コード例 #1
0
ファイル: test_plot.py プロジェクト: sidhu1012/sympy
def test_empty_Plot():
    if not matplotlib:
        skip("Matplotlib not the default backend")

    # No exception showing an empty plot
    plot()
    p = Plot()
    p.show()
コード例 #2
0
def test_empty_Plot():
    matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
    if not matplotlib:
        skip("Matplotlib not the default backend")
    from sympy.plotting.plot import Plot
    p = Plot()
    # No exception showing an empty plot
    p.show()
コード例 #3
0
ファイル: intpoly.py プロジェクト: sixpearls/sympy
def plot_polytope(poly):
    """Plots the 2D polytope using the functions written in plotting
    module which in turn uses matplotlib backend.
    Parameter
    =========
    poly: Denotes a 2-Polytope
    """
    from sympy.plotting.plot import Plot, List2DSeries

    xl = list(map(lambda vertex: vertex.x, poly.vertices))
    yl = list(map(lambda vertex: vertex.y, poly.vertices))

    xl.append(poly.vertices[0].x)  # Closing the polygon
    yl.append(poly.vertices[0].y)

    l2ds = List2DSeries(xl, yl)
    p = Plot(l2ds, axes='label_axes=True')
    p.show()
コード例 #4
0
def plot_polytope(poly):
    """Plots the 2D polytope using the functions written in plotting
    module which in turn uses matplotlib backend.
    Parameter
    =========
    poly: Denotes a 2-Polytope
    """
    from sympy.plotting.plot import Plot, List2DSeries

    xl = list(map(lambda vertex: vertex.x, poly.vertices))
    yl = list(map(lambda vertex: vertex.y, poly.vertices))

    xl.append(poly.vertices[0].x)  # Closing the polygon
    yl.append(poly.vertices[0].y)

    l2ds = List2DSeries(xl, yl)
    p = Plot(l2ds, axes='label_axes=True')
    p.show()
コード例 #5
0
def plot_point(expr, x_var=None, y_var=None, **kwargs):
    """A plot function to plot implicit equations / inequalities.

    Arguments
    =========

    - ``expr`` : The equation / inequality that is to be plotted.
    - ``x_var`` (optional) : symbol to plot on x-axis or tuple giving symbol
      and range as ``(symbol, xmin, xmax)``
    - ``y_var`` (optional) : symbol to plot on y-axis or tuple giving symbol
      and range as ``(symbol, ymin, ymax)``

    If neither ``x_var`` nor ``y_var`` are given then the free symbols in the
    expression will be assigned in the order they are sorted.

    The following keyword arguments can also be used:

    - ``adaptive``. Boolean. The default value is set to True. It has to be
        set to False if you want to use a mesh grid.

    - ``depth`` integer. The depth of recursion for adaptive mesh grid.
        Default value is 0. Takes value in the range (0, 4).

    - ``points`` integer. The number of points if adaptive mesh grid is not
        used. Default value is 200.

    - ``title`` string .The title for the plot.

    - ``xlabel`` string. The label for the x-axis

    - ``ylabel`` string. The label for the y-axis

    Aesthetics options:

    - ``line_color``: float or string. Specifies the color for the plot.
        See ``Plot`` to see how to set color for the plots.

    plot_implicit, by default, uses interval arithmetic to plot functions. If
    the expression cannot be plotted using interval arithmetic, it defaults to
    a generating a contour using a mesh grid of fixed number of points. By
    setting adaptive to False, you can force plot_implicit to use the mesh
    grid. The mesh grid method can be effective when adaptive plotting using
    interval arithmetic, fails to plot with small line width.

    Examples
    ========

    Plot expressions:

    >>> from sympy import plot_implicit, cos, sin, symbols, Eq, And
    >>> x, y = symbols('x y')

    Without any ranges for the symbols in the expression

    >>> p1 = plot_implicit(Eq(x**2 + y**2, 5))

    With the range for the symbols

    >>> p2 = plot_implicit(Eq(x**2 + y**2, 3),
    ...         (x, -3, 3), (y, -3, 3))

    With depth of recursion as argument.

