def dmp_pow(f, n, u, K): """Raise f to the n-th power in `K[X]`. """ if not u: return dup_pow(f, n, K) if not n: return dmp_one(u, K) if n < 0: raise ValueError("can't raise polynomial to a negative power") if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K): return f g = dmp_one(u, K) while True: n, m = n // 2, n if m & 1: g = dmp_mul(g, f, u, K) if not n: break f = dmp_sqr(f, u, K) return g
def dmp_fateman_poly_F_1(n, K): """Fateman's GCD benchmark: trivial GCD """ u = [K(1), K(0)] for i in range(0, n): u = [dmp_one(i, K), u] v = [K(1), K(0), K(0)] for i in range(0, n): v = [dmp_one(i, K), dmp_zero(i), v] m = n - 1 U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K) V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K) f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]] W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K) Y = dmp_raise(f, m, 1, K) F = dmp_mul(U, V, n, K) G = dmp_mul(W, Y, n, K) H = dmp_one(n, K) return F, G, H
def dmp_pow(f, n, u, K): """Raise f to the n-th power in `K[X]`. """ if not u: return dup_pow(f, n, K) if not n: return dmp_one(u, K) if n < 0: raise ValueError("can't raise polynomial to a negative power") if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K): return f g = dmp_one(u, K) while True: n, m = n//2, n if m & 1: g = dmp_mul(g, f, u, K) if not n: break f = dmp_sqr(f, u, K) return g
def dmp_fateman_poly_F_1(n, K): """Fateman's GCD benchmark: trivial GCD """ u = [K(1), K(0)] for i in xrange(0, n): u = [dmp_one(i, K), u] v = [K(1), K(0), K(0)] for i in xrange(0, n): v = [dmp_one(i, K), dmp_zero(i), v] m = n - 1 U = dmp_add_term(u, dmp_ground(K(1), m), 0, n, K) V = dmp_add_term(u, dmp_ground(K(2), m), 0, n, K) f = [[-K(3), K(0)], [], [K(1), K(0), -K(1)]] W = dmp_add_term(v, dmp_ground(K(1), m), 0, n, K) Y = dmp_raise(f, m, 1, K) F = dmp_mul(U, V, n, K) G = dmp_mul(W, Y, n, K) H = dmp_one(n, K) return F, G, H
def _dmp_inner_gcd(f, g, u, K): """Helper function for `dmp_inner_gcd()`. """ if not K.is_Exact: try: exact = K.get_exact() except DomainError: return dmp_one(u, K), f, g f = dmp_convert(f, u, K, exact) g = dmp_convert(g, u, K, exact) h, cff, cfg = _dmp_inner_gcd(f, g, u, exact) h = dmp_convert(h, u, exact, K) cff = dmp_convert(cff, u, exact, K) cfg = dmp_convert(cfg, u, exact, K) return h, cff, cfg elif K.has_Field: if K.is_QQ and query('USE_HEU_GCD'): try: return dmp_qq_heu_gcd(f, g, u, K) except HeuristicGCDFailed: pass return dmp_ff_prs_gcd(f, g, u, K) else: if K.is_ZZ and query('USE_HEU_GCD'): try: return dmp_zz_heu_gcd(f, g, u, K) except HeuristicGCDFailed: pass return dmp_rr_prs_gcd(f, g, u, K)
def dmp_expand(polys, u, K): """ Multiply together several polynomials in ``K[X]``. **Examples** >>> from sympy.polys.domains import ZZ >>> from sympy.polys.densearith import dmp_expand >>> f = ZZ.map([[1], [], [1, 0, 0]]) >>> g = ZZ.map([[1], [1]]) >>> dmp_expand([f, g], 1, ZZ) [[1], [1], [1, 0, 0], [1, 0, 0]] """ if not polys: return dmp_one(u, K) f = polys[0] for g in polys[1:]: f = dmp_mul(f, g, u, K) return f
