コード例 #1
0
def test_aux_dep():
    # This test is about rolling disc dynamics, comparing the results found
    # with KanesMethod to those found when deriving the equations "manually"
    # with SymPy.
    # The terms Fr, Fr*, and Fr*_steady are all compared between the two
    # methods. Here, Fr*_steady refers to the generalized inertia forces for an
    # equilibrium configuration.
    # Note: comparing to the test of test_rolling_disc() in test_kane.py, this
    # test also tests auxiliary speeds and configuration and motion constraints
    #, seen in  the generalized dependent coordinates q[3], and depend speeds
    # u[3], u[4] and u[5].

    # First, manual derivation of Fr, Fr_star, Fr_star_steady.

    # Symbols for time and constant parameters.
    # Symbols for contact forces: Fx, Fy, Fz.
    t, r, m, g, I, J = symbols('t r m g I J')
    Fx, Fy, Fz = symbols('Fx Fy Fz')

    # Configuration variables and their time derivatives:
    # q[0] -- yaw
    # q[1] -- lean
    # q[2] -- spin
    # q[3] -- dot(-r*B.z, A.z) -- distance from ground plane to disc center in
    #         A.z direction
    # Generalized speeds and their time derivatives:
    # u[0] -- disc angular velocity component, disc fixed x direction
    # u[1] -- disc angular velocity component, disc fixed y direction
    # u[2] -- disc angular velocity component, disc fixed z direction
    # u[3] -- disc velocity component, A.x direction
    # u[4] -- disc velocity component, A.y direction
    # u[5] -- disc velocity component, A.z direction
    # Auxiliary generalized speeds:
    # ua[0] -- contact point auxiliary generalized speed, A.x direction
    # ua[1] -- contact point auxiliary generalized speed, A.y direction
    # ua[2] -- contact point auxiliary generalized speed, A.z direction
    q = dynamicsymbols('q:4')
    qd = [qi.diff(t) for qi in q]
    u = dynamicsymbols('u:6')
    ud = [ui.diff(t) for ui in u]
    ud_zero = dict(zip(ud, [0.] * len(ud)))
    ua = dynamicsymbols('ua:3')
    ua_zero = dict(zip(ua, [0.] * len(ua)))  # noqa:F841

    # Reference frames:
    # Yaw intermediate frame: A.
    # Lean intermediate frame: B.
    # Disc fixed frame: C.
    N = ReferenceFrame('N')
    A = N.orientnew('A', 'Axis', [q[0], N.z])
    B = A.orientnew('B', 'Axis', [q[1], A.x])
    C = B.orientnew('C', 'Axis', [q[2], B.y])

    # Angular velocity and angular acceleration of disc fixed frame
    # u[0], u[1] and u[2] are generalized independent speeds.
    C.set_ang_vel(N, u[0] * B.x + u[1] * B.y + u[2] * B.z)
    C.set_ang_acc(
        N,
        C.ang_vel_in(N).diff(t, B) + cross(B.ang_vel_in(N), C.ang_vel_in(N)))

    # Velocity and acceleration of points:
    # Disc-ground contact point: P.
    # Center of disc: O, defined from point P with depend coordinate: q[3]
    # u[3], u[4] and u[5] are generalized dependent speeds.
    P = Point('P')
    P.set_vel(N, ua[0] * A.x + ua[1] * A.y + ua[2] * A.z)
    O = P.locatenew('O', q[3] * A.z + r * sin(q[1]) * A.y)
    O.set_vel(N, u[3] * A.x + u[4] * A.y + u[5] * A.z)
    O.set_acc(N, O.vel(N).diff(t, A) + cross(A.ang_vel_in(N), O.vel(N)))

    # Kinematic differential equations:
    # Two equalities: one is w_c_n_qd = C.ang_vel_in(N) in three coordinates
    #                 directions of B, for qd0, qd1 and qd2.
    #                 the other is v_o_n_qd = O.vel(N) in A.z direction for qd3.
    # Then, solve for dq/dt's in terms of u's: qd_kd.
    w_c_n_qd = qd[0] * A.z + qd[1] * B.x + qd[2] * B.y
    v_o_n_qd = O.pos_from(P).diff(t, A) + cross(A.ang_vel_in(N), O.pos_from(P))
    kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv)
                       for uv in B] + [dot(v_o_n_qd - O.vel(N), A.z)])
    qd_kd = solve(kindiffs, qd)  # noqa:F841

    # Values of generalized speeds during a steady turn for later substitution
    # into the Fr_star_steady.
    steady_conditions = solve(kindiffs.subs({qd[1]: 0, qd[3]: 0}), u)
    steady_conditions.update({qd[1]: 0, qd[3]: 0})

    # Partial angular velocities and velocities.
    partial_w_C = [C.ang_vel_in(N).diff(ui, N) for ui in u + ua]
    partial_v_O = [O.vel(N).diff(ui, N) for ui in u + ua]
    partial_v_P = [P.vel(N).diff(ui, N) for ui in u + ua]

    # Configuration constraint: f_c, the projection of radius r in A.z direction
    #                                is q[3].
    # Velocity constraints: f_v, for u3, u4 and u5.
    # Acceleration constraints: f_a.
    f_c = Matrix([dot(-r * B.z, A.z) - q[3]])
    f_v = Matrix([
        dot(O.vel(N) - (P.vel(N) + cross(C.ang_vel_in(N), O.pos_from(P))),
            ai).expand() for ai in A
    ])
    v_o_n = cross(C.ang_vel_in(N), O.pos_from(P))
    a_o_n = v_o_n.diff(t, A) + cross(A.ang_vel_in(N), v_o_n)
    f_a = Matrix([dot(O.acc(N) - a_o_n, ai) for ai in A])  # noqa:F841

    # Solve for constraint equations in the form of
    #                           u_dependent = A_rs * [u_i; u_aux].
    # First, obtain constraint coefficient matrix:  M_v * [u; ua] = 0;
    # Second, taking u[0], u[1], u[2] as independent,
    #         taking u[3], u[4], u[5] as dependent,
    #         rearranging the matrix of M_v to be A_rs for u_dependent.
    # Third, u_aux ==0 for u_dep, and resulting dictionary of u_dep_dict.
    M_v = zeros(3, 9)
    for i in range(3):
        for j, ui in enumerate(u + ua):
            M_v[i, j] = f_v[i].diff(ui)

    M_v_i = M_v[:, :3]
    M_v_d = M_v[:, 3:6]
    M_v_aux = M_v[:, 6:]
    M_v_i_aux = M_v_i.row_join(M_v_aux)
    A_rs = -M_v_d.inv() * M_v_i_aux

    u_dep = A_rs[:, :3] * Matrix(u[:3])
    u_dep_dict = dict(zip(u[3:], u_dep))

    # Active forces: F_O acting on point O; F_P acting on point P.
    # Generalized active forces (unconstrained): Fr_u = F_point * pv_point.
    F_O = m * g * A.z
    F_P = Fx * A.x + Fy * A.y + Fz * A.z
    Fr_u = Matrix([
        dot(F_O, pv_o) + dot(F_P, pv_p)
        for pv_o, pv_p in zip(partial_v_O, partial_v_P)
    ])

    # Inertia force: R_star_O.
    # Inertia of disc: I_C_O, where J is a inertia component about principal axis.
    # Inertia torque: T_star_C.
    # Generalized inertia forces (unconstrained): Fr_star_u.
    R_star_O = -m * O.acc(N)
    I_C_O = inertia(B, I, J, I)
    T_star_C = -(dot(I_C_O, C.ang_acc_in(N)) \
                 + cross(C.ang_vel_in(N), dot(I_C_O, C.ang_vel_in(N))))
    Fr_star_u = Matrix([
        dot(R_star_O, pv) + dot(T_star_C, pav)
        for pv, pav in zip(partial_v_O, partial_w_C)
    ])

    # Form nonholonomic Fr: Fr_c, and nonholonomic Fr_star: Fr_star_c.
    # Also, nonholonomic Fr_star in steady turning condition: Fr_star_steady.
    Fr_c = Fr_u[:3, :].col_join(Fr_u[6:, :]) + A_rs.T * Fr_u[3:6, :]
    Fr_star_c = Fr_star_u[:3, :].col_join(Fr_star_u[6:, :])\
                + A_rs.T * Fr_star_u[3:6, :]
    Fr_star_steady = Fr_star_c.subs(ud_zero).subs(u_dep_dict)\
            .subs(steady_conditions).subs({q[3]: -r*cos(q[1])}).expand()

    # Second, using KaneMethod in mechanics for fr, frstar and frstar_steady.

    # Rigid Bodies: disc, with inertia I_C_O.
    iner_tuple = (I_C_O, O)
    disc = RigidBody('disc', O, C, m, iner_tuple)
    bodyList = [disc]

    # Generalized forces: Gravity: F_o; Auxiliary forces: F_p.
    F_o = (O, F_O)
    F_p = (P, F_P)
    forceList = [F_o, F_p]

    # KanesMethod.
    kane = KanesMethod(N,
                       q_ind=q[:3],
                       u_ind=u[:3],
                       kd_eqs=kindiffs,
                       q_dependent=q[3:],
                       configuration_constraints=f_c,
                       u_dependent=u[3:],
                       velocity_constraints=f_v,
                       u_auxiliary=ua)

    # fr, frstar, frstar_steady and kdd(kinematic differential equations).
    with warns_deprecated_sympy():
        (fr, frstar) = kane.kanes_equations(forceList, bodyList)
    frstar_steady = frstar.subs(ud_zero).subs(u_dep_dict).subs(steady_conditions)\
                    .subs({q[3]: -r*cos(q[1])}).expand()
    kdd = kane.kindiffdict()

    assert Matrix(Fr_c).expand() == fr.expand()
    assert Matrix(Fr_star_c.subs(kdd)).expand() == frstar.expand()
    assert (simplify(Matrix(Fr_star_steady).expand()) == simplify(
        frstar_steady.expand()))

    syms_in_forcing = find_dynamicsymbols(kane.forcing)
    for qdi in qd:
        assert qdi not in syms_in_forcing
コード例 #2
0
ファイル: hw8.4.py プロジェクト: oliverlee/advanced_dynamics
    w: 1,
    f: 2,
    v0: 20}