    >>> p3 = plot_implicit(Eq(x**2 + y**2, 5),
    ...         (x, -4, 4), (y, -4, 4), depth = 2)

    Using mesh grid and not using adaptive meshing.

    >>> p4 = plot_implicit(Eq(x**2 + y**2, 5),
    ...         (x, -5, 5), (y, -2, 2), adaptive=False)

    Using mesh grid with number of points as input.

    >>> p5 = plot_implicit(Eq(x**2 + y**2, 5),
    ...         (x, -5, 5), (y, -2, 2),
    ...         adaptive=False, points=400)

    Plotting regions.

    >>> p6 = plot_implicit(y > x**2)

    Plotting Using boolean conjunctions.

    >>> p7 = plot_implicit(And(y > x, y > -x))

    When plotting an expression with a single variable (y - 1, for example),
    specify the x or the y variable explicitly:

    >>> p8 = plot_implicit(y - 1, y_var=y)
    >>> p9 = plot_implicit(x - 1, x_var=x)

    """
    has_equality = False  # Represents whether the expression contains an Equality,
                     #GreaterThan or LessThan

    def arg_expand(bool_expr):
        """
        Recursively expands the arguments of an Boolean Function
        """
        for arg in bool_expr.args:
            if isinstance(arg, BooleanFunction):
                arg_expand(arg)
            elif isinstance(arg, Relational):
                arg_list.append(arg)

    arg_list = []
    x_list = []
    y_list = []
    if isinstance(expr, BooleanFunction):
        arg_expand(expr)

    #Check whether there is an equality in the expression provided.
        if any(isinstance(e, (Equality, GreaterThan, LessThan))
               for e in arg_list):
            has_equality = True

    elif not isinstance(expr, Relational):
        for point in expr:
            if type(point) == Point2D:
                x_list.append(point[0])
                y_list.append(point[1])
            else:
                raise ValueError('tipo no esperado %s' % type(point))
        expr = x_list,y_list
        #has_equality = True
    elif isinstance(expr, (Equality, GreaterThan, LessThan)):
        has_equality = True

    xyvar = [i for i in (x_var, y_var) if i is not None]
    #free_symbols = expr.free_symbols
    #range_symbols = Tuple(*flatten(xyvar)).free_symbols
    #undeclared = free_symbols - range_symbols
    #if len(free_symbols & range_symbols) > 1:
    #    raise NotImplementedError("Point plotting is not implemented for "
    #                              "more than 1 variables")

    #Create default ranges if the range is not provided.
    default_range = Tuple(-5, 5)
    def _range_tuple(s):
        if isinstance(s, Symbol):
            return Tuple(s) + default_range
        if len(s) == 3:
            return Tuple(*s)
        raise ValueError('symbol or `(symbol, min, max)` expected but got %s' % s)

    #if len(xyvar) == 0:
    #    xyvar = list(_sort_gens(free_symbols))
    var_start_end_x = _range_tuple(xyvar[0])
    #x = var_start_end_x[0]
    #if len(xyvar) != 2:
    #    if x in undeclared or not undeclared:
    #        xyvar.append(Dummy('f(%s)' % x.name))
    #    else:
    #        xyvar.append(undeclared.pop())
    var_start_end_y = _range_tuple(xyvar[1])

    #use_interval = kwargs.pop('adaptive', True)
    #nb_of_points = kwargs.pop('points', 300)
    depth = kwargs.pop('depth', 0)
    line_color = kwargs.pop('tipomarca', "blue")
    #Check whether the depth is greater than 4 or less than 0.
    if depth > 4:
        depth = 4
    elif depth < 0:
        depth = 0

    series_argument = PlotSeries(expr, var_start_end_x, var_start_end_y,
                                      depth
                                    , line_color)
    show = kwargs.pop('show', True)

    #set the x and y limits
    kwargs['xlim'] = tuple(float(x) for x in var_start_end_x[1:])
    kwargs['ylim'] = tuple(float(y) for y in var_start_end_y[1:])
    # set the x and y labels
    kwargs.setdefault('xlabel', var_start_end_x[0].name)
    kwargs.setdefault('ylabel', var_start_end_y[0].name)
    p = Plot(series_argument, **kwargs)
    if show:
        p.show()
    return p