checks whether formulas are 
        equivalent by first simplifying the formulas, and then testing the 
        simplified representations for equivalence.

        Parameters
        ----------
        other : An object to test for equality with the current Graph

        Returns
        -------
        ``True`` if ``self`` and ``other`` represent the same graph and scenario; 
        ``False`` otherwise.

        Examples
        --------
        Create the first graph:

        >>> G1 = eb.path_graph(4)
        >>> G1.add_formula(0, 'p & q')
        >>> G1.add_formula(1, 'q | r')

        Create the second graph:

        >>> G2 = eb.path_graph(4)
        >>> G2.add_formula(0, 'p & q')

        These graphs are not equal:

        >>> G1 == G2
        False

        But we can add a formula to G2 to make it equal to G1:

        >>> G2.add_formula(1, 'q | r')
        >>> G1 == G2
        True
        """
        if not isinstance(other, self.__class__):
            return False
        if set(self.nodes()) != set(other.nodes()):
            return False
        if set(self.edges()) != set(other.edges()):
            return False
        for node in self.nodes():
            try:
                if not simplify_logic(self.formula_conj(node)).equals(simplify_logic(other.formula_conj(node))):
                    return False
            except Exception:
                return False
        return True
コード例 #8
0
ファイル: logic.py プロジェクト: USECAP/dream
def get_condition_from_logic_expression(logic_exp, conditions_map):
    #return logic_exp
    if not isinstance(logic_exp, Symbol) and not isinstance(logic_exp, Not) and not isinstance(logic_exp, Or) \
        and not isinstance(logic_exp, And) and not isinstance(logic_exp, LocalVariable) and not logic_exp == true:
        return logic_exp

    logic_exp = simplify_logic(logic_exp)
    #return logic_exp
    if isinstance(logic_exp, Symbol):
        return conditions_map[logic_exp]
    elif isinstance(logic_exp, Not):
        return get_negated_condition(
            get_condition_from_logic_expression(logic_exp.args[0],
                                                conditions_map))
    elif isinstance(logic_exp, Or):
        return ORExpression([
            get_condition_from_logic_expression(arg, conditions_map)
            for arg in logic_exp.args
        ],
                            is_condition=True)
    elif isinstance(logic_exp, And):
        return ANDExpression([
            get_condition_from_logic_expression(arg, conditions_map)
            for arg in logic_exp.args
        ],
                             is_condition=True)
    elif logic_exp in [True, true]:
        return NumericConstant(1)
    elif isinstance(logic_exp, LocalVariable):
        return logic_exp
    else:
        assert False, 'unrecognised logic expression{0}'.format(logic_exp)
コード例 #9
0
ファイル: common.py プロジェクト: 5nizza/spec-framework
def reduces_to_true(clauses):
    """
    >>> reduces_to_true([('True',), ('a',)])
    True
    >>> reduces_to_true([('r',), ('~r',)])
    True
    >>> reduces_to_true([('r',), ('~a',)])
    False
    >>> reduces_to_true([('r', 'b'), ('~r',)])
    False
    >>> reduces_to_true([('r','b'), ('~r','~b')])
    False
    >>> reduces_to_true(['a b'.split(), '~a ~b'.split(), '~a b'.split(), 'a ~b'.split()])
    True
    >>> reduces_to_true(['a b'.split(), '~a ~b'.split(), '~a b'.split(), 'a ~b'.split()])
    True
    """

    clauses = list(clauses)

    expr = false
    for c in clauses:
        new_c = true
        for l in c:
            v = l.replace('~', '')
            if v == 'True' or v == 'False':
                s = sympify(v)
            else:
                s = Symbol(v)
            new_c &= (~s if '~' in l else s)
        expr |= new_c

    return simplify_logic(expr) == true
コード例 #10
0
ファイル: test_boolalg.py プロジェクト: amitjamadagni/sympy
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    from sympy.abc import w, x, y, z

    assert SOPform("xyz", set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform("xyz", set2)) == And(Or(Not(x), Not(z)), Or(x, z))
    assert POSform("xyz", set1 + set2) is True
    assert SOPform("xyz", set1 + set2) is True
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is True

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert SOPform("wxyz", minterms, dontcares) == Or(And(Not(w), z), And(y, z))
    assert POSform("wxyz", minterms, dontcares) == And(Or(Not(w), y), z)

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic("A & (B | C)") == ans
    assert simplify_logic("(A & B) | (A & C)") == ans