N = ReferenceFrame('N')
B = N.orientnew('B', 'axis', [q3, N.z])


O = Point('O')
S = O.locatenew('S', q1*N.x + q2*N.y)
S.set_vel(N, S.pos_from(O).dt(N))

#Is = m/12*(l**2 + w**2)
Is = symbols('Is')
I = inertia(B, 0, 0, Is, 0, 0, 0)
rb = RigidBody('rb', S, B, m, (I, S))
rb.set_potential_energy(0)


L = Lagrangian(N, rb)
lm = LagrangesMethod(
    L, q, nonhol_coneqs = [q1d*sin(q3) - q2d*cos(q3) + l/2*q3d])
lm.form_lagranges_equations()
rhs = lm.rhs()
print('{} = {}'.format(msprint(q1d.diff(t)),
    msprint(rhs[3].simplify())))
print('{} = {}'.format(msprint(q2d.diff(t)),
    msprint(rhs[4].simplify())))
print('{} = {}'.format(msprint(q3d.diff(t)),
    msprint(rhs[5].simplify())))
print('{} = {}'.format('λ', msprint(rhs[6].simplify())))
コード例 #3
0
ファイル: hw5.3.py プロジェクト: oliverlee/advanced_dynamics
from sympy.physics.mechanics import inertia, msprint
from sympy.physics.mechanics import Point, RigidBody
from sympy import pi, solve, symbols, simplify
from sympy import acos, sin, cos

# 2a
q1 = dynamicsymbols('q1')

px, py, pz = symbols('px py pz', real=True, positive=True)
sx, sy, sz = symbols('sx sy sz', real=True, sositive=True)
m, g, l0, k = symbols('m g l0 k', real=True, positive=True)
Ixx, Iyy, Izz = symbols('Ixx Iyy Izz', real=True, positive=True)

N = ReferenceFrame('N')
B = N.orientnew('B', 'axis', [q1, N.z])

pA = Point('A')
pA.set_vel(N, 0)

pP = pA.locatenew('P', l0 * N.y - 2 * l0 * N.z)

pS = pP.locatenew('S', -px * B.x - pz * B.z)

I = inertia(B, Ixx, Iyy, Izz, 0, 0, 0)
rb = RigidBody('plane', pS, B, m, (I, pS))
H = rb.angular_momentum(pS, N)
print('H about S in frame N = {}'.format(msprint(H)))
print('dH/dt = {}'.format(msprint(H.dt(N))))

print('a_S_N = {}'.format(pS.acc(N)))
コード例 #4
0
# calculate velocities in A
pC_star.v2pt_theory(pR, A, B)
pC_hat.v2pt_theory(pC_star, A, C)

# kinematic differential equations
#kde = [dot(C.ang_vel_in(A), x) - y for x, y in zip(B, u[:3])]
#kde += [x - y for x, y in zip(qd[3:], u[3:])]
#kde_map = solve(kde, qd)
kde = [x - y for x, y in zip(u, qd)]
kde_map = solve(kde, qd)
vc = map(lambda x: dot(pC_hat.vel(A), x), [A.x, A.y])
vc_map = solve(subs(vc, kde_map), [u4, u5])

# define disc rigidbody
IC = inertia(C, m*R**2/4, m*R**2/4, m*R**2/2)
rbC = RigidBody('rbC', pC_star, C, m, (IC, pC_star))
rbC.set_potential_energy(m*g*dot(pC_star.pos_from(pR), A.z))

# potential energy
V = rbC.potential_energy
print('V = {0}'.format(msprint(V)))

# kinetic energy
K = trigsimp(rbC.kinetic_energy(A).subs(kde_map).subs(vc_map))
print('K = {0}'.format(msprint(K)))

u_indep = [u1, u2, u3]
Fr = generalized_active_forces_K(K, q, u_indep, kde_map, vc_map)
# Fr + Fr* = 0 but the dynamical equations cannot be formulated by only
# kinetic energy as Fr = -Fr* for r = 1, ..., p
print('\ngeneralized active forces, Fr')
コード例 #5
0
def test_bicycle():
    if ON_TRAVIS:
        skip("Too slow for travis.")
    # Code to get equations of motion for a bicycle modeled as in:
    # J.P Meijaard, Jim M Papadopoulos, Andy Ruina and A.L Schwab. Linearized
    # dynamics equations for the balance and steer of a bicycle: a benchmark
    # and review. Proceedings of The Royal Society (2007) 463, 1955-1982
    # doi: 10.1098/rspa.2007.1857

    # Note that this code has been crudely ported from Autolev, which is the
    # reason for some of the unusual naming conventions. It was purposefully as
    # similar as possible in order to aide debugging.

    # Declare Coordinates & Speeds
    # Simple definitions for qdots - qd = u
    # Speeds are: yaw frame ang. rate, roll frame ang. rate, rear wheel frame
    # ang.  rate (spinning motion), frame ang. rate (pitching motion), steering
    # frame ang. rate, and front wheel ang. rate (spinning motion).
    # Wheel positions are ignorable coordinates, so they are not introduced.
    q1, q2, q4, q5 = dynamicsymbols('q1 q2 q4 q5')
    q1d, q2d, q4d, q5d = dynamicsymbols('q1 q2 q4 q5', 1)
    u1, u2, u3, u4, u5, u6 = dynamicsymbols('u1 u2 u3 u4 u5 u6')
    u1d, u2d, u3d, u4d, u5d, u6d = dynamicsymbols('u1 u2 u3 u4 u5 u6', 1)

    # Declare System's Parameters
    WFrad, WRrad, htangle, forkoffset = symbols('WFrad WRrad htangle forkoffset')
    forklength, framelength, forkcg1 = symbols('forklength framelength forkcg1')
    forkcg3, framecg1, framecg3, Iwr11 = symbols('forkcg3 framecg1 framecg3 Iwr11')
    Iwr22, Iwf11, Iwf22, Iframe11 = symbols('Iwr22 Iwf11 Iwf22 Iframe11')
    Iframe22, Iframe33, Iframe31, Ifork11 = symbols('Iframe22 Iframe33 Iframe31 Ifork11')
    Ifork22, Ifork33, Ifork31, g = symbols('Ifork22 Ifork33 Ifork31 g')
    mframe, mfork, mwf, mwr = symbols('mframe mfork mwf mwr')

    # Set up reference frames for the system
    # N - inertial
    # Y - yaw
    # R - roll
    # WR - rear wheel, rotation angle is ignorable coordinate so not oriented
    # Frame - bicycle frame
    # TempFrame - statically rotated frame for easier reference inertia definition
    # Fork - bicycle fork
    # TempFork - statically rotated frame for easier reference inertia definition
    # WF - front wheel, again posses a ignorable coordinate
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    R = Y.orientnew('R', 'Axis', [q2, Y.x])
    Frame = R.orientnew('Frame', 'Axis', [q4 + htangle, R.y])
    WR = ReferenceFrame('WR')
    TempFrame = Frame.orientnew('TempFrame', 'Axis', [-htangle, Frame.y])
    Fork = Frame.orientnew('Fork', 'Axis', [q5, Frame.x])
    TempFork = Fork.orientnew('TempFork', 'Axis', [-htangle, Fork.y])
    WF = ReferenceFrame('WF')

    # Kinematics of the Bicycle First block of code is forming the positions of
    # the relevant points
    # rear wheel contact -> rear wheel mass center -> frame mass center +
    # frame/fork connection -> fork mass center + front wheel mass center ->
    # front wheel contact point
    WR_cont = Point('WR_cont')
    WR_mc = WR_cont.locatenew('WR_mc', WRrad * R.z)
    Steer = WR_mc.locatenew('Steer', framelength * Frame.z)
    Frame_mc = WR_mc.locatenew('Frame_mc', - framecg1 * Frame.x
                                           + framecg3 * Frame.z)
    Fork_mc = Steer.locatenew('Fork_mc', - forkcg1 * Fork.x
                                         + forkcg3 * Fork.z)
    WF_mc = Steer.locatenew('WF_mc', forklength * Fork.x + forkoffset * Fork.z)
    WF_cont = WF_mc.locatenew('WF_cont', WFrad * (dot(Fork.y, Y.z) * Fork.y -
                                                  Y.z).normalize())

    # Set the angular velocity of each frame.
    # Angular accelerations end up being calculated automatically by
    # differentiating the angular velocities when first needed.
    # u1 is yaw rate
    # u2 is roll rate
    # u3 is rear wheel rate
    # u4 is frame pitch rate
    # u5 is fork steer rate
    # u6 is front wheel rate
    Y.set_ang_vel(N, u1 * Y.z)
    R.set_ang_vel(Y, u2 * R.x)
    WR.set_ang_vel(Frame, u3 * Frame.y)
    Frame.set_ang_vel(R, u4 * Frame.y)
    Fork.set_ang_vel(Frame, u5 * Fork.x)
    WF.set_ang_vel(Fork, u6 * Fork.y)

    # Form the velocities of the previously defined points, using the 2 - point
    # theorem (written out by hand here).  Accelerations again are calculated
    # automatically when first needed.
    WR_cont.set_vel(N, 0)
    WR_mc.v2pt_theory(WR_cont, N, WR)
    Steer.v2pt_theory(WR_mc, N, Frame)
    Frame_mc.v2pt_theory(WR_mc, N, Frame)
    Fork_mc.v2pt_theory(Steer, N, Fork)
    WF_mc.v2pt_theory(Steer, N, Fork)
    WF_cont.v2pt_theory(WF_mc, N, WF)

    # Sets the inertias of each body. Uses the inertia frame to construct the
    # inertia dyadics. Wheel inertias are only defined by principle moments of
    # inertia, and are in fact constant in the frame and fork reference frames;
    # it is for this reason that the orientations of the wheels does not need
    # to be defined. The frame and fork inertias are defined in the 'Temp'
    # frames which are fixed to the appropriate body frames; this is to allow
    # easier input of the reference values of the benchmark paper. Note that
    # due to slightly different orientations, the products of inertia need to
    # have their signs flipped; this is done later when entering the numerical
    # value.

