コード例 #1
0
def test_levin_3():
    mp.dps = 17
    z = mp.mpf(2)
    eps = mp.mpf(mp.eps)
    with mp.extraprec(
            7 * mp.prec
    ):  # we need copious amount of precision to sum this highly divergent series
        L = mp.levin(method="levin", variant="t")
        n, s = 0, 0
        while 1:
            s += (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4**n))
            n += 1
            v, e = L.step_psum(s)
            if e < eps:
                break
            if n > 1000: raise RuntimeError("iteration limit exceeded")
    eps = mp.exp(0.8 * mp.log(eps))
    exact = mp.quad(lambda x: mp.exp(-x * x / 2 - z * x**4),
                    [0, mp.inf]) * 2 / mp.sqrt(2 * mp.pi)
    # there is also a symbolic expression for the integral:
    #   exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi))
    err = abs(v - exact)
    assert err < eps
    w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) /
                (mp.fac(n) * mp.fac(2 * n) * (4**n)), [0, mp.inf],
                method="levin",
                levin_variant="t",
                workprec=8 * mp.prec,
                steps=[2] + [1 for x in xrange(1000)])
    err = abs(v - w)
    assert err < eps
コード例 #2
0
def test_levin_2():
    # [2] A. Sidi - "Pratical Extrapolation Methods" p.373
    mp.dps = 17
    z = mp.mpf(10)
    eps = mp.mpf(mp.eps)
    with mp.extraprec(2 * mp.prec):
        L = mp.levin(method="sidi", variant="t")
        n = 0
        while 1:
            s = (-1)**n * mp.fac(n) * z**(-n)
            v, e = L.step(s)
            n += 1
            if e < eps:
                break
            if n > 1000: raise RuntimeError("iteration limit exceeded")
    eps = mp.exp(0.9 * mp.log(eps))
    exact = mp.quad(lambda x: mp.exp(-x) / (1 + x / z), [0, mp.inf])
    # there is also a symbolic expression for the integral:
    #   exact = z * mp.exp(z) * mp.expint(1,z)
    err = abs(v - exact)
    assert err < eps
    w = mp.nsum(lambda n: (-1)**n * mp.fac(n) * z**(-n), [0, mp.inf],
                method="sidi",
                levin_variant="t")
    assert err < eps
コード例 #3
0
    def run(qtype, FW, R, alpha=0, beta=0):
        X, W = mp.gauss_quadrature(n, qtype, alpha=alpha, beta=beta)

        a = 0
        for i in xrange(len(X)):
            a += W[i] * F(X[i])

        b = mp.quad(lambda x: FW(x) * F(x), R)

        c = mp.fabs(a - b)

        if verbose:
            print(qtype, c, a, b)

        assert c < 1e-5
コード例 #4
0
  def run(qtype, FW, R, alpha = 0, beta = 0):
    X, W = mp.gauss_quadrature(n, qtype, alpha = alpha, beta = beta)

    a = 0
    for i in xrange(len(X)):
      a += W[i] * F(X[i])

    b = mp.quad(lambda x: FW(x) * F(x), R)

    c = mp.fabs(a - b)

    if verbose:
        print(qtype, c, a, b)

    assert c < 1e-5
コード例 #5
0
ファイル: test_levin.py プロジェクト: AdrianPotter/sympy
def test_levin_3():
    mp.dps = 17
    z=mp.mpf(2)
    eps = mp.mpf(mp.eps)
    with mp.extraprec(7*mp.prec):  # we need copious amount of precision to sum this highly divergent series
        L = mp.levin(method = "levin", variant = "t")
        n, s = 0, 0
        while 1:
            s += (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n))
            n += 1
            v, e = L.step_psum(s)
            if e < eps:
                break
            if n > 1000: raise RuntimeError("iteration limit exceeded")
    eps = mp.exp(0.8 * mp.log(eps))
    exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi)
    # there is also a symbolic expression for the integral:
    #   exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi))
    err = abs(v - exact)
    assert err < eps
    w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)), [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)])
    err = abs(v - w)
    assert err < eps
コード例 #6
0
ファイル: test_levin.py プロジェクト: AdrianPotter/sympy
def test_levin_2():
    # [2] A. Sidi - "Pratical Extrapolation Methods" p.373
    mp.dps = 17
    z=mp.mpf(10)
    eps = mp.mpf(mp.eps)
    with mp.extraprec(2 * mp.prec):
        L = mp.levin(method = "sidi", variant = "t")
        n = 0
        while 1:
            s = (-1)**n * mp.fac(n) * z ** (-n)
            v, e = L.step(s)
            n += 1
            if e < eps:
                break
            if n > 1000: raise RuntimeError("iteration limit exceeded")
    eps = mp.exp(0.9 * mp.log(eps))
    exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf])
    # there is also a symbolic expression for the integral:
    #   exact = z * mp.exp(z) * mp.expint(1,z)
    err = abs(v - exact)
    assert err < eps
    w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t")
    assert err < eps
コード例 #7
0
def integral_bounded_mp(fn, lb, ub):
    integral, _ = mp.quad(fn, [lb, ub], error=True)
    return integral
コード例 #8
0
def integral_inf_mp(fn):
    integral, _ = mp.quad(fn, [-mp.inf, mp.inf], error=True)
    return integral
コード例 #9
0
def integral_bounded_mp(fn, lb, ub):
  integral, _ = mp.quad(fn, [lb, ub], error=True)
  return integral
コード例 #10
0
def integral_inf_mp(fn):
  integral, _ = mp.quad(fn, [-mp.inf, mp.inf], error=True)
  return integral