    # check input
    ans = SOPform("xy", [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform(["x", "y"], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform("x", [[1]], [[1]]))
    assert SOPform("x", [[1]], [[0]]) is True
    assert SOPform("x", [[0]], [[1]]) is True
    assert SOPform("x", [], []) is False

    raises(ValueError, lambda: POSform("x", [[1]], [[1]]))
    assert POSform("x", [[1]], [[0]]) is True
    assert POSform("x", [[0]], [[1]]) is True
    assert POSform("x", [], []) is False

    # check working of simplify
    assert simplify("(A & B) | (A & C)") == sympify("And(A, Or(B, C))")
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
コード例 #11
0
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    from sympy.abc import w, x, y, z
    assert SOPform('xyz', set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform('xyz', set2)) == And(Or(Not(x), Not(z)), Or(x, z))
    assert POSform('xyz', set1 + set2) is True
    assert SOPform('xyz', set1 + set2) is True
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is True

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
        [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (
        SOPform('wxyz', minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform('wxyz', minterms, dontcares) == And(Or(Not(w), y), z)

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic('A & (B | C)') == ans
    assert simplify_logic('(A & B) | (A & C)') == ans

    # check input
    ans = SOPform('xy', [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform(['x', 'y'], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform('x', [[1]], [[1]]))
    assert SOPform('x', [[1]], [[0]]) is True
    assert SOPform('x', [[0]], [[1]]) is True
    assert SOPform('x', [], []) is False

    raises(ValueError, lambda: POSform('x', [[1]], [[1]]))
    assert POSform('x', [[1]], [[0]]) is True
    assert POSform('x', [[0]], [[1]]) is True
    assert POSform('x', [], []) is False
コード例 #12
0
ファイル: statement_logic.py プロジェクト: samsarana/word2vec
def generate_training_examples(statement_gen, branching_f, cut_off_depth):
    initial_stat = statement_gen.generate_complete_expression()
    #initial_stat = Or(Implies(A, B), Implies(B, Implies(B, A)))
    print('Stat is initially    {}'.format(initial_stat))
    print('which has {} terms'.format(num_terms(initial_stat)))
    simplifed_stat = simplify_logic(initial_stat)
    print('Can be simplified to {}'.format(simplifed_stat))
    min_final_complexity = COMPLEXITY_FUNC(simplifed_stat)
    print()

    t0 = time.perf_counter()
    training_examples = [[initial_stat]]
    include = False
    for i in range(50):
        if i % 5 == 0:
            print('i={}'.format(i))
        best = best_manipulations_search(initial_stat, branching_f,
                                         cut_off_depth)
        print(best)
        #if COMPLEXITY_FUNC(best[-1]) <= COMPLEXITY_FUNC(best[0]) + 1:
        if best[-1] != best[0]:
            if training_examples[-1][-1] == initial_stat:
                training_examples[-1].extend(best[1:])
            else:
                training_examples.append(
                    best)  # is this ever happening under my current set up?
            if COMPLEXITY_FUNC(best[-1]) <= min_final_complexity:
                include = True
                break
            initial_stat = best[-1]
            # what to do if this initial_stat is as simple as it's going to get?
        #else:
        #print('best[-1]: {} \n complexity: {} \n best[0]: {} \n complexity: {}'.format(best[-1], COMPLEXITY_FUNC(best[-1]), best[0], COMPLEXITY_FUNC(best[0])))
        # perhaps we should increase branching_f and start again?
        # or introduce some more randomness in where the laws are applied?
        # or increase the double negation factor to try and hit the goldmine?
        # or maybe my algorithm is so good that things that drop out here
        # are basically as simple as they can get??!
    t1 = time.perf_counter()

    # Printing the generated examples
    print()
    print('Printing the generated examples...')
    for ex in training_examples:
        for stat in ex:
            print(stat)
            if isinstance(stat, BooleanFunction):
                print('Complexity = {}'.format(COMPLEXITY_FUNC(stat)))
        print()
    print('That took {:.1f}s'.format(t1 - t0))
    if include:
        export(training_examples)
コード例 #13
0
ファイル: logic.py プロジェクト: USECAP/dream
def conditions_equal(cond1, cond2):
    if cond1 == cond2:
        return True

    symbols_1 = get_symbols(cond1)
    symbols_2 = get_symbols(cond2)
    if symbols_1.symmetric_difference(symbols_2):
        return False

    cond1_simplified = simplify_logic(cond1)
    cond2_simplified = simplify_logic(cond2)
    if type(cond1_simplified) != type(cond2_simplified):
        return False
    elif len(cond1_simplified.args) != len(cond2_simplified.args):
        return False

    cond_mapping = bool_map(cond1, cond2)
    if type(cond_mapping) != bool:
        for k, v in cond_mapping[1].items():
            if k != v:
                return False
        return True
    return False
コード例 #14
0
ファイル: piecewise.py プロジェクト: yashkgp/sympy
def piecewise_fold(expr):
    """
    Takes an expression containing a piecewise function and returns the
    expression in piecewise form. In addition, any ITE conditions are
    rewritten in negation normal form and simplified.