    Frame_I = (inertia(TempFrame, Iframe11, Iframe22, Iframe33, 0, 0, Iframe31), Frame_mc)
    Fork_I = (inertia(TempFork, Ifork11, Ifork22, Ifork33, 0, 0, Ifork31), Fork_mc)
    WR_I = (inertia(Frame, Iwr11, Iwr22, Iwr11), WR_mc)
    WF_I = (inertia(Fork, Iwf11, Iwf22, Iwf11), WF_mc)

    # Declaration of the RigidBody containers. ::

    BodyFrame = RigidBody('BodyFrame', Frame_mc, Frame, mframe, Frame_I)
    BodyFork = RigidBody('BodyFork', Fork_mc, Fork, mfork, Fork_I)
    BodyWR = RigidBody('BodyWR', WR_mc, WR, mwr, WR_I)
    BodyWF = RigidBody('BodyWF', WF_mc, WF, mwf, WF_I)


    # The kinematic differential equations; they are defined quite simply. Each
    # entry in this list is equal to zero.
    kd = [q1d - u1, q2d - u2, q4d - u4, q5d - u5]

    # The nonholonomic constraints are the velocity of the front wheel contact
    # point dotted into the X, Y, and Z directions; the yaw frame is used as it
    # is "closer" to the front wheel (1 less DCM connecting them). These
    # constraints force the velocity of the front wheel contact point to be 0
    # in the inertial frame; the X and Y direction constraints enforce a
    # "no-slip" condition, and the Z direction constraint forces the front
    # wheel contact point to not move away from the ground frame, essentially
    # replicating the holonomic constraint which does not allow the frame pitch
    # to change in an invalid fashion.

    conlist_speed = [WF_cont.vel(N) & Y.x, WF_cont.vel(N) & Y.y, WF_cont.vel(N) & Y.z]

    # The holonomic constraint is that the position from the rear wheel contact
    # point to the front wheel contact point when dotted into the
    # normal-to-ground plane direction must be zero; effectively that the front
    # and rear wheel contact points are always touching the ground plane. This
    # is actually not part of the dynamic equations, but instead is necessary
    # for the lineraization process.

    conlist_coord = [WF_cont.pos_from(WR_cont) & Y.z]

    # The force list; each body has the appropriate gravitational force applied
    # at its mass center.
    FL = [(Frame_mc, -mframe * g * Y.z),
        (Fork_mc, -mfork * g * Y.z),
        (WF_mc, -mwf * g * Y.z),
        (WR_mc, -mwr * g * Y.z)]
    BL = [BodyFrame, BodyFork, BodyWR, BodyWF]


    # The N frame is the inertial frame, coordinates are supplied in the order
    # of independent, dependent coordinates, as are the speeds. The kinematic
    # differential equation are also entered here.  Here the dependent speeds
    # are specified, in the same order they were provided in earlier, along
    # with the non-holonomic constraints.  The dependent coordinate is also
    # provided, with the holonomic constraint.  Again, this is only provided
    # for the linearization process.

    KM = KanesMethod(N, q_ind=[q1, q2, q5],
            q_dependent=[q4], configuration_constraints=conlist_coord,
            u_ind=[u2, u3, u5],
            u_dependent=[u1, u4, u6], velocity_constraints=conlist_speed,
            kd_eqs=kd)
    (fr, frstar) = KM.kanes_equations(FL, BL)

    # This is the start of entering in the numerical values from the benchmark
    # paper to validate the eigen values of the linearized equations from this
    # model to the reference eigen values. Look at the aforementioned paper for
    # more information. Some of these are intermediate values, used to
    # transform values from the paper into the coordinate systems used in this
    # model.
    PaperRadRear                    =  0.3
    PaperRadFront                   =  0.35
    HTA                             =  evalf.N(pi / 2 - pi / 10)
    TrailPaper                      =  0.08
    rake                            =  evalf.N(-(TrailPaper*sin(HTA)-(PaperRadFront*cos(HTA))))
    PaperWb                         =  1.02
    PaperFrameCgX                   =  0.3
    PaperFrameCgZ                   =  0.9
    PaperForkCgX                    =  0.9
    PaperForkCgZ                    =  0.7
    FrameLength                     =  evalf.N(PaperWb*sin(HTA)-(rake-(PaperRadFront-PaperRadRear)*cos(HTA)))
    FrameCGNorm                     =  evalf.N((PaperFrameCgZ - PaperRadRear-(PaperFrameCgX/sin(HTA))*cos(HTA))*sin(HTA))
    FrameCGPar                      =  evalf.N((PaperFrameCgX / sin(HTA) + (PaperFrameCgZ - PaperRadRear - PaperFrameCgX / sin(HTA) * cos(HTA)) * cos(HTA)))
    tempa                           =  evalf.N((PaperForkCgZ - PaperRadFront))
    tempb                           =  evalf.N((PaperWb-PaperForkCgX))
    tempc                           =  evalf.N(sqrt(tempa**2+tempb**2))
    PaperForkL                      =  evalf.N((PaperWb*cos(HTA)-(PaperRadFront-PaperRadRear)*sin(HTA)))
    ForkCGNorm                      =  evalf.N(rake+(tempc * sin(pi/2-HTA-acos(tempa/tempc))))
    ForkCGPar                       =  evalf.N(tempc * cos((pi/2-HTA)-acos(tempa/tempc))-PaperForkL)

    # Here is the final assembly of the numerical values. The symbol 'v' is the
    # forward speed of the bicycle (a concept which only makes sense in the
    # upright, static equilibrium case?). These are in a dictionary which will
    # later be substituted in. Again the sign on the *product* of inertia
    # values is flipped here, due to different orientations of coordinate
    # systems.
    v = symbols('v')
    val_dict = {WFrad: PaperRadFront,
                WRrad: PaperRadRear,
                htangle: HTA,
                forkoffset: rake,
                forklength: PaperForkL,
                framelength: FrameLength,
                forkcg1: ForkCGPar,
                forkcg3: ForkCGNorm,
                framecg1: FrameCGNorm,
                framecg3: FrameCGPar,
                Iwr11: 0.0603,
                Iwr22: 0.12,
                Iwf11: 0.1405,
                Iwf22: 0.28,
                Ifork11: 0.05892,
                Ifork22: 0.06,
                Ifork33: 0.00708,
                Ifork31: 0.00756,
                Iframe11: 9.2,
                Iframe22: 11,
                Iframe33: 2.8,
                Iframe31: -2.4,
                mfork: 4,
                mframe: 85,
                mwf: 3,
                mwr: 2,
                g: 9.81,
                q1: 0,
                q2: 0,
                q4: 0,
                q5: 0,
                u1: 0,
                u2: 0,
                u3: v / PaperRadRear,
                u4: 0,
                u5: 0,
                u6: v / PaperRadFront}

    # Linearizes the forcing vector; the equations are set up as MM udot =
    # forcing, where MM is the mass matrix, udot is the vector representing the
    # time derivatives of the generalized speeds, and forcing is a vector which
    # contains both external forcing terms and internal forcing terms, such as
    # centripital or coriolis forces.  This actually returns a matrix with as
    # many rows as *total* coordinates and speeds, but only as many columns as
    # independent coordinates and speeds.

    forcing_lin = KM.linearize()[0]

    # As mentioned above, the size of the linearized forcing terms is expanded
    # to include both q's and u's, so the mass matrix must have this done as
    # well.  This will likely be changed to be part of the linearized process,
    # for future reference.
    MM_full = KM.mass_matrix_full

    MM_full_s = MM_full.subs(val_dict)
    forcing_lin_s = forcing_lin.subs(KM.kindiffdict()).subs(val_dict)


    MM_full_s = MM_full_s.evalf()
    forcing_lin_s = forcing_lin_s.evalf()

    # Finally, we construct an "A" matrix for the form xdot = A x (x being the
    # state vector, although in this case, the sizes are a little off). The
    # following line extracts only the minimum entries required for eigenvalue
    # analysis, which correspond to rows and columns for lean, steer, lean
    # rate, and steer rate.
    Amat = MM_full_s.inv() * forcing_lin_s
    A = Amat.extract([1, 2, 4, 6], [1, 2, 3, 5])

    # Precomputed for comparison
    Res = Matrix([[               0,                                           0,                  1.0,                    0],
                  [               0,                                           0,                    0,                  1.0],
                  [9.48977444677355, -0.891197738059089*v**2 - 0.571523173729245, -0.105522449805691*v, -0.330515398992311*v],
                  [11.7194768719633,   -1.97171508499972*v**2 + 30.9087533932407,   3.67680523332152*v,  -3.08486552743311*v]])


    # Actual eigenvalue comparison
    eps = 1.e-12
    for i in range(6):
        error = Res.subs(v, i) - A.subs(v, i)
        assert all(abs(x) < eps for x in error)
コード例 #6
0
ファイル: test_kane.py プロジェクト: tomtwohats/sympy
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and three
    # speed variables are need to describe this system, along with the disc's
    # mass and radius, and the local graivty (note that mass will drop out).
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)
    R.set_ang_acc(N,
                  R.ang_vel_in(N).dt(R) + (R.ang_vel_in(N) ^ R.ang_vel_in(N)))

