def test_parallel_axis_theorem(): # This tests the parallel axis theorem matrix by comparing to test # matrices. # First case, 1 in all directions. mat1 = Matrix(((2, -1, -1), (-1, 2, -1), (-1, -1, 2))) assert pat_matrix(1, 1, 1, 1) == mat1 assert pat_matrix(2, 1, 1, 1) == 2 * mat1 # Second case, 1 in x, 0 in all others mat2 = Matrix(((0, 0, 0), (0, 1, 0), (0, 0, 1))) assert pat_matrix(1, 1, 0, 0) == mat2 assert pat_matrix(2, 1, 0, 0) == 2 * mat2 # Third case, 1 in y, 0 in all others mat3 = Matrix(((1, 0, 0), (0, 0, 0), (0, 0, 1))) assert pat_matrix(1, 0, 1, 0) == mat3 assert pat_matrix(2, 0, 1, 0) == 2 * mat3 # Fourth case, 1 in z, 0 in all others mat4 = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 0))) assert pat_matrix(1, 0, 0, 1) == mat4 assert pat_matrix(2, 0, 0, 1) == 2 * mat4
def test_parallel_axis_theorem(): # This tests the parallel axis theorem matrix by comparing to test # matrices. # First case, 1 in all directions. mat1 = Matrix(((2, -1, -1), (-1, 2, -1), (-1, -1, 2))) assert pat_matrix(1, 1, 1, 1) == mat1 assert pat_matrix(2, 1, 1, 1) == 2*mat1 # Second case, 1 in x, 0 in all others mat2 = Matrix(((0, 0, 0), (0, 1, 0), (0, 0, 1))) assert pat_matrix(1, 1, 0, 0) == mat2 assert pat_matrix(2, 1, 0, 0) == 2*mat2 # Third case, 1 in y, 0 in all others mat3 = Matrix(((1, 0, 0), (0, 0, 0), (0, 0, 1))) assert pat_matrix(1, 0, 1, 0) == mat3 assert pat_matrix(2, 0, 1, 0) == 2*mat3 # Fourth case, 1 in z, 0 in all others mat4 = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 0))) assert pat_matrix(1, 0, 0, 1) == mat4 assert pat_matrix(2, 0, 0, 1) == 2*mat4
from sympy.physics.paulialgebra import Pauli, evaluate_pauli_product from sympy.physics.matrices import mdft, mgamma, msigma, pat_matrix mdft(4) # expression of discrete Fourier transform as a matrix multiplication mgamma(2) # Dirac gamma matrix in the Dirac representation msigma(2) # Pauli matrix with (1,2,3) pat_matrix(3, 1, 0, 0) # computer Parallel Axis Theorem matrix to translate the inertia matrix a distance of dx, dy, dz for a body of mass m. evaluate_pauli_product(4*x*Pauli(3)*Pauli(2))
from sympy.physics.paulialgebra import Pauli, evaluate_pauli_product from sympy.physics.matrices import mdft, mgamma, msigma, pat_matrix mdft(4) # expression of discrete Fourier transform as a matrix multiplication mgamma(2) # Dirac gamma matrix in the Dirac representation msigma(2) # Pauli matrix with (1,2,3) pat_matrix( 3, 1, 0, 0 ) # computer Parallel Axis Theorem matrix to translate the inertia matrix a distance of dx, dy, dz for a body of mass m. evaluate_pauli_product(4 * x * Pauli(3) * Pauli(2))