    Examples
    ========

    >>> from sympy import Piecewise, piecewise_fold, sympify as S
    >>> from sympy.abc import x
    >>> p = Piecewise((x, x < 1), (1, S(1) <= x))
    >>> piecewise_fold(x*p)
    Piecewise((x**2, x < 1), (x, 1 <= x))

    See Also
    ========

    Piecewise
    """
    if not isinstance(expr, Basic) or not expr.has(Piecewise):
        return expr

    new_args = []
    if isinstance(expr, (ExprCondPair, Piecewise)):
        for e, c in expr.args:
            if not isinstance(e, Piecewise):
                e = piecewise_fold(e)
            # we don't keep Piecewise in condition because
            # it has to be checked to see that it's complete
            # and we convert it to ITE at that time
            assert not c.has(Piecewise)  # pragma: no cover
            if isinstance(c, ITE):
                c = c.to_nnf()
                c = simplify_logic(c, form='cnf')
            if isinstance(e, Piecewise):
                new_args.extend([(piecewise_fold(ei), And(ci, c))
                                 for ei, ci in e.args])
            else:
                new_args.append((e, c))
    else:
        from sympy.utilities.iterables import cartes
        folded = list(map(piecewise_fold, expr.args))
        for ec in cartes(*[(i.args if isinstance(i, Piecewise) else [(i,
                                                                      true)])
                           for i in folded]):
            e, c = zip(*ec)
            new_args.append((expr.func(*e), And(*c)))

    return Piecewise(*new_args)
コード例 #15
0
ファイル: piecewise.py プロジェクト: prempalsingh/sympy
def piecewise_fold(expr):
    """
    Takes an expression containing a piecewise function and returns the
    expression in piecewise form. In addition, any ITE conditions are
    rewritten in negation normal form and simplified.

    Examples
    ========

    >>> from sympy import Piecewise, piecewise_fold, sympify as S
    >>> from sympy.abc import x
    >>> p = Piecewise((x, x < 1), (1, S(1) <= x))
    >>> piecewise_fold(x*p)
    Piecewise((x**2, x < 1), (x, 1 <= x))

    See Also
    ========

    Piecewise
    """
    if not isinstance(expr, Basic) or not expr.has(Piecewise):
        return expr

    new_args = []
    if isinstance(expr, (ExprCondPair, Piecewise)):
        for e, c in expr.args:
            if not isinstance(e, Piecewise):
                e = piecewise_fold(e)
            # we don't keep Piecewise in condition because
            # it has to be checked to see that it's complete
            # and we convert it to ITE at that time
            assert not c.has(Piecewise)  # pragma: no cover
            if isinstance(c, ITE):
                c = c.to_nnf()
                c = simplify_logic(c, form='cnf')
            if isinstance(e, Piecewise):
                new_args.extend([(piecewise_fold(ei), And(ci, c))
                    for ei, ci in e.args])
            else:
                new_args.append((e, c))
    else:
        from sympy.utilities.iterables import cartes
        folded = list(map(piecewise_fold, expr.args))
        for ec in cartes(*[
                (i.args if isinstance(i, Piecewise) else
                 [(i, true)]) for i in folded]):
            e, c = zip(*ec)
            new_args.append((expr.func(*e), And(*c)))

    return Piecewise(*new_args)
コード例 #16
0
ファイル: setplus.py プロジェクト: worldmaker18349276/magicpy
def simplify_boolean(expr, form="dnf", op=(Union, Intersection, AbsoluteComplement, Complement)):
    """
    >>> from sympy import *
    >>> from symplus.strplus import init_mprinting
    >>> init_mprinting()
    >>> A = Set(symbols("A"))
    >>> B = Set(symbols("B"))
    >>> C = Set(symbols("C"))
    >>> simplify_boolean(B & (A | C))
    Set(A) n Set(B) u Set(B) n Set(C)
    >>> simplify_boolean((A & B) | (A - B) | (B & C) | (C - B))
    Set(A) u Set(C)
    >>> simplify_boolean(AbsoluteComplement(A+B+C) | (C-A-B))
    -(Set(A)) n -(Set(B))
    """
    exprs = {}