def dmp_fateman_poly_F_3(n, K): """Fateman's GCD benchmark: sparse inputs (deg f ~ vars f) """ u = dup_from_raw_dict({n+1: K.one}, K) for i in xrange(0, n-1): u = dmp_add_term([u], dmp_one(i, K), n+1, i+1, K) v = dmp_add_term(u, dmp_ground(K(2), n-2), 0, n, K) f = dmp_sqr(dmp_add_term([dmp_neg(v, n-1, K)], dmp_one(n-1, K), n+1, n, K), n, K) g = dmp_sqr(dmp_add_term([v], dmp_one(n-1, K), n+1, n, K), n, K) v = dmp_add_term(u, dmp_one(n-2, K), 0, n-1, K) h = dmp_sqr(dmp_add_term([v], dmp_one(n-1, K), n+1, n, K), n, K) return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
def dmp_fateman_poly_F_2(n, K): """Fateman's GCD benchmark: linearly dense quartic inputs """ u = [K(1), K(0)] for i in range(0, n - 1): u = [dmp_one(i, K), u] m = n - 1 v = dmp_add_term(u, dmp_ground(K(2), m - 1), 0, n, K) f = dmp_sqr([dmp_one(m, K), dmp_neg(v, m, K)], n, K) g = dmp_sqr([dmp_one(m, K), v], n, K) v = dmp_add_term(u, dmp_one(m - 1, K), 0, n, K) h = dmp_sqr([dmp_one(m, K), v], n, K) return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
def dmp_fateman_poly_F_2(n, K): """Fateman's GCD benchmark: linearly dense quartic inputs """ u = [K(1), K(0)] for i in xrange(0, n - 1): u = [dmp_one(i, K), u] m = n - 1 v = dmp_add_term(u, dmp_ground(K(2), m - 1), 0, n, K) f = dmp_sqr([dmp_one(m, K), dmp_neg(v, m, K)], n, K) g = dmp_sqr([dmp_one(m, K), v], n, K) v = dmp_add_term(u, dmp_one(m - 1, K), 0, n, K) h = dmp_sqr([dmp_one(m, K), v], n, K) return dmp_mul(f, h, n, K), dmp_mul(g, h, n, K), h
def _parse(cls, rep, dom, lev=None): if type(rep) is tuple: num, den = rep if lev is not None: if type(num) is dict: num = dmp_from_dict(num, lev, dom) if type(den) is dict: den = dmp_from_dict(den, lev, dom) else: num, num_lev = dmp_validate(num) den, den_lev = dmp_validate(den) if num_lev == den_lev: lev = num_lev else: raise ValueError('inconsistent number of levels') if dmp_zero_p(den, lev): raise ZeroDivisionError('fraction denominator') if dmp_zero_p(num, lev): den = dmp_one(lev, dom) else: if dmp_negative_p(den, lev, dom): num = dmp_neg(num, lev, dom) den = dmp_neg(den, lev, dom) else: num = rep if lev is not None: if type(num) is dict: num = dmp_from_dict(num, lev, dom) elif type(num) is not list: num = dmp_ground(dom.convert(num), lev) else: num, lev = dmp_validate(num) den = dmp_one(lev, dom) return num, den, lev
def dmp_expand(polys, u, K): """Multiply together several polynomials in `K[X]`. """ if not polys: return dmp_one(u, K) f = polys[0] for g in polys[1:]: f = dmp_mul(f, g, u, K) return f
def _dmp_rr_trivial_gcd(f, g, u, K): """Handle trivial cases in GCD algorithm over a ring. """ zero_f = dmp_zero_p(f, u) zero_g = dmp_zero_p(g, u) if zero_f and zero_g: return tuple(dmp_zeros(3, u, K)) elif zero_f: if K.is_nonnegative(dmp_ground_LC(g, u, K)): return g, dmp_zero(u), dmp_one(u, K) else: return dmp_neg(g, u, K), dmp_zero(u), dmp_ground(-K.one, u) elif zero_g: if K.is_nonnegative(dmp_ground_LC(f, u, K)): return f, dmp_one(u, K), dmp_zero(u) else: return dmp_neg(f, u, K), dmp_ground(-K.one, u), dmp_zero(u) elif query('USE_SIMPLIFY_GCD'): return _dmp_simplify_gcd(f, g, u, K) else: return None
def dmp_pow(f, n, u, K): """ Raise ``f`` to the ``n``-th power in ``K[X]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.densearith import dmp_pow >>> f = ZZ.map([[1, 0], [1]]) >>> dmp_pow(f, 3, 1, ZZ) [[1, 0, 0, 0], [3, 0, 0], [3, 0], [1]] """ if not u: return dup_pow(f, n, K) if not n: return dmp_one(u, K) if n < 0: raise ValueError("can't raise polynomial to a negative power") if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K): return f g = dmp_one(u, K) while True: n, m = n//2, n if m & 1: g = dmp_mul(g, f, u, K) if not n: break f = dmp_sqr(f, u, K) return g
