def test_lfsr_sequence(): raises(TypeError, lambda: lfsr_sequence(1, [1], 1)) raises(TypeError, lambda: lfsr_sequence([1], 1, 1)) F = FF(2) assert lfsr_sequence([F(1)], [F(1)], 2) == [F(1), F(1)] assert lfsr_sequence([F(0)], [F(1)], 2) == [F(1), F(0)] F = FF(3) assert lfsr_sequence([F(1)], [F(1)], 2) == [F(1), F(1)] assert lfsr_sequence([F(0)], [F(2)], 2) == [F(2), F(0)] assert lfsr_sequence([F(1)], [F(2)], 2) == [F(2), F(2)]
def test_Domain_preprocess(): assert Domain.preprocess(ZZ) == ZZ assert Domain.preprocess(QQ) == QQ assert Domain.preprocess(EX) == EX assert Domain.preprocess(FF(2)) == FF(2) assert Domain.preprocess(ZZ[x, y]) == ZZ[x, y] assert Domain.preprocess('Z') == ZZ assert Domain.preprocess('Q') == QQ assert Domain.preprocess('ZZ') == ZZ assert Domain.preprocess('QQ') == QQ assert Domain.preprocess('EX') == EX assert Domain.preprocess('FF(23)') == FF(23) assert Domain.preprocess('GF(23)') == GF(23) raises(OptionError, lambda: Domain.preprocess('Z[]')) assert Domain.preprocess('Z[x]') == ZZ[x] assert Domain.preprocess('Q[x]') == QQ[x] assert Domain.preprocess('ZZ[x]') == ZZ[x] assert Domain.preprocess('QQ[x]') == QQ[x] assert Domain.preprocess('Z[x,y]') == ZZ[x, y] assert Domain.preprocess('Q[x,y]') == QQ[x, y] assert Domain.preprocess('ZZ[x,y]') == ZZ[x, y] assert Domain.preprocess('QQ[x,y]') == QQ[x, y] raises(OptionError, lambda: Domain.preprocess('Z()')) assert Domain.preprocess('Z(x)') == ZZ.frac_field(x) assert Domain.preprocess('Q(x)') == QQ.frac_field(x) assert Domain.preprocess('ZZ(x)') == ZZ.frac_field(x) assert Domain.preprocess('QQ(x)') == QQ.frac_field(x) assert Domain.preprocess('Z(x,y)') == ZZ.frac_field(x, y) assert Domain.preprocess('Q(x,y)') == QQ.frac_field(x, y) assert Domain.preprocess('ZZ(x,y)') == ZZ.frac_field(x, y) assert Domain.preprocess('QQ(x,y)') == QQ.frac_field(x, y) assert Domain.preprocess('Q<I>') == QQ.algebraic_field(I) assert Domain.preprocess('QQ<I>') == QQ.algebraic_field(I) assert Domain.preprocess('Q<sqrt(2), I>') == QQ.algebraic_field(sqrt(2), I) assert Domain.preprocess('QQ<sqrt(2), I>') == QQ.algebraic_field( sqrt(2), I) raises(OptionError, lambda: Domain.preprocess('abc'))
def test_supplement_a_subspace_1(): M = DM([[1, 7, 0], [2, 3, 4]], QQ).transpose() # First supplement over QQ: B = supplement_a_subspace(M) assert B[:, :2] == M assert B[:, 2] == DomainMatrix.eye(3, QQ).to_dense()[:, 0] # Now supplement over FF(7): M = M.convert_to(FF(7)) B = supplement_a_subspace(M) assert B[:, :2] == M # When we work mod 7, first col of M goes to [1, 0, 0], # so the supplementary vector cannot equal this, as it did # when we worked over QQ. Instead, we get the second std basis vector: assert B[:, 2] == DomainMatrix.eye(3, FF(7)).to_dense()[:, 1]
