def dup_extract(f, g, K): """ Extract common content from a pair of polynomials in ``K[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.densetools import dup_extract >>> f = ZZ.map([6, 12, 18]) >>> g = ZZ.map([4, 8, 12]) >>> dup_extract(f, g, ZZ) (2, [3, 6, 9], [2, 4, 6]) """ fc = dup_content(f, K) gc = dup_content(g, K) gcd = K.gcd(fc, gc) if not K.is_one(gcd): f = dup_quo_ground(f, gcd, K) g = dup_quo_ground(g, gcd, K) return gcd, f, g
def dup_half_gcdex(f, g, K): """ Half extended Euclidean algorithm in `F[x]`. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.euclidtools import dup_half_gcdex >>> f = QQ.map([1, -2, -6, 12, 15]) >>> g = QQ.map([1, 1, -4, -4]) >>> dup_half_gcdex(f, g, QQ) ([-1/5, 3/5], [1/1, 1/1]) """ if not (K.has_Field or not K.is_Exact): raise DomainError("can't compute half extended GCD over %s" % K) a, b = [K.one], [] while g: q, r = dup_div(f, g, K) f, g = g, r a, b = b, dup_sub_mul(a, q, b, K) a = dup_quo_ground(a, dup_LC(f, K), K) f = dup_monic(f, K) return a, f
def dup_monic(f, K): """ Divides all coefficients by ``LC(f)`` in ``K[x]``. **Examples** >>> from sympy.polys.domains import ZZ, QQ >>> from sympy.polys.densetools import dup_monic >>> dup_monic([ZZ(3), ZZ(6), ZZ(9)], ZZ) [1, 2, 3] >>> dup_monic([QQ(3), QQ(4), QQ(2)], QQ) [1/1, 4/3, 2/3] """ if not f: return f lc = dup_LC(f, K) if K.is_one(lc): return f else: return dup_quo_ground(f, lc, K)
def dup_half_gcdex(f, g, K): """ Half extended Euclidean algorithm in `F[x]`. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy.polys import ring, QQ >>> R, x = ring("x", QQ) >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> R.dup_half_gcdex(f, g) (-1/5*x + 3/5, x + 1) """ if not K.has_Field: raise DomainError("can't compute half extended GCD over %s" % K) a, b = [K.one], [] while g: q, r = dup_div(f, g, K) f, g = g, r a, b = b, dup_sub_mul(a, q, b, K) a = dup_quo_ground(a, dup_LC(f, K), K) f = dup_monic(f, K) return a, f
def dup_primitive(f, K): """ Compute content and the primitive form of ``f`` in ``K[x]``. Examples ======== >>> from sympy.polys.domains import ZZ, QQ >>> from sympy.polys.densetools import dup_primitive >>> f = ZZ.map([6, 8, 12]) >>> g = QQ.map([6, 8, 12]) >>> dup_primitive(f, ZZ) (2, [3, 4, 6]) >>> dup_primitive(g, QQ) (2/1, [3/1, 4/1, 6/1]) """ if not f: return K.zero, f cont = dup_content(f, K) if K.is_one(cont): return cont, f else: return cont, dup_quo_ground(f, cont, K)
def dup_primitive(f, K): """ Compute content and the primitive form of ``f`` in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ, QQ >>> R, x = ring("x", ZZ) >>> f = 6*x**2 + 8*x + 12 >>> R.dup_primitive(f) (2, 3*x**2 + 4*x + 6) >>> R, x = ring("x", QQ) >>> f = 6*x**2 + 8*x + 12 >>> R.dup_primitive(f) (2, 3*x**2 + 4*x + 6) """ if not f: return K.zero, f cont = dup_content(f, K) if K.is_one(cont): return cont, f else: return cont, dup_quo_ground(f, cont, K)
