def test_not(): x = Symbol("x") r1 = x > -1 r2 = x <= -1 i = interval f1 = experimental_lambdify((x, ), r1) f2 = experimental_lambdify((x, ), r2) tt = i(-0.1, 0.1, is_valid=True) tn = i(-0.1, 0.1, is_valid=None) tf = i(-0.1, 0.1, is_valid=False) assert f1(tt) == ~f2(tt) assert f1(tn) == ~f2(tn) assert f1(tf) == ~f2(tf) nt = i(0.9, 1.1, is_valid=True) nn = i(0.9, 1.1, is_valid=None) nf = i(0.9, 1.1, is_valid=False) assert f1(nt) == ~f2(nt) assert f1(nn) == ~f2(nn) assert f1(nf) == ~f2(nf) ft = i(1.9, 2.1, is_valid=True) fn = i(1.9, 2.1, is_valid=None) ff = i(1.9, 2.1, is_valid=False) assert f1(ft) == ~f2(ft) assert f1(fn) == ~f2(fn) assert f1(ff) == ~f2(ff)
def test_composite_boolean_region(): x, y = symbols('x y') r1 = (x - 1)**2 + y**2 < 2 r2 = (x + 1)**2 + y**2 < 2 f = experimental_lambdify((x, y), r1 & r2) a = (interval(-0.1, 0.1), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(True, True) a = (interval(-1.1, -0.9), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(False, True) a = (interval(0.9, 1.1), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(False, True) a = (interval(-0.1, 0.1), interval(1.9, 2.1)) assert f(*a) == intervalMembership(False, True) f = experimental_lambdify((x, y), r1 | r2) a = (interval(-0.1, 0.1), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(True, True) a = (interval(-1.1, -0.9), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(True, True) a = (interval(0.9, 1.1), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(True, True) a = (interval(-0.1, 0.1), interval(1.9, 2.1)) assert f(*a) == intervalMembership(False, True) f = experimental_lambdify((x, y), r1 & ~r2) a = (interval(-0.1, 0.1), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(False, True) a = (interval(-1.1, -0.9), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(False, True) a = (interval(0.9, 1.1), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(True, True) a = (interval(-0.1, 0.1), interval(1.9, 2.1)) assert f(*a) == intervalMembership(False, True) f = experimental_lambdify((x, y), ~r1 & r2) a = (interval(-0.1, 0.1), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(False, True) a = (interval(-1.1, -0.9), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(True, True) a = (interval(0.9, 1.1), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(False, True) a = (interval(-0.1, 0.1), interval(1.9, 2.1)) assert f(*a) == intervalMembership(False, True) f = experimental_lambdify((x, y), ~r1 & ~r2) a = (interval(-0.1, 0.1), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(False, True) a = (interval(-1.1, -0.9), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(False, True) a = (interval(0.9, 1.1), interval(-0.1, 0.1)) assert f(*a) == intervalMembership(False, True) a = (interval(-0.1, 0.1), interval(1.9, 2.1)) assert f(*a) == intervalMembership(True, True)
def test_experimental_lambify(): x = Symbol('x') f = experimental_lambdify([x], Max(x, 5)) # XXX should f be tested? If f(2) is attempted, an # error is raised because a complex produced during wrapping of the arg # is being compared with an int. assert Max(2, 5) == 5 assert Max(5, 7) == 7 x = Symbol('x-3') f = experimental_lambdify([x], x + 1) assert f(1) == 2
def get_raster(self): func = experimental_lambdify((self.var_x, self.var_y), self.expr, use_interval=True) xinterval = interval(self.start_x, self.end_x) yinterval = interval(self.start_y, self.end_y) try: temp = func(xinterval, yinterval) except AttributeError: if self.use_interval_math: warnings.warn("Adaptive meshing could not be applied to the" " expression. Using uniform meshing.") self.use_interval_math = False if self.use_interval_math: return self._get_raster_interval(func) else: return self._get_meshes_grid()