def test_lfsr_connection_polynomial(): F = FF(2) x = symbols("x") s = lfsr_sequence([F(1), F(0)], [F(0), F(1)], 5) assert lfsr_connection_polynomial(s) == x**2 + 1 s = lfsr_sequence([F(1), F(1)], [F(0), F(1)], 5) assert lfsr_connection_polynomial(s) == x**2 + x + 1
def test_dup_mul(): assert dup_mul([], [], ZZ) == [] assert dup_mul([], [ZZ(1)], ZZ) == [] assert dup_mul([ZZ(1)], [], ZZ) == [] assert dup_mul([ZZ(1)], [ZZ(1)], ZZ) == [ZZ(1)] assert dup_mul([ZZ(5)], [ZZ(7)], ZZ) == [ZZ(35)] assert dup_mul([], [], QQ) == [] assert dup_mul([], [QQ(1,2)], QQ) == [] assert dup_mul([QQ(1,2)], [], QQ) == [] assert dup_mul([QQ(1,2)], [QQ(4,7)], QQ) == [QQ(2,7)] assert dup_mul([QQ(5,7)], [QQ(3,7)], QQ) == [QQ(15,49)] f = dup_normal([3,0,0,6,1,2], ZZ) g = dup_normal([4,0,1,0], ZZ) h = dup_normal([12,0,3,24,4,14,1,2,0], ZZ) assert dup_mul(f, g, ZZ) == h assert dup_mul(g, f, ZZ) == h f = dup_normal([2,0,0,1,7], ZZ) h = dup_normal([4,0,0,4,28,0,1,14,49], ZZ) assert dup_mul(f, f, ZZ) == h K = FF(6) assert dup_mul([K(2),K(1)], [K(3),K(4)], K) == [K(5),K(4)]
def __init__(self, a4, a6, a1=0, a2=0, a3=0, modulus=0): if modulus == 0: domain = QQ else: domain = FF(modulus) a1, a2, a3, a4, a6 = map(domain.convert, (a1, a2, a3, a4, a6)) self._domain = domain self.modulus = modulus # Calculate discriminant b2 = a1**2 + 4 * a2 b4 = 2 * a4 + a1 * a3 b6 = a3**2 + 4 * a6 b8 = a1**2 * a6 + 4 * a2 * a6 - a1 * a3 * a4 + a2 * a3**2 - a4**2 self._b2, self._b4, self._b6, self._b8 = b2, b4, b6, b8 self._discrim = -b2**2 * b8 - 8 * b4**3 - 27 * b6**2 + 9 * b2 * b4 * b6 self._a1 = a1 self._a2 = a2 self._a3 = a3 self._a4 = a4 self._a6 = a6 x, y, z = symbols('x y z') self.x, self.y, self.z = x, y, z self._eq = Eq(y**2 * z + a1 * x * y * z + a3 * y * z**2, x**3 + a2 * x**2 * z + a4 * x * z**2 + a6 * z**3) if isinstance(self._domain, FiniteField): self._rank = 0 elif isinstance(self._domain, RationalField): self._rank = None
def test_dmp_diff(): assert dmp_diff([], 1, 0, ZZ) == [] assert dmp_diff([[]], 1, 1, ZZ) == [[]] assert dmp_diff([[[]]], 1, 2, ZZ) == [[[]]] assert dmp_diff([[[1], [2]]], 1, 2, ZZ) == [[[]]] assert dmp_diff([[[1]], [[]]], 1, 2, ZZ) == [[[1]]] assert dmp_diff([[[3]], [[1]], [[]]], 1, 2, ZZ) == [[[6]], [[1]]] assert dmp_diff([1, -1, 0, 0, 2], 1, 0, ZZ) == \ dup_diff([1, -1, 0, 0, 2], 1, ZZ) assert dmp_diff(f_6, 0, 3, ZZ) == f_6 assert dmp_diff(f_6, 1, 3, ZZ) == [[[[8460]], [[]]], [[[135, 0, 0], [], [], [-135, 0, 0]]], [[[]]], [[[-423]], [[-47]], [[]], [[141], [], [94, 0], []], [[]]]] assert dmp_diff(f_6, 2, 3, ZZ) == dmp_diff(dmp_diff(f_6, 1, 3, ZZ), 1, 3, ZZ) assert dmp_diff(f_6, 3, 3, ZZ) == dmp_diff( dmp_diff(dmp_diff(f_6, 1, 3, ZZ), 1, 3, ZZ), 1, 3, ZZ) K = FF(23) F_6 = dmp_normal(f_6, 3, K) assert dmp_diff(F_6, 0, 3, K) == F_6 assert dmp_diff(F_6, 1, 3, K) == dmp_diff(F_6, 1, 3, K) assert dmp_diff(F_6, 2, 3, K) == dmp_diff(dmp_diff(F_6, 1, 3, K), 1, 3, K) assert dmp_diff(F_6, 3, 3, K) == dmp_diff(dmp_diff(dmp_diff(F_6, 1, 3, K), 1, 3, K), 1, 3, K)