    def expr2bool(expr):
        if isinstance(expr, op[0]):
            return Or(*map(expr2bool, expr.args))
        elif isinstance(expr, op[1]):
            return And(*map(expr2bool, expr.args))
        elif isinstance(expr, op[2]):
            return Not(expr2bool(expr.args[0]))
        elif len(op) >= 4 and isinstance(expr, op[3]):
            return And(expr2bool(expr.args[0]), Not(expr2bool(expr.args[1])))
        else:
            for b, e in exprs.items():
                if e == expr:
                    return b
            else:
                b = Dummy("b")
                exprs[b] = expr
                return b

    def bool2expr(b):
        if isinstance(b, Or):
            return op[0](*map(bool2expr, b.args), evaluate=False)
        elif isinstance(b, And):
            return op[1](*map(bool2expr, b.args), evaluate=False)
        elif isinstance(b, Not):
            return op[2](bool2expr(b.args[0]), evaluate=False)
        else:
            return exprs[b]

    return bool2expr(simplify_logic(expr2bool(expr), form="dnf", deep=False))
コード例 #17
0
def simplify_edge_labels(edge_labels: dict) -> dict:
    simplified_edge_labels = dict()
    sig_by_name = dict()
    for (src, dst), labels in edge_labels.items():
        labels_as_exprs = [_to_expr(l, sig_by_name) for l in labels]

        labels_as_dnf = sympy.false
        for le in labels_as_exprs:
            labels_as_dnf |= le

        assert labels_as_dnf != sympy.false

        simplified_expr = simplify_logic(labels_as_dnf, form='dnf')
        clauses = _clauses(simplified_expr)

        simplified_labels = [_to_label(e, sig_by_name) for e in clauses]
        simplified_edge_labels[(src, dst)] = simplified_labels

    return simplified_edge_labels
コード例 #18
0
ファイル: edges_simplifier.py プロジェクト: 5nizza/party-elli
def simplify_edge_labels(edge_labels:dict) -> dict:
    simplified_edge_labels = dict()
    sig_by_name = dict()
    for (src, dst), labels in edge_labels.items():
        labels_as_exprs = [_to_expr(l, sig_by_name) for l in labels]

        labels_as_dnf = sympy.false
        for le in labels_as_exprs:
            labels_as_dnf |= le

        assert labels_as_dnf != sympy.false

        simplified_expr = simplify_logic(labels_as_dnf, form='dnf')
        clauses = _clauses(simplified_expr)

        simplified_labels = [_to_label(e, sig_by_name) for e in clauses]
        simplified_edge_labels[(src, dst)] = simplified_labels

    return simplified_edge_labels
コード例 #19
0
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform([x, y, z], set2)) == \
        Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform([x, y, z], set1 + set2) is true
    assert SOPform([x, y, z], set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, 3, 7, 11, 15]
    dontcares = [0, 2, 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, {y: 1, z: 1}]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)


    minterms = [{y: 1, z: 1}, 1]
    dontcares = [[0, 0, 0, 0]]

    minterms = [[0, 0, 0]]
    raises(ValueError, lambda: SOPform([w, x, y, z], minterms))
    raises(ValueError, lambda: POSform([w, x, y, z], minterms))

    raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"]))

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic(A & (B | C)) == ans
    assert simplify_logic((A & B) | (A & C)) == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
        Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) is S.false
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
        == And(Equality(A, 3), Or(B, C))
    b = (~x & ~y & ~z) | (~x & ~y & z)
    e = And(A, b)
    assert simplify_logic(e) == A & ~x & ~y
    raises(ValueError, lambda: simplify_logic(A & (B | C), form='blabla'))

    # Check that expressions with nine variables or more are not simplified
    # (without the force-flag)
    a, b, c, d, e, f, g, h, j = symbols('a b c d e f g h j')
    expr = a & b & c & d & e & f & g & h & j | \
        a & b & c & d & e & f & g & h & ~j
    # This expression can be simplified to get rid of the j variables
    assert simplify_logic(expr) == expr

    # check input
    ans = SOPform([x, y], [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform([x, y], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
    assert SOPform([x], [[1]], [[0]]) is true
    assert SOPform([x], [[0]], [[1]]) is true
    assert SOPform([x], [], []) is false

    raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
    assert POSform([x], [[1]], [[0]]) is true
    assert POSform([x], [[0]], [[1]]) is true
    assert POSform([x], [], []) is false