def dmp_pow(f, n, u, K): """ Raise ``f`` to the ``n``-th power in ``K[X]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.densearith import dmp_pow >>> f = ZZ.map([[1, 0], [1]]) >>> dmp_pow(f, 3, 1, ZZ) [[1, 0, 0, 0], [3, 0, 0], [3, 0], [1]] """ if not u: return dup_pow(f, n, K) if not n: return dmp_one(u, K) if n < 0: raise ValueError("can't raise polynomial to a negative power") if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K): return f g = dmp_one(u, K) while True: n, m = n // 2, n if m & 1: g = dmp_mul(g, f, u, K) if not n: break f = dmp_sqr(f, u, K) return g
def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K): """Wang/EEZ: Compute correct leading coefficients. """ C, J, v = [], [0] * len(E), u - 1 for h in H: c = dmp_one(v, K) d = dup_LC(h, K) * cs for i in reversed(xrange(len(E))): k, e, (t, _) = 0, E[i], T[i] while not (d % e): d, k = d // e, k + 1 if k != 0: c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1 C.append(c) if any(not j for j in J): raise ExtraneousFactors # pragma: no cover CC, HH = [], [] for c, h in zip(C, H): d = dmp_eval_tail(c, A, v, K) lc = dup_LC(h, K) if K.is_one(cs): cc = lc // d else: g = K.gcd(lc, d) d, cc = d // g, lc // g h, cs = dup_mul_ground(h, d, K), cs // d c = dmp_mul_ground(c, cc, v, K) CC.append(c) HH.append(h) if K.is_one(cs): return f, HH, CC CCC, HHH = [], [] for c, h in zip(CC, HH): CCC.append(dmp_mul_ground(c, cs, v, K)) HHH.append(dmp_mul_ground(h, cs, 0, K)) f = dmp_mul_ground(f, cs**(len(H) - 1), u, K) return f, HHH, CCC
def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K): """Wang/EEZ: Compute correct leading coefficients. """ C, J, v = [], [0]*len(E), u-1 for h in H: c = dmp_one(v, K) d = dup_LC(h, K)*cs for i in reversed(xrange(len(E))): k, e, (t, _) = 0, E[i], T[i] while not (d % e): d, k = d//e, k+1 if k != 0: c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1 C.append(c) if any([ not j for j in J ]): raise ExtraneousFactors # pragma: no cover CC, HH = [], [] for c, h in zip(C, H): d = dmp_eval_tail(c, A, v, K) lc = dup_LC(h, K) if K.is_one(cs): cc = lc//d else: g = K.gcd(lc, d) d, cc = d//g, lc//g h, cs = dup_mul_ground(h, d, K), cs//d c = dmp_mul_ground(c, cc, v, K) CC.append(c) HH.append(h) if K.is_one(cs): return f, HH, CC CCC, HHH = [], [] for c, h in zip(CC, HH): CCC.append(dmp_mul_ground(c, cs, v, K)) HHH.append(dmp_mul_ground(h, cs, 0, K)) f = dmp_mul_ground(f, cs**(len(H)-1), u, K) return f, HHH, CCC
def dmp_pow(f, n, u, K): """ Raise ``f`` to the ``n``-th power in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_pow(x*y + 1, 3) x**3*y**3 + 3*x**2*y**2 + 3*x*y + 1 """ if not u: return dup_pow(f, n, K) if not n: return dmp_one(u, K) if n < 0: raise ValueError("can't raise polynomial to a negative power") if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K): return f g = dmp_one(u, K) while True: n, m = n // 2, n if m & 1: g = dmp_mul(g, f, u, K) if not n: break f = dmp_sqr(f, u, K) return g