def test_dup_diff(): assert dup_diff([], 1, ZZ) == [] assert dup_diff([7], 1, ZZ) == [] assert dup_diff([2, 7], 1, ZZ) == [2] assert dup_diff([1, 2, 1], 1, ZZ) == [2, 2] assert dup_diff([1, 2, 3, 4], 1, ZZ) == [3, 4, 3] assert dup_diff([1, -1, 0, 0, 2], 1, ZZ) == [4, -3, 0, 0] f = dup_normal([17, 34, 56, -345, 23, 76, 0, 0, 12, 3, 7], ZZ) assert dup_diff(f, 0, ZZ) == f assert dup_diff(f, 1, ZZ) == [170, 306, 448, -2415, 138, 380, 0, 0, 24, 3] assert dup_diff(f, 2, ZZ) == dup_diff(dup_diff(f, 1, ZZ), 1, ZZ) assert dup_diff(f, 3, ZZ) == dup_diff(dup_diff(dup_diff(f, 1, ZZ), 1, ZZ), 1, ZZ) K = FF(3) f = dup_normal([17, 34, 56, -345, 23, 76, 0, 0, 12, 3, 7], K) assert dup_diff(f, 1, K) == dup_normal([2, 0, 1, 0, 0, 2, 0, 0, 0, 0], K) assert dup_diff(f, 2, K) == dup_normal([1, 0, 0, 2, 0, 0, 0], K) assert dup_diff(f, 3, K) == dup_normal([], K) assert dup_diff(f, 0, K) == f assert dup_diff(f, 2, K) == dup_diff(dup_diff(f, 1, K), 1, K) assert dup_diff(f, 3, K) == dup_diff(dup_diff(dup_diff(f, 1, K), 1, K), 1, K)
def test_dup_factor_list(): assert dup_factor_list([], ZZ) == (ZZ(0), []) assert dup_factor_list([], QQ) == (QQ(0), []) assert dup_factor_list([], ZZ['y']) == (DMP([],ZZ), []) assert dup_factor_list([], QQ['y']) == (DMP([],QQ), []) assert dup_factor_list_include([], ZZ) == [([], 1)] assert dup_factor_list([ZZ(7)], ZZ) == (ZZ(7), []) assert dup_factor_list([QQ(1,7)], QQ) == (QQ(1,7), []) assert dup_factor_list([DMP([ZZ(7)],ZZ)], ZZ['y']) == (DMP([ZZ(7)],ZZ), []) assert dup_factor_list([DMP([QQ(1,7)],QQ)], QQ['y']) == (DMP([QQ(1,7)],QQ), []) assert dup_factor_list_include([ZZ(7)], ZZ) == [([ZZ(7)], 1)] assert dup_factor_list([ZZ(1),ZZ(2),ZZ(1)], ZZ) == \ (ZZ(1), [([ZZ(1), ZZ(1)], 2)]) assert dup_factor_list([QQ(1,2),QQ(1),QQ(1,2)], QQ) == \ (QQ(1,2), [([QQ(1),QQ(1)], 2)]) assert dup_factor_list_include([ZZ(1),ZZ(2),ZZ(1)], ZZ) == \ [([ZZ(1), ZZ(1)], 2)] K = FF(2) assert dup_factor_list([K(1),K(0),K(1)], K) == \ (K(1), [([K(1), K(1)], 2)]) assert dup_factor_list([RR(1.0),RR(2.0),RR(1.0)], RR) == \ (RR(1.0), [([RR(1.0),RR(1.0)], 2)]) assert dup_factor_list([RR(2.0),RR(4.0),RR(2.0)], RR) == \ (RR(2.0), [([RR(1.0),RR(1.0)], 2)]) f = [DMP([ZZ(4),ZZ(0)],ZZ),DMP([ZZ(4),ZZ(0),ZZ(0)],ZZ),DMP([],ZZ)] assert dup_factor_list(f, ZZ['y']) == \ (DMP([ZZ(4)],ZZ), [([DMP([ZZ(1),ZZ(0)],ZZ)], 1), ([DMP([ZZ(1)],ZZ),DMP([],ZZ)], 1), ([DMP([ZZ(1)],ZZ),DMP([ZZ(1),ZZ(0)],ZZ)], 