    # check working of simplify
    assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
    assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0))
    assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1))
    assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y))
    assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1))
    assert And(Eq(x - 1, 0), Eq(x, z + y), Eq(y + x, 0)).simplify(
        ) == And(Eq(x, 1), Eq(y, -1), Eq(z, 2))
    assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1)
    assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1)
    assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False
    assert And(Ne(x - 1, 0), Ne(x + 2, 2)).simplify(
        ) == And(Ne(x, 1), Ne(x, 0))
コード例 #20
0
ファイル: simplus.py プロジェクト: worldmaker18349276/magicpy
def logicrelsimp(expr, form='dnf', deep=True):
    """ logically simplify relations using totality (WARNING: it is unstable)
    >>> from sympy import *
    >>> from symplus.strplus import init_mprinting
    >>> init_mprinting()
    >>> x, y, z = symbols('x y z')
    >>> logicrelsimp((x>0) >> ((x<=0)&(y<0)))
    x =< 0
    >>> logicrelsimp((x>0) >> (x>=0))
    True
    >>> logicrelsimp((x<0) & (x>0))
    False
    >>> logicrelsimp(((x<0) | (y>0)) & ((x>0) | (y<0)))
    (x < 0) /\ (y < 0) \/ (x > 0) /\ (y > 0)
    >>> logicrelsimp(((x<0) & (y>0)) | ((x>0) & (y<0)))
    (x < 0) /\ (y > 0) \/ (x > 0) /\ (y < 0)
    """
    from sympy.core.symbol import Wild
    from sympy.core import sympify
    from sympy.logic.boolalg import (SOPform, POSform, to_nnf,
                                     _find_predicates, simplify_logic)
    Nt = lambda x: Not(x, evaluate=False)

    if form not in ('cnf', 'dnf'):
        raise ValueError("form can be cnf or dnf only")
    expr = sympify(expr)
    if not isinstance(expr, BooleanFunction):
        return expr

    # canonicalize relations
    expr = expr.replace(lambda rel: isinstance(rel, Rel),
                        lambda rel: canonicalize_polyeq(rel))

    # to nnf
    w = Wild('w')
    expr = to_nnf(expr)
    expr = expr.replace(Not(w), lambda w: Not(w, evaluate=True))

    if is_simplerel(expr):
        # standardize relation
        expr = expr.replace(Ne(w,0), Nt(Eq(w,0)))
        expr = expr.replace(Ge(w,0), Nt(Lt(w,0)))
        expr = expr.replace(Le(w,0), Nt(Gt(w,0)))

        expr = simplify_logic(expr, form, deep)

        return expr

    else:
        # standardize relation
        expr = expr.replace(Ne(w,0), Or(Gt(w,0), Lt(w,0)))
        expr = expr.replace(Ge(w,0), Or(Gt(w,0), Eq(w,0)))
        expr = expr.replace(Le(w,0), Or(Lt(w,0), Eq(w,0)))

        # make totality
        variables = _find_predicates(expr)
        relations = (v for v in variables if isinstance(v, Rel) and v.args[1] == 0)
        totalities = []
        for a in set(rel.args[0] for rel in relations):
            totalities.append(
                Or(And(Gt(a,0), Nt(Eq(a,0)), Nt(Lt(a,0))),
                   And(Nt(Gt(a,0)), Eq(a,0), Nt(Lt(a,0))),
                   And(Nt(Gt(a,0)), Nt(Eq(a,0)), Lt(a,0))))
        totality = And(*totalities)

        # make truth table, don't care table
        truthtable = []
        dontcares = []
        for t in product([0, 1], repeat=len(variables)):
            t = list(t)
            if totality.xreplace(dict(zip(variables, t))) == False:
                dontcares.append(t)
            elif expr.xreplace(dict(zip(variables, t))) == True:
                truthtable.append(t)

        if deep:
            variables = [simplify(v) for v in variables]
        if form == 'dnf':
            expr = SOPform(variables, truthtable, dontcares)
        elif form == 'cnf':
            expr = POSform(variables, truthtable, dontcares)

        return expr
コード例 #21
0
ファイル: piecewise.py プロジェクト: Lenqth/sympy
def piecewise_fold(expr):
    """
    Takes an expression containing a piecewise function and returns the
    expression in piecewise form. In addition, any ITE conditions are
    rewritten in negation normal form and simplified.