def dmp_pow(f, n, u, K): """ Raise ``f`` to the ``n``-th power in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_pow(x*y + 1, 3) x**3*y**3 + 3*x**2*y**2 + 3*x*y + 1 """ if not u: return dup_pow(f, n, K) if not n: return dmp_one(u, K) if n < 0: raise ValueError("can't raise polynomial to a negative power") if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K): return f g = dmp_one(u, K) while True: n, m = n//2, n if m & 1: g = dmp_mul(g, f, u, K) if not n: break f = dmp_sqr(f, u, K) return g
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K): """Wang/EEZ: Parallel Hensel lifting algorithm. """ S, n, v = [f], len(A), u-1 H = list(H) for i, a in enumerate(reversed(A[1:])): s = dmp_eval_in(S[0], a, n-i, u-i, K) S.insert(0, dmp_ground_trunc(s, p, v-i, K)) d = max(dmp_degree_list(f, u)[1:]) for j, s, a in zip(xrange(2, n+2), S, A): G, w = list(H), j-1 I, J = A[:j-2], A[j-1:] for i, (h, lc) in enumerate(zip(H, LC)): lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w-1, K) H[i] = [lc] + dmp_raise(h[1:], 1, w-1, K) m = dmp_nest([K.one, -a], w, K) M = dmp_one(w, K) c = dmp_sub(s, dmp_expand(H, w, K), w, K) dj = dmp_degree_in(s, w, w) for k in xrange(0, dj): if dmp_zero_p(c, w): break M = dmp_mul(M, m, w, K) C = dmp_diff_eval_in(c, k+1, a, w, w, K) if not dmp_zero_p(C, w-1): C = dmp_quo_ground(C, K.factorial(k+1), w-1, K) T = dmp_zz_diophantine(G, C, I, d, p, w-1, K) for i, (h, t) in enumerate(zip(H, T)): h = dmp_add_mul(h, dmp_raise(t, 1, w-1, K), M, w, K) H[i] = dmp_ground_trunc(h, p, w, K) h = dmp_sub(s, dmp_expand(H, w, K), w, K) c = dmp_ground_trunc(h, p, w, K) if dmp_expand(H, u, K) != f: raise ExtraneousFactors # pragma: no cover else: return H
def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K): """Wang/EEZ: Parallel Hensel lifting algorithm. """ S, n, v = [f], len(A), u - 1 H = list(H) for i, a in enumerate(reversed(A[1:])): s = dmp_eval_in(S[0], a, n - i, u - i, K) S.insert(0, dmp_ground_trunc(s, p, v - i, K)) d = max(dmp_degree_list(f, u)[1:]) for j, s, a in zip(xrange(2, n + 2), S, A): G, w = list(H), j - 1 I, J = A[:j - 2], A[j - 1:] for i, (h, lc) in enumerate(zip(H, LC)): lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w - 1, K) H[i] = [lc] + dmp_raise(h[1:], 1, w - 1, K) m = dmp_nest([K.one, -a], w, K) M = dmp_one(w, K) c = dmp_sub(s, dmp_expand(H, w, K), w, K) dj = dmp_degree_in(s, w, w) for k in xrange(0, dj): if dmp_zero_p(c, w): break M = dmp_mul(M, m, w, K) C = dmp_diff_eval_in(c, k + 1, a, w, w, K) if not dmp_zero_p(C, w - 1): C = dmp_quo_ground(C, K.factorial(k + 1), w - 1, K) T = dmp_zz_diophantine(G, C, I, d, p, w - 1, K) for i, (h, t) in enumerate(zip(H, T)): h = dmp_add_mul(h, dmp_raise(t, 1, w - 1, K), M, w, K) H[i] = dmp_ground_trunc(h, p, w, K) h = dmp_sub(s, dmp_expand(H, w, K), w, K) c = dmp_ground_trunc(h, p, w, K) if dmp_expand(H, u, K) != f: raise ExtraneousFactors # pragma: no cover else: return H
def dmp_expand(polys, u, K): """ Multiply together several polynomials in ``K[X]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_expand([x**2 + y**2, x + 1]) x**3 + x**2 + x*y**2 + y**2 """ if not polys: return dmp_one(u, K) f = polys[0] for g in polys[1:]: f = dmp_mul(f, g, u, K) return f
def test_dmp_one(): assert dmp_one(0, ZZ) == [ZZ(1)] assert dmp_one(2, ZZ) == [[[ZZ(1)]]]