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc mass center.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)
    Dmc.a2pt_theory(C, N, R)

    # This is a simple way to form the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    # Kinematic differential equations; how the generalized coordinate time
    # derivatives relate to generalized speeds.
    kd = [q1d - u3 / cos(q3), q2d - u1, q3d - u2 + u3 * tan(q2)]

    # Creation of the force list; it is the gravitational force at the mass
    # center of the disc. Then we create the disc by assigning a Point to the
    # mass center attribute, a ReferenceFrame to the frame attribute, and mass
    # and inertia. Then we form the body list.
    ForceList = [(Dmc, -m * g * Y.z)]
    BodyD = RigidBody()
    BodyD.mc = Dmc
    BodyD.inertia = (I, Dmc)
    BodyD.frame = R
    BodyD.mass = m
    BodyList = [BodyD]

    # Finally we form the equations of motion, using the same steps we did
    # before. Specify inertial frame, supply generalized speeds, supply
    # kinematic differential equation dictionary, compute Fr from the force
    # list and Fr* fromt the body list, compute the mass matrix and forcing
    # terms, then solve for the u dots (time derivatives of the generalized
    # speeds).
    KM = Kane(N)
    KM.coords([q1, q2, q3])
    KM.speeds([u1, u2, u3])
    KM.kindiffeq(kd)
    KM.kanes_equations(ForceList, BodyList)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    kdd = KM.kindiffdict()
    rhs = rhs.subs(kdd)
    assert rhs.expand() == Matrix([
        (10 * u2 * u3 * r - 5 * u3**2 * r * tan(q2) + 4 * g * sin(q2)) /
        (5 * r), -2 * u1 * u3 / 3, u1 * (-2 * u2 + u3 * tan(q2))
    ]).expand()
コード例 #7
0
q1, q2, q3 = dynamicsymbols('q1, q2 q3')
#omega1, omega2, omega3 = dynamicsymbols('ω1 ω2 ω3')
q1d, q2d = dynamicsymbols('q1, q2', level=1)
m, I11, I22, I33 = symbols('m I11 I22 I33', real=True, positive=True)

# reference frames
A = ReferenceFrame('A')
B = A.orientnew('B', 'body', [q1, q2, q3], 'xyz')

# points B*, O
pB_star = Point('B*')
pB_star.set_vel(A, 0)

# rigidbody B
I_B_Bs = inertia(B, I11, I22, I33)
rbB = RigidBody('rbB', pB_star, B, m, (I_B_Bs, pB_star))

# kinetic energy
K = rbB.kinetic_energy(A)  # velocity of point B* is zero
print('K_ω = {0}'.format(msprint(K)))

print('\nSince I11, I22, I33 are the central principal moments of inertia')
print('let I_min = I11, I_max = I33')
I_min = I11
I_max = I33
H = rbB.angular_momentum(pB_star, A)
K_min = dot(H, H) / I_max / 2
K_max = dot(H, H) / I_min / 2
print('K_ω_min = {0}'.format(msprint(K_min)))
print('K_ω_max = {0}'.format(msprint(K_max)))
コード例 #8
0
ファイル: run.py プロジェクト: atinariam/pydy
R = J1.locatenew('R', 0.5 * ob * B.y)
T = O.locatenew('T', 0.5 * ta * C.y)
P.v2pt_theory(J0, N, A)
R.v2pt_theory(J1, N, B)
T.v2pt_theory(O, N, C)

# Bodies
IP = inertia(A, 1 / 12 * m * (3 * r**2 + bb**2), 0,
             1 / 12 * m * (3 * r**2 + bb**2))
IP_tuple = (IP, P)
IR = inertia(B, 1 / 12 * m * (3 * r**2 + ob**2), 0,
             1 / 12 * m * (3 * r**2 + ob**2))
IR_tuple = (IR, R)
IBody = inertia(C, 1 / 12 * 0.1 * m * (ta)**2, 0, 1 / 12 * 0.1 * m * (ta)**2)
IBody_tuple = (IBody, T)
BodyP = RigidBody('BodyP', P, A, m, IP_tuple)
BodyR = RigidBody('BodyR', R, B, m, IR_tuple)
Pedaal = RigidBody('Pedaal', T, C, 0.1 * m, IBody_tuple)

#Force list and body list
FL = [(P, m * g * N.y), (R, m * g * N.y), (A, (-75 * q1 - 0.01 * u1) * A.z),
      (B, (-25 * q2 * B.z)), (C, (-25 * C.z))]
BL = [BodyP, BodyR, Pedaal]

# Define configuration constraints and obtain velocity constraints
cc = [J2.pos_from(S).magnitude()]
kd = [q1.diff() - u1, q1.diff() + q2.diff() - u2, theta.diff() - omega]
kd_map = solve(kd, [qi.diff() for qi in [q1, q2, theta]])
vc = [x.subs(kd_map) for x in [cc[0].diff(dynamicsymbols._t)]]

constants = [m, g, r, ob, bb, ta, d1, d2]
コード例 #9
0
# Point C* is moving in Reference Frame B
pC_star.set_vel(B, pC_star.pos_from(pB_star).diff(t, B))
pC_star.v1pt_theory(pB_star, E, B)

pD_star.set_vel(B, pC_star.vel(B))  # Point D* is fixed rel to Point C* in B
pD_star.v1pt_theory(pB_star, E, B)  # Point D* is moving in Reference Frame B

# --- define central inertias and rigid bodies ---
IA = inertia(A, A1, A2, A3)
IB = inertia(B, B1, B2, B3)
IC = inertia(B, C1, C2, C3)
ID = inertia(B, D11, D22, D33, D12, D23, D31)

# inertia[0] is defined to be the central inertia for each rigid body
rbA = RigidBody('rbA', pA_star, A, mA, (IA, pA_star))
rbB = RigidBody('rbB', pB_star, B, mB, (IB, pB_star))
rbC = RigidBody('rbC', pC_star, C, mC, (IC, pC_star))
rbD = RigidBody('rbD', pD_star, D, mD, (ID, pD_star))
bodies = [rbA, rbB, rbC, rbD]

## --- generalized speeds ---
kde = [
    u1 - dot(A.ang_vel_in(E), A.x), u2 - dot(B.ang_vel_in(A), B.y),
    u3 - dot(pC_star.vel(B), B.z)
]
kde_map = solve(kde, [q0d, q1d, q2d])
for k, v in kde_map.items():
    kde_map[k.diff(t)] = v.diff(t)

print('\nEx8.20')
コード例 #10
0
pC_star = Point('pC*')  # center of mass of rod
pA_star = pC_star.locatenew('pA*', L / 2 * C.x)  # center of disk A
pB_star = pC_star.locatenew('pB*', -L / 2 * C.x)  # center of disk A
pA_hat = pA_star.locatenew('pA^',
                           -r * C.z)  # contact point of disk A and ground
pB_hat = pB_star.locatenew('pB^',
                           -r * C.z)  # contact point of disk A and ground

pC_star.set_vel(N, v * C.y)
pA_star.v2pt_theory(pC_star, N, C)  # pA* and pC* are both fixed in frame C
pB_star.v2pt_theory(pC_star, N, C)  # pB* and pC* are both fixed in frame C
pA_hat.v2pt_theory(pA_star, N, A)  # pA* and pA^ are both fixed in frame A
pB_hat.v2pt_theory(pB_star, N, B)  # pB* and pB^ are both fixed in frame B

I_rod = inertia(C, 0, m0 * L**2 / 12, m0 * L**2 / 12, 0, 0, 0)
rbC = RigidBody('rod_C', pC_star, C, m0, (I_rod, pC_star))

I_discA = inertia(A, m * r**2 / 2, m * r**2 / 4, m * r**2 / 4, 0, 0, 0)
rbA = RigidBody('disc_A', pA_star, A, m, (I_discA, pA_star))

I_discB = inertia(B, m * r**2 / 2, m * r**2 / 4, m * r**2 / 4, 0, 0, 0)
rbB = RigidBody('disc_B', pB_star, B, m, (I_discB, pB_star))

print('omega_A_N = {}'.format(msprint(A.ang_vel_in(N).express(C))))
print('v_pA*_N = {}'.format(msprint(pA_hat.vel(N))))

qd_val = solve([dot(pA_hat.vel(N), C.y), dot(pB_hat.vel(N), C.y)], [q2d, q3d])
print(msprint(qd_val))

print('T_A = {}'.format(msprint(simplify(rbA.kinetic_energy(N).subs(qd_val)))))
print('T_B = {}'.format(msprint(simplify(rbB.kinetic_energy(N).subs(qd_val)))))
コード例 #11
0
    def __init__(self):

        self.coords = dynamicsymbols('q:3')
        self.speeds = dynamicsymbols('p:3')

        self.dynamic = list(self.coords) + list(self.speeds)
        self.states = ([radians(45) for x in self.coords] +
                       [radians(30) for x in self.speeds])

        self.inertial_ref_frame = ReferenceFrame('I')
        self.A = self.inertial_ref_frame.orientnew('A', 'space',
                                                   self.coords, 'XYZ')
        self.B = self.A.orientnew('B', 'space', self.speeds, 'XYZ')
        self.camera_ref_frame = \
            self.inertial_ref_frame.orientnew('C', 'space', (pi / 2, 0, 0),
                                              'XYZ')

        self.origin = Point('O')
        self.P1 = self.origin.locatenew('P1',
                                        10 * self.inertial_ref_frame.x +
                                        10 * self.inertial_ref_frame.y +
                                        10 * self.inertial_ref_frame.z)
        self.P2 = self.P1.locatenew('P2',
                                    10 * self.inertial_ref_frame.x +
                                    10 * self.inertial_ref_frame.y +
                                    10 * self.inertial_ref_frame.z)