1)]) f = [DMP([QQ(1,2),QQ(0)],ZZ),DMP([QQ(1,2),QQ(0),QQ(0)],ZZ),DMP([],ZZ)] assert dup_factor_list(f, QQ['y']) == \ (DMP([QQ(1,2)],QQ), [([DMP([QQ(1),QQ(0)],QQ)], 1), ([DMP([QQ(1)],QQ),DMP([],QQ)], 1), ([DMP([QQ(1)],QQ),DMP([QQ(1),QQ(0)],QQ)], 1)]) K = QQ.algebraic_field(I) h = [QQ(1,1), QQ(0,1), QQ(1,1)] f = [ANP([QQ(1,1)], h, QQ), ANP([], h, QQ), ANP([QQ(2,1)], h, QQ), ANP([], h, QQ), ANP([], h, QQ)] assert dup_factor_list(f, K) == \ (ANP([QQ(1,1)], h, QQ), [([ANP([QQ(1,1)], h, QQ), ANP([], h, QQ)], 2), ([ANP([QQ(1,1)], h, QQ), ANP([], h, QQ), ANP([QQ(2,1)], h, QQ)], 1)]) raises(DomainError, "dup_factor_list([EX(sin(1))], EX)")
def test_Modulus_postprocess(): opt = {'modulus': 5} Modulus.postprocess(opt) assert opt == { 'modulus': 5, 'domain': FF(5), } opt = {'modulus': 5, 'symmetric': False} Modulus.postprocess(opt) assert opt == { 'modulus': 5, 'domain': FF(5, False), 'symmetric': False, }
def test_ModuleElement_column(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(0) col1 = e.column() assert col1 == e.col and col1 is not e.col col2 = e.column(domain=FF(5)) assert col2.domain.is_FF
def test_dmp_sqf(): assert dmp_sqf_part([[]], 1, ZZ) == [[]] assert dmp_sqf_p([[]], 1, ZZ) == True assert dmp_sqf_part([[7]], 1, ZZ) == [[1]] assert dmp_sqf_p([[7]], 1, ZZ) == True assert dmp_sqf_p(f_0, 2, ZZ) == True assert dmp_sqf_p(dmp_sqr(f_0, 2, ZZ), 2, ZZ) == False assert dmp_sqf_p(f_1, 2, ZZ) == True assert dmp_sqf_p(dmp_sqr(f_1, 2, ZZ), 2, ZZ) == False assert dmp_sqf_p(f_2, 2, ZZ) == True assert dmp_sqf_p(dmp_sqr(f_2, 2, ZZ), 2, ZZ) == False assert dmp_sqf_p(f_3, 2, ZZ) == True assert dmp_sqf_p(dmp_sqr(f_3, 2, ZZ), 2, ZZ) == False assert dmp_sqf_p(f_5, 2, ZZ) == False assert dmp_sqf_p(dmp_sqr(f_5, 2, ZZ), 2, ZZ) == False assert dmp_sqf_p(f_4, 2, ZZ) == True assert dmp_sqf_part(f_4, 2, ZZ) == dmp_neg(f_4, 2, ZZ) assert dmp_sqf_p(f_6, 3, ZZ) == True assert dmp_sqf_part(f_6, 3, ZZ) == f_6 assert dmp_sqf_part(f_5, 2, ZZ) == [[[1]], [[1], [-1, 0]]] assert dup_sqf_list([], ZZ) == (ZZ(0), []) assert dup_sqf_list_include([], ZZ) == [([], 1)] assert dmp_sqf_list([[ZZ(3)]], 1, ZZ) == (ZZ(3), []) assert dmp_sqf_list_include([[ZZ(3)]], 1, ZZ) == [([[ZZ(3)]], 1)] f = [-1,1,0,0,1,-1] assert dmp_sqf_list(f, 0, ZZ) == \ (-1, [([1,1,1,1], 1), ([1,-1], 2)]) assert dmp_sqf_list_include(f, 0, ZZ) == \ [([-1,-1,-1,-1], 1), ([1,-1], 2)] f = [[-1],[1],[],[],[1],[-1]] assert dmp_sqf_list(f, 1, ZZ) == \ (-1, [([[1],[1],[1],[1]], 1), ([[1],[-1]], 2)]) assert dmp_sqf_list_include(f, 1, ZZ) == \ [([[-1],[-1],[-1],[-1]], 1), ([[1],[-1]], 2)] K = FF(2) f = [[-1], [2], [-1]] assert dmp_sqf_list_include(f, 1, ZZ) == \ [([[-1]], 1), ([[1], [-1]], 2)] raises(DomainError, "dmp_sqf_list([[K(1), K(0), K(1)]], 1, K)")