    Examples
    ========

    >>> from sympy import Piecewise, piecewise_fold, sympify as S
    >>> from sympy.abc import x
    >>> p = Piecewise((x, x < 1), (1, S(1) <= x))
    >>> piecewise_fold(x*p)
    Piecewise((x**2, x < 1), (x, True))

    See Also
    ========

    Piecewise
    """
    if not isinstance(expr, Basic) or not expr.has(Piecewise):
        return expr

    new_args = []
    if isinstance(expr, (ExprCondPair, Piecewise)):
        for e, c in expr.args:
            if not isinstance(e, Piecewise):
                e = piecewise_fold(e)
            # we don't keep Piecewise in condition because
            # it has to be checked to see that it's complete
            # and we convert it to ITE at that time
            assert not c.has(Piecewise)  # pragma: no cover
            if isinstance(c, ITE):
                c = c.to_nnf()
                c = simplify_logic(c, form='cnf')
            if isinstance(e, Piecewise):
                new_args.extend([(piecewise_fold(ei), And(ci, c))
                    for ei, ci in e.args])
            else:
                new_args.append((e, c))
    else:
        from sympy.utilities.iterables import cartes, sift, common_prefix
        # Given
        #     P1 = Piecewise((e11, c1), (e12, c2), A)
        #     P2 = Piecewise((e21, c1), (e22, c2), B)
        #     ...
        # the folding of f(P1, P2) is trivially
        # Piecewise(
        #   (f(e11, e21), c1),
        #   (f(e12, e22), c2),
        #   (f(Piecewise(A), Piecewise(B)), True))
        # Certain objects end up rewriting themselves as thus, so
        # we do that grouping before the more generic folding.
        # The following applies this idea when f = Add or f = Mul
        # (and the expression is commutative).
        if expr.is_Add or expr.is_Mul and expr.is_commutative:
            p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True)
            pc = sift(p, lambda x: x.args[0].cond)
            for c in pc:
                if len(pc[c]) > 1:
                    pargs = [list(i.args) for i in pc[c]]
                    # the first one is the same; there may be more
                    com = common_prefix(*[
                        [i.cond for i in j] for j in pargs])
                    n = len(com)
                    collected = []
                    for i in range(n):
                        collected.append((
                            expr.func(*[ai[i].expr for ai in pargs]),
                            com[i]))
                    remains = []
                    for a in pargs:
                        if n == len(a):  # no more args
                            continue
                        if a[n].cond == True:  # no longer Piecewise
                            remains.append(a[n].expr)
                        else:  # restore the remaining Piecewise
                            remains.append(
                                Piecewise(*a[n:], evaluate=False))
                    if remains:
                        collected.append((expr.func(*remains), True))
                    args.append(Piecewise(*collected, evaluate=False))
                    continue
                args.extend(pc[c])
        else:
            args = expr.args
        # fold
        folded = list(map(piecewise_fold, args))
        for ec in cartes(*[
                (i.args if isinstance(i, Piecewise) else
                 [(i, true)]) for i in folded]):
            e, c = zip(*ec)
            new_args.append((expr.func(*e), And(*c)))

    return Piecewise(*new_args)
コード例 #22
0
 def add_dnf_clause(self, expr):
     return simplify_logic(expr, form='cnf', deep=True, force=True).args
コード例 #23
0
	def add_dnf_clause(self, expr):
		e = simplify_logic(expr, form='cnf',deep=True,force=True).args
		self.clauses += e
		return len(e)
コード例 #24
0
ファイル: logic.py プロジェクト: USECAP/dream
def has_compound_trivial_condition(condition_list):
    compound_condition = false
    for c in condition_list:
        compound_condition = Or(compound_condition, c)
    return is_trivial_condition(simplify_logic(compound_condition))
コード例 #25
0
ファイル: test_boolalg.py プロジェクト: asmeurer/sympy
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform([x, y, z], set2)) == \
        Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform([x, y, z], set1 + set2) is true
    assert SOPform([x, y, z], set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, 3, 7, 11, 15]
    dontcares = [0, 2, 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, {y: 1, z: 1}]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (
        SOPform([w, x, y, z], minterms, dontcares) ==
        Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)


    minterms = [{y: 1, z: 1}, 1]
    dontcares = [[0, 0, 0, 0]]

    minterms = [[0, 0, 0]]
    raises(ValueError, lambda: SOPform([w, x, y, z], minterms))
    raises(ValueError, lambda: POSform([w, x, y, z], minterms))

    raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"]))