        self.point_list1 = [[2, 3, 1], [4, 6, 2], [5, 3, 1], [5, 3, 6]]
        self.point_list2 = [[3, 1, 4], [3, 8, 2], [2, 1, 6], [2, 1, 1]]

        self.shape1 = Cylinder(1.0, 1.0)
        self.shape2 = Cylinder(1.0, 1.0, name='booger')

        self.Ixx, self.Iyy, self.Izz = symbols('Ixx, Iyy, Izz')
        self.mass = symbols('m')
        self.parameters = [self.Ixx, self.Iyy, self.Izz, self.mass]
        self.param_vals = [2.0, 3.0, 4.0, 5.0]
        self.inertia = inertia(self.A, self.Ixx, self.Iyy, self.Izz)

        self.rigid_body = RigidBody('rigid_body1', self.P1, self.A,
                                    self.mass, (self.inertia, self.P1))

        self.global_frame1 = VisualizationFrame('global_frame1', self.A,
                                                self.P1, self.shape1)

        self.global_frame2 = VisualizationFrame('global_frame2', self.B,
                                                self.P2, self.shape2)

        self.scene1 = Scene(self.inertial_ref_frame, self.origin,
                            (self.global_frame1, self.global_frame2),
                            name='scene')

        self.particle = Particle('particle1', self.P1, self.mass)

        q = self.coords
        c = cos
        s = sin
        # Here is the dragon ..
        self.transformation_matrix = [
            [c(q[1])*c(q[2]), s(q[2])*c(q[1]), -s(q[1]), 0],
            [s(q[0])*s(q[1])*c(q[2]) - s(q[2])*c(q[0]),
             s(q[0])*s(q[1])*s(q[2]) + c(q[0])*c(q[2]),
             s(q[0])*c(q[1]), 0],
            [s(q[0])*s(q[2]) + s(q[1])*c(q[0])*c(q[2]),
             -s(q[0])*c(q[2]) + s(q[1])*s(q[2])*c(q[0]),
             c(q[0])*c(q[1]), 0],
            [10, 10, 10, 1]]
コード例 #12
0
O = Point('O')
O.set_vel(B0, 0)
A = Point('A')
A.set_pos(O, L_1 * B1.x)
A.v2pt_theory(O, B0, B1)
CM_1 = Point('CM_1')
CM_1.set_pos(O, R_1 * B1.x)
CM_1.v2pt_theory(O, B0, B1)
CM_2 = Point('CM_2')
CM_2.set_pos(A, R_2 * B2.x)
CM_2.v2pt_theory(O, B0, B2)

# Corpos Rígidos
I_1 = inertia(B1, 0, 0, I_1_ZZ)
# Elo 1
E_1 = RigidBody('Elo_1', CM_1, B1, M_1, (I_1, CM_1))
I_2 = inertia(B1, 0, 0, I_1_ZZ)
# Elo 2
E_2 = RigidBody('Elo_2', CM_2, B2, M_2, (I_2, CM_2))

# Energia Potencial
P_1 = -M_1 * G * B0.z
R_1_CM = CM_1.pos_from(O).express(B0)
E_1.potential_energy = R_1_CM.dot(P_1)
P_2 = -M_2 * G * B0.z
R_2_CM = CM_2.pos_from(O).express(B0).simplify()
E_2.potential_energy = R_2_CM.dot(P_2)

# Forças/Momentos Generalizados
FL = [(B1, TAU_1 * B0.z), (B2, TAU_2 * B0.z)]
# Método de Lagrange
コード例 #13
0
com2.v2pt_theory(com_cart, N, link2_frame)

com3 = A.locatenew("com3", 0.5*link3_frame.y*d_links[1])  # Link 3
com3.v2pt_theory(A, N, link3_frame)

com4 = B.locatenew("com4", 0.5*link4_frame.y*d_links[1])  # Link 4
com4.v2pt_theory(B, N, link4_frame)

com = (com1, com2, com3, com4)

# ------------------------------- Rigid bodies -------------------------------

for i in range(4):
    j = floor(i/2)  # Index for link mass and length
    links.append(RigidBody(f"link{i}", com[i], frames[i],
                           m_links[j],
                           (inertia(frames[0], 0, 0, m_links[j]/12
                                    * d_links[j]**2), com[i])))


# ----------------------------------------------------------------------------
#                          Compute energy expressions
# ----------------------------------------------------------------------------

def set_pot_grav_energy(thing):
    # Set the potential gravitational energy for either a Particle or RigidBody
    # based on its height in the inertial frame N.
    try:
        point = thing.point
    except AttributeError:
        point = thing.masscenter
コード例 #14
0
inertia_C = inertia(C, 0.010932, 0.011127, 0.001043, 0.000000, 0.000606,
                    -0.000007)
inertia_D = inertia(D, 0.008147, 0.000631, 0.008316, -0.000001, -0.000500,
                    0.000000)
inertia_E = inertia(E, 0.001596, 0.001607, 0.000399, 0.000000, 0.000256,
                    0.000000)
inertia_F = inertia(F, 0.001641, 0.000410, 0.001641, 0.000000, -0.000278,
                    0.000000)
inertia_G = inertia(G, 0.000587, 0.000369, 0.000609, 0.000003, 0.000118,
                    0.000003)

# Inertia of the gripper
if gripper:
    inertia_H = inertia(H, 4180e-6, 5080e-6, 1250e-6)

body_A = RigidBody('body_A', Ao, A, mass_A, (inertia_A, Ao))
body_B = RigidBody('body_B', Bo, B, mass_B, (inertia_B, Bo))
body_C = RigidBody('body_C', Co, C, mass_C, (inertia_C, Co))
body_D = RigidBody('body_D', Do, D, mass_D, (inertia_D, Do))
body_E = RigidBody('body_E', Eo, E, mass_E, (inertia_E, Eo))
body_F = RigidBody('body_F', Fo, F, mass_F, (inertia_F, Fo))
body_G = RigidBody('body_G', Go, G, mass_G, (inertia_G, Go))

if gripper:
    body_H = RigidBody('body_H', Ho, H, mass_H, (inertia_H, Ho))

body_list = [body_A, body_B, body_C, body_D, body_E, body_F, body_G, body_H] \
    if gripper else [body_A, body_B, body_C, body_D, body_E, body_F, body_G]

force_list = [(Ao, N.x * g * mass_A),
              (Bo, N.x * g * mass_B),
コード例 #15
0
def test_non_central_inertia():
    # This tests that the calculation of Fr* does not depend the point
    # about which the inertia of a rigid body is defined. This test solves
    # exercises 8.12, 8.17 from Kane 1985.

    # Declare symbols
    q1, q2, q3 = dynamicsymbols('q1:4')
    q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
    u1, u2, u3, u4, u5 = dynamicsymbols('u1:6')
    u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
    a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
    Q1, Q2, Q3 = symbols('Q1, Q2 Q3')
    IA22, IA23, IA33 = symbols('IA22 IA23 IA33')

    # Reference Frames
    F = ReferenceFrame('F')
    P = F.orientnew('P', 'axis', [-theta, F.y])
    A = P.orientnew('A', 'axis', [q1, P.x])
    A.set_ang_vel(F, u1 * A.x + u3 * A.z)
    # define frames for wheels
    B = A.orientnew('B', 'axis', [q2, A.z])
    C = A.orientnew('C', 'axis', [q3, A.z])
    B.set_ang_vel(A, u4 * A.z)
    C.set_ang_vel(A, u5 * A.z)

    # define points D, S*, Q on frame A and their velocities
    pD = Point('D')
    pD.set_vel(A, 0)
    # u3 will not change v_D_F since wheels are still assumed to roll without slip.
    pD.set_vel(F, u2 * A.y)

    pS_star = pD.locatenew('S*', e * A.y)
    pQ = pD.locatenew('Q', f * A.y - R * A.x)
    for p in [pS_star, pQ]:
        p.v2pt_theory(pD, F, A)

    # masscenters of bodies A, B, C
    pA_star = pD.locatenew('A*', a * A.y)
    pB_star = pD.locatenew('B*', b * A.z)
    pC_star = pD.locatenew('C*', -b * A.z)
    for p in [pA_star, pB_star, pC_star]:
        p.v2pt_theory(pD, F, A)

    # points of B, C touching the plane P
    pB_hat = pB_star.locatenew('B^', -R * A.x)
    pC_hat = pC_star.locatenew('C^', -R * A.x)
    pB_hat.v2pt_theory(pB_star, F, B)
    pC_hat.v2pt_theory(pC_star, F, C)

    # the velocities of B^, C^ are zero since B, C are assumed to roll without slip
    kde = [q1d - u1, q2d - u4, q3d - u5]
    vc = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]

    # inertias of bodies A, B, C
    # IA22, IA23, IA33 are not specified in the problem statement, but are
    # necessary to define an inertia object. Although the values of
    # IA22, IA23, IA33 are not known in terms of the variables given in the
    # problem statement, they do not appear in the general inertia terms.
    inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
    inertia_B = inertia(B, K, K, J)
    inertia_C = inertia(C, K, K, J)

    # define the rigid bodies A, B, C
    rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
    rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
    rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))

    km = KanesMethod(F,
                     q_ind=[q1, q2, q3],
                     u_ind=[u1, u2],
                     kd_eqs=kde,
                     u_dependent=[u4, u5],
                     velocity_constraints=vc,
                     u_auxiliary=[u3])

    forces = [(pS_star, -M * g * F.x), (pQ, Q1 * A.x + Q2 * A.y + Q3 * A.z)]
    bodies = [rbA, rbB, rbC]
    with warns_deprecated_sympy():
        fr, fr_star = km.kanes_equations(forces, bodies)
    vc_map = solve(vc, [u4, u5])