def test_dmp_sqr(): assert dmp_sqr([ZZ(1),ZZ(2)], 0, ZZ) == \ dup_sqr([ZZ(1),ZZ(2)], ZZ) assert dmp_sqr([[[]]], 2, ZZ) == [[[]]] assert dmp_sqr([[[ZZ(2)]]], 2, ZZ) == [[[ZZ(4)]]] assert dmp_sqr([[[]]], 2, QQ) == [[[]]] assert dmp_sqr([[[QQ(2,3)]]], 2, QQ) == [[[QQ(4,9)]]] K = FF(9) assert dmp_sqr([[K(3)],[K(4)]], 1, K) == [[K(6)],[K(7)]]
def test_dmp_sqf(): R, x, y = ring("x,y", ZZ) assert R.dmp_sqf_part(0) == 0 assert R.dmp_sqf_p(0) is True assert R.dmp_sqf_part(7) == 1 assert R.dmp_sqf_p(7) is True assert R.dmp_sqf_list(3) == (3, []) assert R.dmp_sqf_list_include(3) == [(3, 1)] R, x, y, z = ring("x,y,z", ZZ) assert R.dmp_sqf_p(f_0) is True assert R.dmp_sqf_p(f_0**2) is False assert R.dmp_sqf_p(f_1) is True assert R.dmp_sqf_p(f_1**2) is False assert R.dmp_sqf_p(f_2) is True assert R.dmp_sqf_p(f_2**2) is False assert R.dmp_sqf_p(f_3) is True assert R.dmp_sqf_p(f_3**2) is False assert R.dmp_sqf_p(f_5) is False assert R.dmp_sqf_p(f_5**2) is False assert R.dmp_sqf_p(f_4) is True assert R.dmp_sqf_part(f_4) == -f_4 assert R.dmp_sqf_part(f_5) == x + y - z R, x, y, z, t = ring("x,y,z,t", ZZ) assert R.dmp_sqf_p(f_6) is True assert R.dmp_sqf_part(f_6) == f_6 R, x = ring("x", ZZ) f = -(x**5) + x**4 + x - 1 assert R.dmp_sqf_list(f) == (-1, [(x**3 + x**2 + x + 1, 1), (x - 1, 2)]) assert R.dmp_sqf_list_include(f) == [(-(x**3) - x**2 - x - 1, 1), (x - 1, 2)] R, x, y = ring("x,y", ZZ) f = -(x**5) + x**4 + x - 1 assert R.dmp_sqf_list(f) == (-1, [(x**3 + x**2 + x + 1, 1), (x - 1, 2)]) assert R.dmp_sqf_list_include(f) == [(-(x**3) - x**2 - x - 1, 1), (x - 1, 2)] f = -(x**2) + 2 * x - 1 assert R.dmp_sqf_list_include(f) == [(-1, 1), (x - 1, 2)] R, x, y = ring("x,y", FF(2)) raises(NotImplementedError, lambda: R.dmp_sqf_list(y**2 + 1))
def test_dup_sqr(): assert dup_sqr([], ZZ) == [] assert dup_sqr([ZZ(2)], ZZ) == [ZZ(4)] assert dup_sqr([ZZ(1),ZZ(2)], ZZ) == [ZZ(1),ZZ(4),ZZ(4)] assert dup_sqr([], QQ) == [] assert dup_sqr([QQ(2,3)], QQ) == [QQ(4,9)] assert dup_sqr([QQ(1,3),QQ(2,3)], QQ) == [QQ(1,9),QQ(4,9),QQ(4,9)] f = dup_normal([2,0,0,1,7], ZZ) assert dup_sqr(f, ZZ) == dup_normal([4,0,0,4,28,0,1,14,49], ZZ) K = FF(9) assert dup_sqr([K(3),K(4)], K) == [K(6),K(7)]
def test_DomainMatrix_from_list(): ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A = DomainMatrix.from_list([[1, 2], [3, 4]], ZZ) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == ZZ dom = FF(7) ddm = DDM([[dom(1), dom(2)], [dom(3), dom(4)]], (2, 2), dom) A = DomainMatrix.from_list([[1, 2], [3, 4]], dom) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == dom ddm = DDM([[QQ(1, 2), QQ(3, 1)], [QQ(1, 4), QQ(5, 1)]], (2, 2), QQ) A = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == QQ