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic(A & (B | C)) == ans
    assert simplify_logic((A & B) | (A & C)) == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
        Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) is S.false
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
        == And(Equality(A, 3), Or(B, C))
    b = (~x & ~y & ~z) | (~x & ~y & z)
    e = And(A, b)
    assert simplify_logic(e) == A & ~x & ~y
    raises(ValueError, lambda: simplify_logic(A & (B | C), form='blabla'))

    # Check that expressions with nine variables or more are not simplified
    # (without the force-flag)
    a, b, c, d, e, f, g, h, j = symbols('a b c d e f g h j')
    expr = a & b & c & d & e & f & g & h & j | \
        a & b & c & d & e & f & g & h & ~j
    # This expression can be simplified to get rid of the j variables
    assert simplify_logic(expr) == expr

    # check input
    ans = SOPform([x, y], [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform([x, y], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
    assert SOPform([x], [[1]], [[0]]) is true
    assert SOPform([x], [[0]], [[1]]) is true
    assert SOPform([x], [], []) is false

    raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
    assert POSform([x], [[1]], [[0]]) is true
    assert POSform([x], [[0]], [[1]]) is true
    assert POSform([x], [], []) is false

    # check working of simplify
    assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
    assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0))
    assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1))
    assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y))
    assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1))
    assert And(Eq(x - 1, 0), Eq(x, z + y), Eq(y + x, 0)).simplify(
        ) == And(Eq(x, 1), Eq(y, -1), Eq(z, 2))
    assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1)
    assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1)
    assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False
    assert And(Ne(x - 1, 0), Ne(x + 2, 2)).simplify(
        ) == And(Ne(x, 1), Ne(x, 0))
コード例 #26
0
from sympy import *
from sympy.logic.boolalg import bool_equal, simplify_logic

a, b, c, d, e = symbols("a b c d e")

f = (b & ~a) | (a & ~b)
g = (a | b) & ~(a & b)

print(f)
print(g)
print(bool_equal(f, g))
print

f = (~(a | b) & ~(c | d | e)) | ~(a | b)

print(f)
print(simplify_logic(f))
print

f = (a | b) & (d | ~b) & (d | a)

print(f)
print(simplify_logic(f))
print
コード例 #27
0
def piecewise_fold(expr):
    """
    Takes an expression containing a piecewise function and returns the
    expression in piecewise form. In addition, any ITE conditions are
    rewritten in negation normal form and simplified.

    Examples
    ========

    >>> from sympy import Piecewise, piecewise_fold, sympify as S
    >>> from sympy.abc import x
    >>> p = Piecewise((x, x < 1), (1, S(1) <= x))
    >>> piecewise_fold(x*p)
    Piecewise((x**2, x < 1), (x, True))

    See Also
    ========

    Piecewise
    """
    if not isinstance(expr, Basic) or not expr.has(Piecewise):
        return expr

    new_args = []
    if isinstance(expr, (ExprCondPair, Piecewise)):
        for e, c in expr.args:
            if not isinstance(e, Piecewise):
                e = piecewise_fold(e)
            # we don't keep Piecewise in condition because
            # it has to be checked to see that it's complete
            # and we convert it to ITE at that time
            assert not c.has(Piecewise)  # pragma: no cover
            if isinstance(c, ITE):
                c = c.to_nnf()
                c = simplify_logic(c, form='cnf')
            if isinstance(e, Piecewise):
                new_args.extend([(piecewise_fold(ei), And(ci, c))
                                 for ei, ci in e.args])
            else:
                new_args.append((e, c))
    else:
        from sympy.utilities.iterables import cartes, sift, common_prefix
        # Given
        #     P1 = Piecewise((e11, c1), (e12, c2), A)
        #     P2 = Piecewise((e21, c1), (e22, c2), B)
        #     ...
        # the folding of f(P1, P2) is trivially
        # Piecewise(
        #   (f(e11, e21), c1),
        #   (f(e12, e22), c2),
        #   (f(Piecewise(A), Piecewise(B)), True))
        # Certain objects end up rewriting themselves as thus, so
        # we do that grouping before the more generic folding.
        # The following applies this idea when f = Add or f = Mul
        # (and the expression is commutative).
        if expr.is_Add or expr.is_Mul and expr.is_commutative:
            p, args = sift(expr.args, lambda x: x.is_Piecewise, binary=True)
            pc = sift(p, lambda x: tuple([c for e, c in x.args]))
            for c in list(ordered(pc)):
                if len(pc[c]) > 1:
                    pargs = [list(i.args) for i in pc[c]]
                    # the first one is the same; there may be more
                    com = common_prefix(*[[i.cond for i in j] for j in pargs])
                    n = len(com)
                    collected = []
                    for i in range(n):
                        collected.append(
                            (expr.func(*[ai[i].expr for ai in pargs]), com[i]))
                    remains = []
                    for a in pargs:
                        if n == len(a):  # no more args
                            continue
                        if a[n].cond == True:  # no longer Piecewise
                            remains.append(a[n].expr)
                        else:  # restore the remaining Piecewise
                            remains.append(Piecewise(*a[n:], evaluate=False))
                    if remains:
                        collected.append((expr.func(*remains), True))
                    args.append(Piecewise(*collected, evaluate=False))
                    continue
                args.extend(pc[c])
        else:
            args = expr.args
        # fold
        folded = list(map(piecewise_fold, args))
        for ec in cartes(*[(i.args if isinstance(i, Piecewise) else [(i,
                                                                      true)])
                           for i in folded]):
            e, c = zip(*ec)
            new_args.append((expr.func(*e), And(*c)))