    # KanesMethod returns the negative of Fr, Fr* as defined in Kane1985.
    fr_star_expected = Matrix([
        -(IA + 2 * J * b**2 / R**2 + 2 * K + mA * a**2 + 2 * mB * b**2) *
        u1.diff(t) - mA * a * u1 * u2,
        -(mA + 2 * mB + 2 * J / R**2) * u2.diff(t) + mA * a * u1**2, 0
    ])
    t = trigsimp(fr_star.subs(vc_map).subs({u3: 0})).doit().expand()
    assert ((fr_star_expected - t).expand() == zeros(3, 1))

    # define inertias of rigid bodies A, B, C about point D
    # I_S/O = I_S/S* + I_S*/O
    bodies2 = []
    for rb, I_star in zip([rbA, rbB, rbC], [inertia_A, inertia_B, inertia_C]):
        I = I_star + inertia_of_point_mass(rb.mass, rb.masscenter.pos_from(pD),
                                           rb.frame)
        bodies2.append(RigidBody('', rb.masscenter, rb.frame, rb.mass,
                                 (I, pD)))
    with warns_deprecated_sympy():
        fr2, fr_star2 = km.kanes_equations(forces, bodies2)

    t = trigsimp(fr_star2.subs(vc_map).subs({u3: 0})).doit()
    assert (fr_star_expected - t).expand() == zeros(3, 1)
コード例 #16
0
q1, q2, q3 = q = dynamicsymbols('q1:4')
q1d, q2d, q3d = qd = dynamicsymbols('q1:4', level=1)
u1, u2, u3 = u = dynamicsymbols('u1:4')
m, IB11, IB22, IB33 = symbols('m IB11 IB22 IB33')

# reference frames
A = ReferenceFrame('A')
B = A.orientnew('B', 'body', [q1, q2, q3], 'xyz')

# define a point fixed in both A and B
pO = Point('O')
pO.set_vel(A, 0)

# define the rigid body B
I = inertia(B, IB11, IB22, IB33)
rb = RigidBody('rbB', pO, B, m, (I, pO))


def coupled_speeds(ic_matrix, partials):
    ulist = partials.ulist
    print('dynamically coupled speeds:')
    found = False
    for i, r in enumerate(ulist):
        for j, s in enumerate(ulist[i + 1:], i + 1):
            if trigsimp(ic_matrix[i, j]) != 0:
                found = True
                print('{0} and {1}'.format(msprint(r), msprint(s)))
    if not found:
        print('None')

コード例 #17
0
def test_sub_qdot():
    # This test solves exercises 8.12, 8.17 from Kane 1985 and defines
    # some velocities in terms of q, qdot.

    ## --- Declare symbols ---
    q1, q2, q3 = dynamicsymbols('q1:4')
    q1d, q2d, q3d = dynamicsymbols('q1:4', level=1)
    u1, u2, u3 = dynamicsymbols('u1:4')
    u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta')
    a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t')
    IA22, IA23, IA33 = symbols('IA22 IA23 IA33')
    Q1, Q2, Q3 = symbols('Q1 Q2 Q3')

    # --- Reference Frames ---
    F = ReferenceFrame('F')
    P = F.orientnew('P', 'axis', [-theta, F.y])
    A = P.orientnew('A', 'axis', [q1, P.x])
    A.set_ang_vel(F, u1 * A.x + u3 * A.z)
    # define frames for wheels
    B = A.orientnew('B', 'axis', [q2, A.z])
    C = A.orientnew('C', 'axis', [q3, A.z])

    ## --- define points D, S*, Q on frame A and their velocities ---
    pD = Point('D')
    pD.set_vel(A, 0)
    # u3 will not change v_D_F since wheels are still assumed to roll w/o slip
    pD.set_vel(F, u2 * A.y)

    pS_star = pD.locatenew('S*', e * A.y)
    pQ = pD.locatenew('Q', f * A.y - R * A.x)
    # masscenters of bodies A, B, C
    pA_star = pD.locatenew('A*', a * A.y)
    pB_star = pD.locatenew('B*', b * A.z)
    pC_star = pD.locatenew('C*', -b * A.z)
    for p in [pS_star, pQ, pA_star, pB_star, pC_star]:
        p.v2pt_theory(pD, F, A)

    # points of B, C touching the plane P
    pB_hat = pB_star.locatenew('B^', -R * A.x)
    pC_hat = pC_star.locatenew('C^', -R * A.x)
    pB_hat.v2pt_theory(pB_star, F, B)
    pC_hat.v2pt_theory(pC_star, F, C)

    # --- relate qdot, u ---
    # the velocities of B^, C^ are zero since B, C are assumed to roll w/o slip
    kde = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]]
    kde += [u1 - q1d]
    kde_map = solve(kde, [q1d, q2d, q3d])
    for k, v in list(kde_map.items()):
        kde_map[k.diff(t)] = v.diff(t)

    # inertias of bodies A, B, C
    # IA22, IA23, IA33 are not specified in the problem statement, but are
    # necessary to define an inertia object. Although the values of
    # IA22, IA23, IA33 are not known in terms of the variables given in the
    # problem statement, they do not appear in the general inertia terms.
    inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
    inertia_B = inertia(B, K, K, J)
    inertia_C = inertia(C, K, K, J)

    # define the rigid bodies A, B, C
    rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
    rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
    rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))

    ## --- use kanes method ---
    km = KanesMethod(F, [q1, q2, q3], [u1, u2], kd_eqs=kde, u_auxiliary=[u3])

    forces = [(pS_star, -M * g * F.x), (pQ, Q1 * A.x + Q2 * A.y + Q3 * A.z)]
    bodies = [rbA, rbB, rbC]

    # Q2 = -u_prime * u2 * Q1 / sqrt(u2**2 + f**2 * u1**2)
    # -u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2) = R / Q1 * Q2
    fr_expected = Matrix([
        f * Q3 + M * g * e * sin(theta) * cos(q1),
        Q2 + M * g * sin(theta) * sin(q1),
        e * M * g * cos(theta) - Q1 * f - Q2 * R
    ])
    #Q1 * (f - u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2)))])
    fr_star_expected = Matrix([
        -(IA + 2 * J * b**2 / R**2 + 2 * K + mA * a**2 + 2 * mB * b**2) *
        u1.diff(t) - mA * a * u1 * u2,
        -(mA + 2 * mB + 2 * J / R**2) * u2.diff(t) + mA * a * u1**2, 0
    ])

    with warns_deprecated_sympy():
        fr, fr_star = km.kanes_equations(forces, bodies)
    assert (fr.expand() == fr_expected.expand())
    assert ((fr_star_expected - trigsimp(fr_star)).expand() == zeros(3, 1))
コード例 #18
0
lower_leg_mass, upper_leg_mass, torso_mass = symbols('m_L, m_U, m_T')

# Inertia
# =======

lower_leg_inertia, upper_leg_inertia, torso_inertia = symbols('I_Lz, I_Uz, I_Tz')

lower_leg_inertia_dyadic = inertia(lower_leg_frame, 0, 0, lower_leg_inertia)

lower_leg_central_inertia = (lower_leg_inertia_dyadic, lower_leg_mass_center)

upper_leg_inertia_dyadic = inertia(upper_leg_frame, 0, 0, upper_leg_inertia)

upper_leg_central_inertia = (upper_leg_inertia_dyadic, upper_leg_mass_center)

torso_inertia_dyadic = inertia(torso_frame, 0, 0, torso_inertia)

torso_central_inertia = (torso_inertia_dyadic, torso_mass_center)

# Rigid Bodies
# ============

lower_leg = RigidBody('Lower Leg', lower_leg_mass_center, lower_leg_frame,
                      lower_leg_mass, lower_leg_central_inertia)

upper_leg = RigidBody('Upper Leg', upper_leg_mass_center, upper_leg_frame,
                      upper_leg_mass, upper_leg_central_inertia)

torso = RigidBody('Torso', torso_mass_center, torso_frame,
                  torso_mass, torso_central_inertia)
コード例 #19
0
ファイル: Ex10.3.py プロジェクト: longhathuc/pydy_examples
vc = [dot(p.vel(R), basis) for p in [pS1, pS2] for basis in R]

# Since S is rolling against C, v_S^_C = 0.
pO.set_vel(C, 0)
pS_star.v2pt_theory(pO, C, A)
pS_hat.v2pt_theory(pS_star, C, S)
vc += [dot(pS_hat.vel(C), basis) for basis in A]

# Cone has only angular velocity ω in R.z direction.
vc += [dot(C.ang_vel_in(R), basis) for basis in [R.x, R.y]]
vc += [omega - dot(C.ang_vel_in(R), R.z)]

vc_map = solve(vc, u)

# cone rigidbody
I_C = inertia(A, I11, I22, J)
rbC = RigidBody('rbC', pO, C, M, (I_C, pO))
# sphere rigidbody
I_S = inertia(A, 2 * m * r**2 / 5, 2 * m * r**2 / 5, 2 * m * r**2 / 5)
rbS = RigidBody('rbS', pS_star, S, m, (I_S, pS_star))

# kinetic energy
K = radsimp(
    expand((rbC.kinetic_energy(R) + 4 * rbS.kinetic_energy(R)).subs(vc_map)))
print('K = {0}'.format(msprint(collect(K, omega**2 / 2))))

K_expected = (J + 18 * m * r**2 * (2 + sqrt(3)) / 5) * omega**2 / 2
#print('K_expected = {0}'.format(msprint(collect(expand(K_expected),
#                                                omega**2/2))))
assert expand(K - K_expected) == 0
コード例 #20
0
ファイル: hw5.4.py プロジェクト: oliverlee/advanced_dynamics
q1, q2 = dynamicsymbols('q1 q2')
q1d, q2d = dynamicsymbols('q1 q2', 1)
q1dd, q2dd = dynamicsymbols('q1 q2', 2)
m, Ia, It = symbols('m Ia It', real=True, positive=True)