def dmp_zz_diophantine(F, c, A, d, p, u, K): """Wang/EEZ: Solve multivariate Diophantine equations. """ if not A: S = [[] for _ in F] n = dup_degree(c) for i, coeff in enumerate(c): if not coeff: continue T = dup_zz_diophantine(F, n - i, p, K) for j, (s, t) in enumerate(zip(S, T)): t = dup_mul_ground(t, coeff, K) S[j] = dup_trunc(dup_add(s, t, K), p, K) else: n = len(A) e = dmp_expand(F, u, K) a, A = A[-1], A[:-1] B, G = [], [] for f in F: B.append(dmp_quo(e, f, u, K)) G.append(dmp_eval_in(f, a, n, u, K)) C = dmp_eval_in(c, a, n, u, K) v = u - 1 S = dmp_zz_diophantine(G, C, A, d, p, v, K) S = [dmp_raise(s, 1, v, K) for s in S] for s, b in zip(S, B): c = dmp_sub_mul(c, s, b, u, K) c = dmp_ground_trunc(c, p, u, K) m = dmp_nest([K.one, -a], n, K) M = dmp_one(n, K) for k in xrange(0, d): if dmp_zero_p(c, u): break M = dmp_mul(M, m, u, K) C = dmp_diff_eval_in(c, k + 1, a, n, u, K) if not dmp_zero_p(C, v): C = dmp_quo_ground(C, K.factorial(k + 1), v, K) T = dmp_zz_diophantine(G, C, A, d, p, v, K) for i, t in enumerate(T): T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K) for i, (s, t) in enumerate(zip(S, T)): S[i] = dmp_add(s, t, u, K) for t, b in zip(T, B): c = dmp_sub_mul(c, t, b, u, K) c = dmp_ground_trunc(c, p, u, K) S = [dmp_ground_trunc(s, p, u, K) for s in S] return S
def dmp_prs_resultant(f, g, u, K): """ Resultant algorithm in `K[X]` using subresultant PRS. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> f = 3*x**2*y - y**3 - 4 >>> g = x**2 + x*y**3 - 9 >>> a = 3*x*y**4 + y**3 - 27*y + 4 >>> b = -3*y**10 - 12*y**7 + y**6 - 54*y**4 + 8*y**3 + 729*y**2 - 216*y + 16 >>> res, prs = R.dmp_prs_resultant(f, g) >>> res == b # resultant has n-1 variables False >>> res == b.drop(x) True >>> prs == [f, g, a, b] True """ if not u: return dup_prs_resultant(f, g, K) if dmp_zero_p(f, u) or dmp_zero_p(g, u): return (dmp_zero(u - 1), []) R, B, D = dmp_inner_subresultants(f, g, u, K) if dmp_degree(R[-1], u) > 0: return (dmp_zero(u - 1), R) if dmp_one_p(R[-2], u, K): return (dmp_LC(R[-1], K), R) s, i, v = 1, 1, u - 1 p = dmp_one(v, K) q = dmp_one(v, K) for b, d in list(zip(B, D))[:-1]: du = dmp_degree(R[i - 1], u) dv = dmp_degree(R[i ], u) dw = dmp_degree(R[i + 1], u) if du % 2 and dv % 2: s = -s lc, i = dmp_LC(R[i], K), i + 1 p = dmp_mul(dmp_mul(p, dmp_pow(b, dv, v, K), v, K), dmp_pow(lc, du - dw, v, K), v, K) q = dmp_mul(q, dmp_pow(lc, dv*(1 + d), v, K), v, K) _, p, q = dmp_inner_gcd(p, q, v, K) if s < 0: p = dmp_neg(p, v, K) i = dmp_degree(R[-2], u) res = dmp_pow(dmp_LC(R[-1], K), i, v, K) res = dmp_quo(dmp_mul(res, p, v, K), q, v, K) return res, R
def dmp_prs_resultant(f, g, u, K): """ Resultant algorithm in `K[X]` using subresultant PRS. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.euclidtools import dmp_prs_resultant >>> f = ZZ.map([[3, 0], [], [-1, 0, 0, -4]]) >>> g = ZZ.map([[1], [1, 0, 0, 0], [-9]]) >>> a = ZZ.map([[3, 0, 0, 0, 0], [1, 0, -27, 4]]) >>> b = ZZ.map([[-3, 0, 0, -12, 1, 0, -54, 8, 729, -216, 16]]) >>> dmp_prs_resultant(f, g, 1, ZZ) == (b[0], [f, g, a, b]) True """ if not u: return dup_prs_resultant(f, g, K) if dmp_zero_p(f, u) or dmp_zero_p(g, u): return (dmp_zero(u - 1), []) R, B, D = dmp_inner_subresultants(f, g, u, K) if dmp_degree(R[-1], u) > 