def dup_factor_list(f, K0): """Factor univariate polynomials into irreducibles in `K[x]`. """ j, f = dup_terms_gcd(f, K0) cont, f = dup_primitive(f, K0) if K0.is_FiniteField: coeff, factors = dup_gf_factor(f, K0) elif K0.is_Algebraic: coeff, factors = dup_ext_factor(f, K0) else: if not K0.is_Exact: K0_inexact, K0 = K0, K0.get_exact() f = dup_convert(f, K0_inexact, K0) else: K0_inexact = None if K0.is_Field: K = K0.get_ring() denom, f = dup_clear_denoms(f, K0, K) f = dup_convert(f, K0, K) else: K = K0 if K.is_ZZ: coeff, factors = dup_zz_factor(f, K) elif K.is_Poly: f, u = dmp_inject(f, 0, K) coeff, factors = dmp_factor_list(f, u, K.dom) for i, (f, k) in enumerate(factors): factors[i] = (dmp_eject(f, u, K), k) coeff = K.convert(coeff, K.dom) else: # pragma: no cover raise DomainError('factorization not supported over %s' % K0) if K0.is_Field: for i, (f, k) in enumerate(factors): factors[i] = (dup_convert(f, K, K0), k) coeff = K0.convert(coeff, K) coeff = K0.quo(coeff, denom) if K0_inexact: for i, (f, k) in enumerate(factors): max_norm = dup_max_norm(f, K0) f = dup_quo_ground(f, max_norm, K0) f = dup_convert(f, K0, K0_inexact) factors[i] = (f, k) coeff = K0.mul(coeff, K0.pow(max_norm, k)) coeff = K0_inexact.convert(coeff, K0) K0 = K0_inexact if j: factors.insert(0, ([K0.one, K0.zero], j)) return coeff*cont, _sort_factors(factors)
def dup_extract(f, g, K): """ Extract common content from a pair of polynomials in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_extract(6*x**2 + 12*x + 18, 4*x**2 + 8*x + 12) (2, 3*x**2 + 6*x + 9, 2*x**2 + 4*x + 6) """ fc = dup_content(f, K) gc = dup_content(g, K) gcd = K.gcd(fc, gc) if not K.is_one(gcd): f = dup_quo_ground(f, gcd, K) g = dup_quo_ground(g, gcd, K) return gcd, f, g
def test_dup_quo_ground(): raises(ZeroDivisionError, lambda: dup_quo_ground(dup_normal([1,2,3], ZZ), ZZ(0), ZZ)) f = dup_normal([], ZZ) assert dup_quo_ground(f, ZZ(3), ZZ) == dup_normal([], ZZ) f = dup_normal([6,2,8], ZZ) assert dup_quo_ground(f, ZZ(1), ZZ) == f assert dup_quo_ground(f, ZZ(2), ZZ) == dup_normal([3,1,4], ZZ) assert dup_quo_ground(f, ZZ(3), ZZ) == dup_normal([2,0,2], ZZ) f = dup_normal([6,2,8], QQ) assert dup_quo_ground(f, QQ(1), QQ) == f assert dup_quo_ground(f, QQ(2), QQ) == [QQ(3),QQ(1),QQ(4)] assert dup_quo_ground(f, QQ(7), QQ) == [QQ(6,7),QQ(2,7),QQ(8,7)]
def test_dup_quo_ground(): raises(ZeroDivisionError, 'dup_quo_ground(dup_normal([1,2,3], ZZ), ZZ(0), ZZ)') raises(ExactQuotientFailed, 'dup_quo_ground(dup_normal([1,2,3], ZZ), ZZ(3), ZZ)') f = dup_normal([], ZZ) assert dup_quo_ground(f, ZZ(3), ZZ) == dup_normal([], ZZ) f = dup_normal([6,2,8], ZZ) assert dup_quo_ground(f, ZZ(1), ZZ) == f assert dup_quo_ground(f, ZZ(2), ZZ) == dup_normal([3,1,4], ZZ) f = dup_normal([6,2,8], QQ) assert dup_quo_ground(f, QQ(1), QQ) == f assert dup_quo_ground(f, QQ(2), QQ) == [QQ(3),QQ(1),QQ(4)] assert dup_quo_ground(f, QQ(7), QQ) == [QQ(6,7),QQ(2,7),QQ(8,7)]
def dup_inner_subresultants(f, g, K): """ Subresultant PRS algorithm in ``K[x]``. Computes the subresultant polynomial remainder sequence (PRS) of ``f`` and ``g``, and the values for $\\beta_i$ and $\\delta_i$. The last two sequences of values are necessary for computing the resultant in :func:`dup_prs_resultant`. **Examples** >>> from sympy.polys.domains import ZZ >>> from sympy.polys.euclidtools import dup_inner_subresultants >>> f = ZZ.map([1, 0, 1]) >>> g = ZZ.map([1, 0, -1]) >>> dup_inner_subresultants(f, g, ZZ) ([[1, 0, 1], [1, 0, -1], [-2]], [-1, -1], [0, 2]) """ n = dup_degree(f) m = dup_degree(g) if n < m: f, g = g, f n, m = m, n R = [f, g] d = n - m b = (-K.one)**(d + 1) c = -K.one B, D = [b], [d] if not f or not g: return R, B, D h = dup_prem(f, g, K) h = dup_mul_ground(h, b, K) while h: k = dup_degree(h) R.append(h) lc = dup_LC(g, K) if not d: q = c else: q = c**(d - 1) c = K.quo((-lc)**d, q) b = -lc * c**(m - k) f, g, m, d = g, h, k, m - k B.append(b) D.append(d) h = dup_prem(f, g, K) h = dup_quo_ground(h, b, K) return R, B, D