    return Piecewise(*new_args)
コード例 #28
0
ファイル: numpy.py プロジェクト: JSS95/sympy
 def print_cond(cond):
     """ Problem having an ITE in the cond. """
     if cond.has(ITE):
         return self._print(simplify_logic(cond))
     else:
         return self._print(cond)
コード例 #29
0
ファイル: test_boolalg.py プロジェクト: theartful/sympy
def test_simplification():
    """
    Test working of simplification methods.
    """
    set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
    set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
    assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
    assert Not(SOPform([x, y, z],
                       set2)) == Not(Or(And(Not(x), Not(z)), And(x, z)))
    assert POSform([x, y, z], set1 + set2) is true
    assert SOPform([x, y, z], set1 + set2) is true
    assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true

    minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
                [1, 1, 1, 1]]
    dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
    assert (SOPform([w, x, y, z], minterms,
                    dontcares) == Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, 3, 7, 11, 15]
    dontcares = [0, 2, 5]
    assert (SOPform([w, x, y, z], minterms,
                    dontcares) == Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1], [1, 1, 1, 1]]
    dontcares = [0, [0, 0, 1, 0], 5]
    assert (SOPform([w, x, y, z], minterms,
                    dontcares) == Or(And(Not(w), z), And(y, z)))
    assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)

    minterms = [{y: 1, z: 1}, 1]
    dontcares = [[0, 0, 0, 0]]

    minterms = [[0, 0, 0]]
    raises(ValueError, lambda: SOPform([w, x, y, z], minterms))
    raises(ValueError, lambda: POSform([w, x, y, z], minterms))

    raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"]))

    # test simplification
    ans = And(A, Or(B, C))
    assert simplify_logic(A & (B | C)) == ans
    assert simplify_logic((A & B) | (A & C)) == ans
    assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
    assert simplify_logic(Equivalent(A, B)) == \
           Or(And(A, B), And(Not(A), Not(B)))
    assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
    assert simplify_logic(And(Equality(A, 2), A)) is S.false
    assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
    assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
    assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
           == And(Equality(A, 3), Or(B, C))
    b = (~x & ~y & ~z) | (~x & ~y & z)
    e = And(A, b)
    assert simplify_logic(e) == A & ~x & ~y

    # check input
    ans = SOPform([x, y], [[1, 0]])
    assert SOPform([x, y], [[1, 0]]) == ans
    assert POSform([x, y], [[1, 0]]) == ans

    raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
    assert SOPform([x], [[1]], [[0]]) is true
    assert SOPform([x], [[0]], [[1]]) is true
    assert SOPform([x], [], []) is false

    raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
    assert POSform([x], [[1]], [[0]]) is true
    assert POSform([x], [[0]], [[1]]) is true
    assert POSform([x], [], []) is false

    # check working of simplify
    assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
    assert simplify(And(x, Not(x))) == False
    assert simplify(Or(x, Not(x))) == True
    assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0))
    assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1))
    assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y))
    assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1))
    assert And(Eq(x - 1, 0), Eq(x, z + y),
               Eq(y + x, 0)).simplify() == And(Eq(x, 1), Eq(y, -1), Eq(z, 2))
    assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1)
    assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1)
    assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False
    assert And(Ne(x - 1, 0), Ne(x + 2,
                                2)).simplify() == And(Ne(x, 1), Ne(x, 0))