def test_dmp_mul(): assert dmp_mul([ZZ(5)], [ZZ(7)], 0, ZZ) == \ dup_mul([ZZ(5)], [ZZ(7)], ZZ) assert dmp_mul([QQ(5,7)], [QQ(3,7)], 0, QQ) == \ dup_mul([QQ(5,7)], [QQ(3,7)], QQ) assert dmp_mul([[[]]], [[[]]], 2, ZZ) == [[[]]] assert dmp_mul([[[ZZ(1)]]], [[[]]], 2, ZZ) == [[[]]] assert dmp_mul([[[]]], [[[ZZ(1)]]], 2, ZZ) == [[[]]] assert dmp_mul([[[ZZ(2)]]], [[[ZZ(1)]]], 2, ZZ) == [[[ZZ(2)]]] assert dmp_mul([[[ZZ(1)]]], [[[ZZ(2)]]], 2, ZZ) == [[[ZZ(2)]]] assert dmp_mul([[[]]], [[[]]], 2, QQ) == [[[]]] assert dmp_mul([[[QQ(1,2)]]], [[[]]], 2, QQ) == [[[]]] assert dmp_mul([[[]]], [[[QQ(1,2)]]], 2, QQ) == [[[]]] assert dmp_mul([[[QQ(2,7)]]], [[[QQ(1,3)]]], 2, QQ) == [[[QQ(2,21)]]] assert dmp_mul([[[QQ(1,7)]]], [[[QQ(2,3)]]], 2, QQ) == [[[QQ(2,21)]]] K = FF(6) assert dmp_mul([[K(2)],[K(1)]], [[K(3)],[K(4)]], 1, K) == [[K(5)],[K(4)]]
def test_dmp_factor_list(): R, x, y = ring("x,y", ZZ) assert R.dmp_factor_list(0) == (ZZ(0), []) assert R.dmp_factor_list(7) == (7, []) R, x, y = ring("x,y", QQ) assert R.dmp_factor_list(0) == (QQ(0), []) assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), []) R, x, y = ring("x,y", ZZ['y']) assert R.dmp_factor_list(0) == (DMP([], ZZ), []) assert R.dmp_factor_list(DMP([ZZ(7)], ZZ)) == (DMP([ZZ(7)], ZZ), []) R, x, y = ring("x,y", QQ['y']) assert R.dmp_factor_list(0) == (DMP([], QQ), []) assert R.dmp_factor_list(DMP([QQ(1, 7)], QQ)) == (DMP([QQ(1, 7)], QQ), []) R, x, y = ring("x,y", ZZ) assert R.dmp_factor_list_include(0) == [(0, 1)] assert R.dmp_factor_list_include(7) == [(7, 1)] R, X = xring("x:200", ZZ) f, g = X[0]**2 + 2 * X[0] + 1, X[0] + 1 assert R.dmp_factor_list(f) == (1, [(g, 2)]) f, g = X[-1]**2 + 2 * X[-1] + 1, X[-1] + 1 assert R.dmp_factor_list(f) == (1, [(g, 2)]) R, x = ring("x", ZZ) assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)]) R, x = ring("x", QQ) assert R.dmp_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2), [(x + 1, 2)]) R, x, y = ring("x,y", ZZ) assert R.dmp_factor_list(x**2 + 2 * x + 1) == (1, [(x + 1, 2)]) R, x, y = ring("x,y", QQ) assert R.dmp_factor_list(QQ(1, 2) * x**2 + x + QQ(1, 2)) == (QQ(1, 2), [(x + 1, 2)]) R, x, y = ring("x,y", ZZ) f = 4 * x**2 * y + 4 * x * y**2 assert R.dmp_factor_list(f) == \ (4, [(y, 1), (x, 1), (x + y, 1)]) assert R.dmp_factor_list_include(f) == \ [(4*y, 1), (x, 1), (x + y, 1)] R, x, y = ring("x,y", QQ) f = QQ(1, 2) * x**2 * y + QQ(1, 2) * x * y**2 assert R.dmp_factor_list(f) == \ (QQ(1,2), [(y, 1), (x, 1), (x + y, 1)]) R, x, y = ring("x,y", RR) f = 2.0 * x**2 - 8.0 * y**2 assert R.dmp_factor_list(f) == \ (RR(2.0), [(1.0*x - 2.0*y, 1), (1.0*x + 2.0*y, 1)]) R, x, y = ring("x,y", ZZ['t']) f = DMP([ZZ(4), ZZ(0)], ZZ) * x**2 + DMP([ZZ(4), ZZ(0), ZZ(0)], ZZ) * x