N = ReferenceFrame('N')
F = N.orientnew('F', 'axis', [q1, N.z]) # gimbal frame
B = F.orientnew('B', 'axis', [q2, F.x]) # flywheel frame

P = Point('P')
P.set_vel(N, 0)
P.set_vel(F, 0)
P.set_vel(B, 0)

I = inertia(F, Ia, It, It, 0, 0, 0)
rb = RigidBody('flywheel', P, B, m, (I, P))

H = rb.angular_momentum(P, N)
print('H_P_N = {}\n    = {}'.format(H.express(N), H.express(F)))
dH = H.dt(N)
print('d^N(H_P_N)/dt = {}'.format(dH.express(F).subs(q2dd, 0)))

print('\ndH/dt = M')
print('M = {}'.format(dH.express(F).subs(q2dd, 0)))

print('\ncalculation using euler angles')
t = symbols('t')
omega = F.ang_vel_in(N)
wx = omega & F.x
wy = omega & F.y
wz = omega & F.z
コード例 #21
0
RBC_central_inertia = (RBC_dyadic,CoM_RBC)
LUB_central_inertia = (LUB_dyadic,CoM_LUB)
RUB_central_inertia = (RUB_dyadic,CoM_RUB)
LLB_central_inertia = (LLB_dyadic,CoM_LLB)
RLB_central_inertia = (RLB_dyadic,CoM_RLB)
Jbar_central_inertia = (Jbar_dyadic,CoM_Jbar)
LFT_central_inertia = (LFT_dyadic,CoM_LFT)
RFT_central_inertia = (RFT_dyadic,CoM_RFT)
LRT_central_inertia = (LRT_dyadic,CoM_LRT)
RRT_central_inertia = (RRT_dyadic,CoM_RRT)

# Rigid Bodies
# To completely define a rigid body, the mass center point, the reference frame, 
# the mass, and the inertia defined about a point must be specified

Chassis = RigidBody('Chassis',CoM_Chassis,Chassis_frame,m_Chassis,Chassis_central_inertia)
RP = RigidBody('RP',CoM_RP,RP_frame,m_RP,RP_central_inertia)
LUCA = RigidBody('LUCA',CoM_LUCA,LUCA_frame,m_LUCA,LUCA_central_inertia)
RUCA = RigidBody('RUCA',CoM_RUCA,RUCA_frame,m_RUCA,RUCA_central_inertia)
LLCA = RigidBody('LLCA',CoM_LLCA,LLCA_frame,m_LLCA,LLCA_central_inertia)
RLCA = RigidBody('RLCA',CoM_RLCA,RLCA_frame,m_RLCA,RLCA_central_inertia)
LSpdl = RigidBody('LSpdl',CoM_LSpdl,LSpdl_frame,m_LSpdl,LSpdl_central_inertia)
RSpdl = RigidBody('RSpdl',CoM_RSpdl,RSpdl_frame,m_RSpdl,RSpdl_central_inertia)
LTR = RigidBody('LTR',CoM_LTR,LTR_frame,m_LTR,LTR_central_inertia)
RTR = RigidBody('RTR',CoM_RTR,RTR_frame,m_RTR,RTR_central_inertia)
Hsg = RigidBody('Hsg',CoM_Hsg,Hsg_frame,m_Hsg,Hsg_central_inertia)
LBC = RigidBody('LBC',CoM_LBC,LBC_frame,m_LBC,LBC_central_inertia)
RBC = RigidBody('RBC',CoM_RBC,RBC_frame,m_RBC,RBC_central_inertia)
LUB = RigidBody('LUB',CoM_LUB,LUB_frame,m_LUB,LUB_central_inertia)
RUB = RigidBody('RUB',CoM_RUB,RUB_frame,m_RUB,RUB_central_inertia)
LLB = RigidBody('LLB',CoM_LLB,LLB_frame,m_LLB,LLB_central_inertia)
コード例 #22
0
upper_leg_right_inertia_dyadic = inertia(upper_leg_right_frame,
                                         upper_leg_inertia, upper_leg_inertia,
                                         upper_leg_inertia)
upper_leg_right_central_inertia = (upper_leg_right_inertia_dyadic,
                                   upper_leg_right_mass_center)
upper_leg_right_inertia_dyadic.to_matrix(upper_leg_right_frame)

lower_leg_right_inertia_dyadic = inertia(lower_leg_right_frame,
                                         lower_leg_inertia, lower_leg_inertia,
                                         lower_leg_inertia)
lower_leg_right_central_inertia = (lower_leg_right_inertia_dyadic,
                                   lower_leg_right_mass_center)
lower_leg_right_inertia_dyadic.to_matrix(lower_leg_right_frame)

lower_leg_left = RigidBody('Lower Leg Left', lower_leg_left_mass_center,
                           lower_leg_left_frame, lower_leg_mass,
                           lower_leg_left_central_inertia)

upper_leg_left = RigidBody('Upper Leg Left', upper_leg_left_mass_center,
                           upper_leg_left_frame, upper_leg_mass,
                           upper_leg_left_central_inertia)

hip = RigidBody('Hip', hip_mass_center, hip_frame, hip_mass,
                hip_central_inertia)

upper_leg_right = RigidBody('Upper Leg Right', upper_leg_right_mass_center,
                            upper_leg_right_frame, upper_leg_mass,
                            upper_leg_right_central_inertia)

lower_leg_right = RigidBody('Lower Leg Right', lower_leg_right_mass_center,
                            lower_leg_right_frame, lower_leg_mass,
コード例 #23
0
ファイル: hw4.x.py プロジェクト: oliverlee/advanced_dynamics
# velocity of the disk at the point of contact with the ground is not moving
# since the disk rolls without slipping.
pA = Point('pA')  # ball bearing A
pB = pA.locatenew('pB', -R * F1.y)  # ball bearing B

pA.set_vel(N, 0)
pA.set_vel(F1, 0)

pB.set_vel(F1, 0)
pB.set_vel(B, 0)
pB.v2pt_theory(pA, N, F1)

#pC.v2pt_theory(pB, N, B)
#print('\nvelocity of point C in N, v_C_N, at q1 = 0 = ')
#print(pC.vel(N).express(N).subs(q2d, q2d_val))

Ixx = m * r**2 / 4
Iyy = m * r**2 / 4
Izz = m * r**2 / 2
I_disc = inertia(B, Ixx, Iyy, Izz, 0, 0, 0)
rb_disc = RigidBody('Disc', pB, B, m, (I_disc, pB))

#T = rb_disc.kinetic_energy(N).subs({q2d: q2d_val}).subs({theta: theta_val})
T = rb_disc.kinetic_energy(N).subs({q2d: q2d_val})
print('T = {}'.format(msprint(simplify(T))))

values = {R: 1, r: 1, m: 0.5, theta: theta_val}
q1d_val = solve([-1 - q2d_val], q1d)[q1d]
#print(msprint(q1d_val))
print('T = {}'.format(msprint(simplify(T.subs(q1d, q1d_val).subs(values)))))
コード例 #24
0
                            izx=0.00)
j1_central_inertia = (j1_inertia_dyadic, j1_mass_center)
#pretty_print(j1_inertia_dyadic.to_matrix(j1_frame))

j2_inertia_dyadic = inertia(j2_frame,
                            0.018,
                            0.001,
                            0.018,
                            ixy=0.000,
                            iyz=0.000,
                            izx=0.00)
j2_central_inertia = (j2_inertia_dyadic, j2_mass_center)
#pretty_print(j2_inertia_dyadic.to_matrix(j2_frame))

#fully define rigid bodies
link0 = RigidBody('Link 0', j0_mass_center, j0_frame, j0_mass,
                  j0_central_inertia)
link1 = RigidBody('Link 1', j1_mass_center, j1_frame, j1_mass,
                  j1_central_inertia)
link2 = RigidBody('Link 2', j2_mass_center, j2_frame, j2_mass,
                  j2_central_inertia)

print("finished Inertia")

#Kinetics---------------------------------------------------------------
g = symbols('g')

#ASSUMES GRAVITY BEING COMPENSATED BY ROBOT
#exert forces at a point
#j0_grav_force = (j0_mass_center, -j0_mass * g * inertial_frame.y)
j0_grav_force = (j0_mass_center, 0 * inertial_frame.y)  #perp to dir of grav
j1_grav_force = (j1_mass_center, -j1_mass * g * inertial_frame.y)
コード例 #25
0
def test_rolling_disc():
    # Rolling Disc Example
    # Here the rolling disc is formed from the contact point up, removing the
    # need to introduce generalized speeds. Only 3 configuration and three
    # speed variables are need to describe this system, along with the disc's
    # mass and radius, and the local gravity (note that mass will drop out).
    q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1 q2 q3 u1 u2 u3')
    q1d, q2d, q3d, u1d, u2d, u3d = dynamicsymbols('q1 q2 q3 u1 u2 u3', 1)
    r, m, g = symbols('r m g')

    # The kinematics are formed by a series of simple rotations. Each simple
    # rotation creates a new frame, and the next rotation is defined by the new
    # frame's basis vectors. This example uses a 3-1-2 series of rotations, or
    # Z, X, Y series of rotations. Angular velocity for this is defined using
    # the second frame's basis (the lean frame).
    N = ReferenceFrame('N')
    Y = N.orientnew('Y', 'Axis', [q1, N.z])
    L = Y.orientnew('L', 'Axis', [q2, Y.x])
    R = L.orientnew('R', 'Axis', [q3, L.y])
    w_R_N_qd = R.ang_vel_in(N)
    R.set_ang_vel(N, u1 * L.x + u2 * L.y + u3 * L.z)