def dup_inner_subresultants(f, g, K): """ Subresultant PRS algorithm in `K[x]`. Computes the subresultant polynomial remainder sequence (PRS) and the non-zero scalar subresultants of `f` and `g`. By [1] Thm. 3, these are the constants '-c' (- to optimize computation of sign). The first subdeterminant is set to 1 by convention to match the polynomial and the scalar subdeterminants. If 'deg(f) < deg(g)', the subresultants of '(g,f)' are computed. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_inner_subresultants(x**2 + 1, x**2 - 1) ([x**2 + 1, x**2 - 1, -2], [1, 1, 4]) References ========== [1] W.S. Brown, The Subresultant PRS Algorithm. ACM Transaction of Mathematical Software 4 (1978) 237-249 """ n = dup_degree(f) m = dup_degree(g) if n < m: f, g = g, f n, m = m, n if not f: return [], [] if not g: return [f], [K.one] R = [f, g] d = n - m b = (-K.one)**(d + 1) h = dup_prem(f, g, K) h = dup_mul_ground(h, b, K) lc = dup_LC(g, K) c = lc**d # Conventional first scalar subdeterminant is 1 S = [K.one, c] c = -c while h: k = dup_degree(h) R.append(h) f, g, m, d = g, h, k, m - k b = -lc * c**d h = dup_prem(f, g, K) h = dup_quo_ground(h, b, K) lc = dup_LC(g, K) if d > 1: # abnormal case q = c**(d - 1) c = K.quo((-lc)**d, q) else: c = -lc S.append(-c) return R, S
def dup_inner_subresultants(f, g, K): """ Subresultant PRS algorithm in `K[x]`. Computes the subresultant polynomial remainder sequence (PRS) of `f` and `g`, and the values for `\beta_i` and `\delta_i`. The last two sequences of values are necessary for computing the resultant in :func:`dup_prs_resultant`. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.euclidtools import dup_inner_subresultants >>> f = ZZ.map([1, 0, 1]) >>> g = ZZ.map([1, 0, -1]) >>> dup_inner_subresultants(f, g, ZZ) ([[1, 0, 1], [1, 0, -1], [-2]], [-1, -1], [0, 2]) """ n = dup_degree(f) m = dup_degree(g) if n < m: f, g = g, f n, m = m, n R = [f, g] d = n - m b = (-K.one)**(d+1) c = -K.one B, D = [b], [d] if not f or not g: return R, B, D h = dup_prem(f, g, K) h = dup_mul_ground(h, b, K) while h: k = dup_degree(h) R.append(h) lc = dup_LC(g, K) if not d: q = c else: q = c**(d-1) c = K.quo((-lc)**d, q) b = -lc * c**(m-k) f, g, m, d = g, h, k, m-k B.append(b) D.append(d) h = dup_prem(f, g, K) h = dup_quo_ground(h, b, K) return R, B, D
def dup_inner_subresultants(f, g, K): """ Subresultant PRS algorithm in `K[x]`. Computes the subresultant polynomial remainder sequence (PRS) of `f` and `g`, and the values for `\beta_i` and `\delta_i`. The last two sequences of values are necessary for computing the resultant in :func:`dup_prs_resultant`. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_inner_subresultants(x**2 + 1, x**2 - 1) ([x**2 + 1, x**2 - 1, -2], [-1, -1], [0, 2]) """ n = dup_degree(f) m = dup_degree(g) if n < m: f, g = g, f n, m = m, n R = [f, g] d = n - m b = (-K.one)**(d + 1) c = -K.one B, D = [b], [d] if not f or not g: return R, B, D h = dup_prem(f, g, K) h = dup_mul_ground(h, b, K) while h: k = dup_degree(h) R.append(h) lc = dup_LC(g, K) if not d: q = c else: q = c**(d - 1) c = K.quo((-lc)**d, q) b = -lc * c**(m - k) f, g, m, d = g, h, k, m - k B.append(b) D.append(d) h = dup_prem(f, g, K) h = dup_quo_ground(h, b, K) return R, B, D