assert R.dmp_factor_list(f) == \ (DMP([ZZ(4)], ZZ), [(DMP([ZZ(1), ZZ(0)], ZZ), 1), (DMP([ZZ(1)], ZZ)*x, 1), (DMP([ZZ(1)], ZZ)*x + DMP([ZZ(1), ZZ(0)], ZZ), 1)]) R, x, y = ring("x,y", QQ['t']) f = DMP([QQ(1, 2), QQ(0)], QQ) * x**2 + DMP( [QQ(1, 2), QQ(0), QQ(0)], QQ) * x assert R.dmp_factor_list(f) == \ (DMP([QQ(1, 2)], QQ), [(DMP([QQ(1), QQ(0)], QQ), 1), (DMP([QQ(1)], QQ)*x, 1), (DMP([QQ(1)], QQ)*x + DMP([QQ(1), QQ(0)], QQ), 1)]) R, x, y = ring("x,y", FF(2)) raises(NotImplementedError, lambda: R.dmp_factor_list(x**2 + y**2)) R, x, y = ring("x,y", EX) raises(DomainError, lambda: R.dmp_factor_list(EX(sin(1))))
def test_dup_mul(): assert dup_mul([], [], ZZ) == [] assert dup_mul([], [ZZ(1)], ZZ) == [] assert dup_mul([ZZ(1)], [], ZZ) == [] assert dup_mul([ZZ(1)], [ZZ(1)], ZZ) == [ZZ(1)] assert dup_mul([ZZ(5)], [ZZ(7)], ZZ) == [ZZ(35)] assert dup_mul([], [], QQ) == [] assert dup_mul([], [QQ(1, 2)], QQ) == [] assert dup_mul([QQ(1, 2)], [], QQ) == [] assert dup_mul([QQ(1, 2)], [QQ(4, 7)], QQ) == [QQ(2, 7)] assert dup_mul([QQ(5, 7)], [QQ(3, 7)], QQ) == [QQ(15, 49)] f = dup_normal([3, 0, 0, 6, 1, 2], ZZ) g = dup_normal([4, 0, 1, 0], ZZ) h = dup_normal([12, 0, 3, 24, 4, 14, 1, 2, 0], ZZ) assert dup_mul(f, g, ZZ) == h assert dup_mul(g, f, ZZ) == h f = dup_normal([2, 0, 0, 1, 7], ZZ) h = dup_normal([4, 0, 0, 4, 28, 0, 1, 14, 49], ZZ) assert dup_mul(f, f, ZZ) == h K = FF(6) assert dup_mul([K(2), K(1)], [K(3), K(4)], K) == [K(5), K(4)] p1 = dup_normal([ 79, -1, 78, -94, -10, 11, 32, -19, 78, 2, -89, 30, 73, 42, 85, 77, 83, -30, -34, -2, 95, -81, 37, -49, -46, -58, -16, 37, 35, -11, -57, -15, -31, 67, -20, 27, 76, 2, 70, 67, -65, 65, -26, -93, -44, -12, -92, 57, -90, -57, -11, -67, -98, -69, 97, -41, 89, 33, 89, -50, 81, -31, 60, -27, 43, 29, -77, 44, 21, -91, 32, -57, 33, 3, 53, -51, -38, -99, -84, 23, -50, 66, -100, 1, -75, -25, 27, -60, 98, -51, -87, 6, 8, 78, -28, -95, -88, 12, -35, 26, -9, 16, -92, 55, -7, -86, 68, -39, -46, 84, 94, 45, 60, 92, 68, -75, -74, -19, 8, 75, 78, 91, 57, 34, 14, -3, -49, 65, 78, -18, 6, -29, -80, -98, 17, 13, 58, 21, 20, 9, 37, 7, -30, -53, -20, 34, 67, -42, 89, -22, 73, 43, -6, 5, 51, -8, -15, -52, -22, -58, -72, -3, 43, -92, 82, 83, -2, -13, -23, -60, 16, -94, -8, -28, -95, -72, 63, -90, 76, 6, -43, -100, -59, 76, 3, 3, 46, -85, 75, 62, -71, -76, 88, 97, -72, -1, 30, -64, 72, -48, 14, -78, 58, 63, -91, 24, -87, -27, -80, -100, -44, 98, 70, 100, -29, -38, 11, 77, 100, 52, 86, 65, -5, -42, -81, -38, -42, 43, -2, -70, -63, -52 ], ZZ) p2 = dup_normal([ 65, -19, -47, 1, 90, 81, -15, -34, 25, -75, 9, -83, 50, -5, -44, 31, 1, 70, -7, 78, 74, 80, 85, 65, 21, 41, 66, 19, -40, 63, -21, -27, 32, 69, 83, 34, -35, 14, 81, 57, -75, 