0: return (dmp_zero(u - 1), R) if dmp_one_p(R[-2], u, K): return (dmp_LC(R[-1], K), R) s, i, v = 1, 1, u - 1 p = dmp_one(v, K) q = dmp_one(v, K) for b, d in list(zip(B, D))[:-1]: du = dmp_degree(R[i - 1], u) dv = dmp_degree(R[i], u) dw = dmp_degree(R[i + 1], u) if du % 2 and dv % 2: s = -s lc, i = dmp_LC(R[i], K), i + 1 p = dmp_mul(dmp_mul(p, dmp_pow(b, dv, v, K), v, K), dmp_pow(lc, du - dw, v, K), v, K) q = dmp_mul(q, dmp_pow(lc, dv * (1 + d), v, K), v, K) _, p, q = dmp_inner_gcd(p, q, v, K) if s < 0: p = dmp_neg(p, v, K) i = dmp_degree(R[-2], u) res = dmp_pow(dmp_LC(R[-1], K), i, v, K) res = dmp_quo(dmp_mul(res, p, v, K), q, v, K) return res, R
def dmp_prs_resultant(f, g, u, K): """ Resultant algorithm in ``K[X]`` using subresultant PRS. **Examples** >>> from sympy.polys.domains import ZZ >>> from sympy.polys.euclidtools import dmp_prs_resultant >>> f = ZZ.map([[3, 0], [], [-1, 0, 0, -4]]) >>> g = ZZ.map([[1], [1, 0, 0, 0], [-9]]) >>> a = ZZ.map([[3, 0, 0, 0, 0], [1, 0, -27, 4]]) >>> b = ZZ.map([[-3, 0, 0, -12, 1, 0, -54, 8, 729, -216, 16]]) >>> dmp_prs_resultant(f, g, 1, ZZ) == (b[0], [f, g, a, b]) True """ if not u: return dup_prs_resultant(f, g, K) if dmp_zero_p(f, u) or dmp_zero_p(g, u): return (dmp_zero(u-1), []) R, B, D = dmp_inner_subresultants(f, g, u, K) if dmp_degree(R[-1], u) > 0: return (dmp_zero(u-1), R) if dmp_one_p(R[-2], u, K): return (dmp_LC(R[-1], K), R) s, i, v = 1, 1, u-1 p = dmp_one(v, K) q = dmp_one(v, K) for b, d in zip(B, D)[:-1]: du = dmp_degree(R[i-1], u) dv = dmp_degree(R[i ], u) dw = dmp_degree(R[i+1], u) if du % 2 and dv % 2: s = -s lc, i = dmp_LC(R[i], K), i+1 p = dmp_mul(dmp_mul(p, dmp_pow(b, dv, v, K), v, K), dmp_pow(lc, du-dw, v, K), v, K) q = dmp_mul(q, dmp_pow(lc, dv*(1+d), v, K), v, K) _, p, q = dmp_inner_gcd(p, q, v, K) if s < 0: p = dmp_neg(p, v, K) i = dmp_degree(R[-2], u) res = dmp_pow(dmp_LC(R[-1], K), i, v, K) res = dmp_exquo(dmp_mul(res, p, v, K), q, v, K) return res, R
def dmp_zz_diophantine(F, c, A, d, p, u, K): """Wang/EEZ: Solve multivariate Diophantine equations. """ if not A: S = [ [] for _ in F ] n = dup_degree(c) for i, coeff in enumerate(c): if not coeff: continue T = dup_zz_diophantine(F, n-i, p, K) for j, (s, t) in enumerate(zip(S, T)): t = dup_mul_ground(t, coeff, K) S[j] = dup_trunc(dup_add(s, t, K), p, K) else: n = len(A) e = dmp_expand(F, u, K) a, A = A[-1], A[:-1] B, G = [], [] for f in F: B.append(dmp_quo(e, f, u, K)) G.append(dmp_eval_in(f, a, n, u, K)) C = dmp_eval_in(c, a, n, u, K) v = u - 1 S = dmp_zz_diophantine(G, C, A, d, p, v, K) S = [ dmp_raise(s, 1, v, K) for s in S ] for s, b in zip(S, B): c = dmp_sub_mul(c, s, b, u, K) c = dmp_ground_trunc(c, p, u, K) m = dmp_nest([K.one, -a], n, K) M = dmp_one(n, K) for k in xrange(0, d): if dmp_zero_p(c, u): break M = dmp_mul(M, m, u, K) C = dmp_diff_eval_in(c, k+1, a, n, u, K) if not dmp_zero_p(C, v): C = dmp_quo_ground(C, K.factorial(k+1), v, K) T = dmp_zz_diophantine(G, C, A, d, p, v, K) for i, t in enumerate(T): T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K) for i, (s, t) in enumerate(zip(S, T)): S[i] = dmp_add(s, t, u, K) for t, b in zip(T, B): c = dmp_sub_mul(c, t, b, u, K) c = dmp_ground_trunc(c, p, u, K) S = [ dmp_ground_trunc(s, p, u, K) for s in S ] return S