コード例 #1
0
def test_squareBlockMatrix():
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])
    Y = BlockMatrix([[A]])

    assert X.is_square

    assert (block_collapse(X + Identity(m + n)) == BlockMatrix(
        [[A + Identity(n), B], [C, D + Identity(m)]]))
    Q = X + Identity(m + n)

    assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
    assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul

    assert block_collapse(Y.I) == A.I
    assert block_collapse(X.inverse()) == BlockMatrix([[
        (-B * D.I * C + A).I, -A.I * B * (D + -C * A.I * B).I
    ], [-(D - C * A.I * B).I * C * A.I, (D - C * A.I * B).I]])

    assert isinstance(X.inverse(), Inverse)

    assert not X.is_Identity

    Z = BlockMatrix([[Identity(n), B], [C, D]])
    assert not Z.is_Identity
コード例 #2
0
ファイル: test_blockmatrix.py プロジェクト: alxspopov/sympy
def test_squareBlockMatrix():
    A = MatrixSymbol("A", n, n)
    B = MatrixSymbol("B", n, m)
    C = MatrixSymbol("C", m, n)
    D = MatrixSymbol("D", m, m)
    X = BlockMatrix([[A, B], [C, D]])
    Y = BlockMatrix([[A]])

    assert X.is_square

    assert block_collapse(X + Identity(m + n)) == BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]])
    Q = X + Identity(m + n)

    assert (X + MatrixSymbol("Q", n + m, n + m)).is_MatAdd
    assert (X * MatrixSymbol("Q", n + m, n + m)).is_MatMul

    assert Y.I.blocks[0, 0] == A.I
    assert X.inverse(expand=True) == BlockMatrix(
        [[(-B * D.I * C + A).I, -A.I * B * (D + -C * A.I * B).I], [-(D - C * A.I * B).I * C * A.I, (D - C * A.I * B).I]]
    )

    assert isinstance(X.inverse(expand=False), Inverse)
    assert isinstance(X.inverse(), Inverse)

    assert not X.is_Identity

    Z = BlockMatrix([[Identity(n), B], [C, D]])
    assert not Z.is_Identity
コード例 #3
0
ファイル: test_blockmatrix.py プロジェクト: warnerjon12/sympy
def test_BlockMatrix_inverse():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', n, n)
    C = MatrixSymbol('C', m, m)
    D = MatrixSymbol('D', m, n)
    X = BlockMatrix([[A, B], [C, D]])
    assert X.is_square
    assert isinstance(block_collapse(X.inverse()),
                      Inverse)  # Can't inverse when A, D aren't square

    # test code path for non-invertible D matrix
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = OneMatrix(m, m)
    X = BlockMatrix([[A, B], [C, D]])
    assert block_collapse(X.inverse()) == BlockMatrix([
        [
            A.I + A.I * B * (D - C * A.I * B).I * C * A.I,
            -A.I * B * (D - C * A.I * B).I
        ],
        [-(D - C * A.I * B).I * C * A.I, (D - C * A.I * B).I],
    ])

    # test code path for non-invertible A matrix
    A = OneMatrix(n, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])
    assert block_collapse(X.inverse()) == BlockMatrix([
        [(A - B * D.I * C).I, -(A - B * D.I * C).I * B * D.I],
        [
            -D.I * C * (A - B * D.I * C).I,
            D.I + D.I * C * (A - B * D.I * C).I * B * D.I
        ],
    ])
コード例 #4
0
ファイル: test_blockmatrix.py プロジェクト: vprusso/sympy
def test_squareBlockMatrix():
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])
    Y = BlockMatrix([[A]])

    assert X.is_square

    assert (block_collapse(X + Identity(m + n)) ==
        BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]]))
    Q = X + Identity(m + n)

    assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd
    assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul

    assert block_collapse(Y.I) == A.I
    assert block_collapse(X.inverse()) == BlockMatrix([
        [(-B*D.I*C + A).I, -A.I*B*(D + -C*A.I*B).I],
        [-(D - C*A.I*B).I*C*A.I, (D - C*A.I*B).I]])

    assert isinstance(X.inverse(), Inverse)

    assert not X.is_Identity

    Z = BlockMatrix([[Identity(n), B], [C, D]])
    assert not Z.is_Identity
コード例 #5
0
ファイル: test_blockmatrix.py プロジェクト: dagidagi1/Matrix
def test_BlockMatrix_2x2_inverse_symbolic():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', n, k - m)
    C = MatrixSymbol('C', k - n, m)
    D = MatrixSymbol('D', k - n, k - m)
    X = BlockMatrix([[A, B], [C, D]])
    assert X.is_square and X.shape == (k, k)
    assert isinstance(block_collapse(
        X.I), Inverse)  # Can't invert when none of the blocks is square

    # test code path where only A is invertible
    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = ZeroMatrix(m, m)
    X = BlockMatrix([[A, B], [C, D]])
    assert block_collapse(X.inverse()) == BlockMatrix([
        [A.I + A.I * B * X.schur('A').I * C * A.I, -A.I * B * X.schur('A').I],
        [-X.schur('A').I * C * A.I, X.schur('A').I],
    ])

    # test code path where only B is invertible
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', n, n)
    C = ZeroMatrix(m, m)
    D = MatrixSymbol('D', m, n)
    X = BlockMatrix([[A, B], [C, D]])
    assert block_collapse(X.inverse()) == BlockMatrix([
        [-X.schur('B').I * D * B.I, X.schur('B').I],
        [B.I + B.I * A * X.schur('B').I * D * B.I, -B.I * A * X.schur('B').I],
    ])

    # test code path where only C is invertible
    A = MatrixSymbol('A', n, m)
    B = ZeroMatrix(n, n)
    C = MatrixSymbol('C', m, m)
    D = MatrixSymbol('D', m, n)
    X = BlockMatrix([[A, B], [C, D]])
    assert block_collapse(X.inverse()) == BlockMatrix([
        [-C.I * D * X.schur('C').I, C.I + C.I * D * X.schur('C').I * A * C.I],
        [X.schur('C').I, -X.schur('C').I * A * C.I],
    ])

    # test code path where only D is invertible
    A = ZeroMatrix(n, n)
    B = MatrixSymbol('B', n, m)
    C = MatrixSymbol('C', m, n)
    D = MatrixSymbol('D', m, m)
    X = BlockMatrix([[A, B], [C, D]])
    assert block_collapse(X.inverse()) == BlockMatrix([
        [X.schur('D').I, -X.schur('D').I * B * D.I],
        [-D.I * C * X.schur('D').I, D.I + D.I * C * X.schur('D').I * B * D.I],
    ])