    # This is the translational kinematics. We create a point with no velocity
    # in N; this is the contact point between the disc and ground. Next we form
    # the position vector from the contact point to the disc's center of mass.
    # Finally we form the velocity and acceleration of the disc.
    C = Point('C')
    C.set_vel(N, 0)
    Dmc = C.locatenew('Dmc', r * L.z)
    Dmc.v2pt_theory(C, N, R)

    # This is a simple way to form the inertia dyadic.
    I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2)

    # Kinematic differential equations; how the generalized coordinate time
    # derivatives relate to generalized speeds.
    kd = [dot(R.ang_vel_in(N) - w_R_N_qd, uv) for uv in L]

    # Creation of the force list; it is the gravitational force at the mass
    # center of the disc. Then we create the disc by assigning a Point to the
    # center of mass attribute, a ReferenceFrame to the frame attribute, and mass
    # and inertia. Then we form the body list.
    ForceList = [(Dmc, -m * g * Y.z)]
    BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc))
    BodyList = [BodyD]

    # Finally we form the equations of motion, using the same steps we did
    # before. Specify inertial frame, supply generalized speeds, supply
    # kinematic differential equation dictionary, compute Fr from the force
    # list and Fr* from the body list, compute the mass matrix and forcing
    # terms, then solve for the u dots (time derivatives of the generalized
    # speeds).
    KM = KanesMethod(N, q_ind=[q1, q2, q3], u_ind=[u1, u2, u3], kd_eqs=kd)
    with warns_deprecated_sympy():
        KM.kanes_equations(ForceList, BodyList)
    MM = KM.mass_matrix
    forcing = KM.forcing
    rhs = MM.inv() * forcing
    kdd = KM.kindiffdict()
    rhs = rhs.subs(kdd)
    rhs.simplify()
    assert rhs.expand() == Matrix([
        (6 * u2 * u3 * r - u3**2 * r * tan(q2) + 4 * g * sin(q2)) / (5 * r),
        -2 * u1 * u3 / 3, u1 * (-2 * u2 + u3 * tan(q2))
    ]).expand()
    assert simplify(KM.rhs() -
                    KM.mass_matrix_full.LUsolve(KM.forcing_full)) == zeros(
                        6, 1)

    # This code tests our output vs. benchmark values. When r=g=m=1, the
    # critical speed (where all eigenvalues of the linearized equations are 0)
    # is 1 / sqrt(3) for the upright case.
    A = KM.linearize(A_and_B=True)[0]
    A_upright = A.subs({
        r: 1,
        g: 1,
        m: 1
    }).subs({
        q1: 0,
        q2: 0,
        q3: 0,
        u1: 0,
        u3: 0
    })
    import sympy
    assert sympy.sympify(A_upright.subs({u2: 1 / sqrt(3)})).eigenvals() == {
        S.Zero: 6
    }
コード例 #26
0
kde_map = solve(kde, [q1d, q2d, q3d, q4d, q5d])
vc = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]] + [dot(pD.vel(F), A.z)]
vc_map = solve(subs(vc, kde_map), [u3, u4, u5])

# inertias of bodies A, B, C
# IA22, IA23, IA33 are not specified in the problem statement, but are
# necessary to define an inertia object. Although the values of
# IA22, IA23, IA33 are not known in terms of the variables given in the
# problem statement, they do not appear in the general inertia terms.
inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0)
K = mB*R**2/4
J = mB*R**2/2
inertia_B = inertia(B, K, K, J)
inertia_C = inertia(C, K, K, J)

# define the rigid bodies A, B, C
rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star))
rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star))
rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star))
bodies = [rbA, rbB, rbC]

system = [i.masscenter for i in bodies] + [i.frame for i in bodies]
partials = partial_velocities(system, [u1, u2], F, kde_map, vc_map)

M = trigsimp(inertia_coefficient_matrix(bodies, partials))
print('inertia_coefficient_matrix = {0}'.format(msprint(M)))

M_expected = Matrix([[IA + mA*a**2 + mB*(R**2/2 + 3*b**2), 0],
                      [0, mA + 3*mB]])
assert expand(M - M_expected) == Matrix.zeros(2)
コード例 #27
0
def test_linearize_rolling_disc_kane():
    # Symbols for time and constant parameters
    t, r, m, g, v = symbols('t r m g v')

    # Configuration variables and their time derivatives
    q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7')
    q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q]

    # Generalized speeds and their time derivatives
    u = dynamicsymbols('u:6')
    u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7')
    u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u]

    # Reference frames
    N = ReferenceFrame('N')                   # Inertial frame
    NO = Point('NO')                          # Inertial origin
    A = N.orientnew('A', 'Axis', [q1, N.z])   # Yaw intermediate frame
    B = A.orientnew('B', 'Axis', [q2, A.x])   # Lean intermediate frame
    C = B.orientnew('C', 'Axis', [q3, B.y])   # Disc fixed frame
    CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z)      # Disc center

    # Disc angular velocity in N expressed using time derivatives of coordinates
    w_c_n_qd = C.ang_vel_in(N)
    w_b_n_qd = B.ang_vel_in(N)

    # Inertial angular velocity and angular acceleration of disc fixed frame
    C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z)

    # Disc center velocity in N expressed using time derivatives of coordinates
    v_co_n_qd = CO.pos_from(NO).dt(N)

    # Disc center velocity in N expressed using generalized speeds
    CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z)

    # Disc Ground Contact Point
    P = CO.locatenew('P', r*B.z)
    P.v2pt_theory(CO, N, C)

    # Configuration constraint
    f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)])

    # Velocity level constraints
    f_v = Matrix([dot(P.vel(N), uv) for uv in C])

    # Kinematic differential equations
    kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] +
                        [dot(v_co_n_qd - CO.vel(N), uv) for uv in N])
    qdots = solve(kindiffs, qd)

    # Set angular velocity of remaining frames
    B.set_ang_vel(N, w_b_n_qd.subs(qdots))
    C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N)))

    # Active forces
    F_CO = m*g*A.z

    # Create inertia dyadic of disc C about point CO
    I = (m * r**2) / 4
    J = (m * r**2) / 2
    I_C_CO = inertia(C, I, J, I)

    Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO))
    BL = [Disc]
    FL = [(CO, F_CO)]
    KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs,
            q_dependent=[q6], configuration_constraints=f_c,
            u_dependent=[u4, u5, u6], velocity_constraints=f_v)
    with warns_deprecated_sympy():
        (fr, fr_star) = KM.kanes_equations(FL, BL)

    # Test generalized form equations
    linearizer = KM.to_linearizer()
    assert linearizer.f_c == f_c
    assert linearizer.f_v == f_v
    assert linearizer.f_a == f_v.diff(t)
    sol = solve(linearizer.f_0 + linearizer.f_1, qd)
    for qi in qd:
        assert sol[qi] == qdots[qi]
    assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0])

    # Perform the linearization
    # Precomputed operating point
    q_op = {q6: -r*cos(q2)}
    u_op = {u1: 0,
            u2: sin(q2)*q1d + q3d,
            u3: cos(q2)*q1d,
            u4: -r*(sin(q2)*q1d + q3d)*cos(q3),
            u5: 0,
            u6: -r*(sin(q2)*q1d + q3d)*sin(q3)}
    qd_op = {q2d: 0,
             q4d: -r*(sin(q2)*q1d + q3d)*cos(q1),
             q5d: -r*(sin(q2)*q1d + q3d)*sin(q1),
             q6d: 0}
    ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5,
             u2d: 0,
             u3d: 0,
             u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2),
             u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5),
             u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)}

    A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True)

    upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1}

    # Precomputed solution
    A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1],
                    [0, 0, 0, 0, 0, 1, 0, 0],
                    [0, 0, 0, 0, 0, 0, 1, 0],
                    [sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0],
                    [-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0],
                    [0, Rational(4, 5), 0, 0, 0, 0, 0, 6*q3d/5],
                    [0, 0, 0, 0, 0, 0, 0, 0],
                    [0, 0, 0, 0, 0, -2*q3d, 0, 0]])
    B_sol = Matrix([])

    # Check that linearization is correct
    assert A.subs(upright_nominal) == A_sol
    assert B.subs(upright_nominal) == B_sol

    # Check eigenvalues at critical speed are all zero:
    assert A.subs(upright_nominal).subs(q3d, 1/sqrt(3)).eigenvals() == {0: 8}
コード例 #28
0
ファイル: Ex10.4.py プロジェクト: longhathuc/pydy_examples
from sympy.physics.mechanics import dot, dynamicsymbols, inertia, msprint


m, B11, B22, B33, B12, B23, B31 = symbols('m B11 B22 B33 B12 B23 B31')
q1, q2, q3, q4, q5, q6 = dynamicsymbols('q1:7')

# reference frames
A = ReferenceFrame('A')
B = A.orientnew('B', 'body', [q4, q5, q6], 'xyz')
omega = B.ang_vel_in(A)

# points B*, O
pB_star = Point('B*')
pO = pB_star.locatenew('O', q1*B.x + q2*B.y + q3*B.z)
pO.set_vel(A, 0)
pO.set_vel(B, 0)
pB_star.v2pt_theory(pO, A, B)

# rigidbody B
I_B_O = inertia(B, B11, B22, B33, B12, B23, B31)
rbB = RigidBody('rbB', pB_star, B, m, (I_B_O, pO))

# kinetic energy
K = rbB.kinetic_energy(A)
print('K = {0}'.format(msprint(trigsimp(K))))

K_expected = dot(dot(omega, I_B_O), omega)/2
print('K_expected = 1/2*omega*I*omega = {0}'.format(
        msprint(trigsimp(K_expected))))
assert expand(expand_trig(K - K_expected)) == 0