32, -67, -89, -100, -61, 46, 84, -78, -29, -50, -94, -24, -32, -68, -16, 100, -7, -72, -89, 35, 82, 58, 81, -92, 62, 5, -47, -39, -58, -72, -13, 84, 44, 55, -25, 48, -54, -31, -56, -11, -50, -84, 10, 67, 17, 13, -14, 61, 76, -64, -44, -40, -96, 11, -11, -94, 2, 6, 27, -6, 68, -54, 66, -74, -14, -1, -24, -73, 96, 89, -11, -89, 56, -53, 72, -43, 96, 25, 63, -31, 29, 68, 83, 91, -93, -19, -38, -40, 40, -12, -19, -79, 44, 100, -66, -29, -77, 62, 39, -8, 11, -97, 14, 87, 64, 21, -18, 13, 15, -59, -75, -99, -88, 57, 54, 56, -67, 6, -63, -59, -14, 28, 87, -20, -39, 84, -91, -2, 49, -75, 11, -24, -95, 36, 66, 5, 25, -72, -40, 86, 90, 37, -33, 57, -35, 29, -18, 4, -79, 64, -17, -27, 21, 29, -5, -44, -87, -24, 52, 78, 11, -23, -53, 36, 42, 21, -68, 94, -91, -51, -21, 51, -76, 72, 31, 24, -48, -80, -9, 37, -47, -6, -8, -63, -91, 79, -79, -100, 38, -20, 38, 100, 83, -90, 87, 63, -36, 82, -19, 18, -98, -38, 26, 98, -70, 79, 92, 12, 12, 70, 74, 36, 48, -13, 31, 31, -47, -71, -12, -64, 36, -42, 32, -86, 60, 83, 70, 55, 0, 1, 29, -35, 8, -82, 8, -73, -46, -50, 43, 48, -5, -86, -72, 44, -90, 19, 19, 5, -20, 97, -13, -66, -5, 5, -69, 64, -30, 41, 51, 36, 13, -99, -61, 94, -12, 74, 98, 68, 24, 46, -97, -87, -6, -27, 82, 62, -11, -77, 86, 66, -47, -49, -50, 13, 18, 89, -89, 46, -80, 13, 98, -35, -36, -25, 12, 20, 26, -52, 79, 27, 79, 100, 8, 62, -58, -28, 37 ], ZZ) res = dup_normal([ 5135, -1566, 1376, -7466, 4579, 11710, 8001, -7183, -3737, -7439, 345, -10084, 24522, -1201, 1070, -10245, 9582, 9264, 1903, 23312, 18953, 10037, -15268, -5450, 6442, -6243, -3777, 5110, 10936, -16649, -6022, 16255, 31300, 24818, 31922, 32760, 7854, 27080, 15766, 29596, 7139, 31945, -19810, 465, -38026, -3971, 9641, 465, -19375, 5524, -30112, -11960, -12813, 13535, 30670, 5925, -43725, -14089, 11503, -22782, 6371, 43881, 37465, -33529, -33590, -39798, -37854, -18466, -7908, -35825, -26020, -36923, -11332, -5699, 25166, -3147, 19885, 12962, -20659, -1642, 27723, -56331, -24580, -11010, -20206, 20087, -23772, -16038, 38580, 20901, -50731, 32037, -4299, 26508, 18038, -28357, 31846, -7405, -20172, -15894, 2096, 25110, -45786, 45918, -55333, -31928, -49428, -29824, -58796, -24609, -15408, 69, -35415, -18439, 10123, -20360, -65949, 33356, -20333, 26476, -32073, 33621, 930, 28803, -42791, 44716, 38164, 12302, -1739, 11421, 73385, -7613, 14297, 38155, -414, 77587, 24338, -21415, 29367, 42639, 13901, -288, 51027, -11827, 91260, 43407, 88521, -15186, 70572, -12049, 5090, -12208, -56374, 15520, -623, -7742, 50825, 11199, -14894, 40892, 59591, -31356, -28696, -57842, -87751, -33744, -28436, -28945, -40287, 37957, -35638, 33401, -61534, 14870, 40292, 70366, -10803, 102290, -71719, -85251, 7902, -22409, 75009, 99927, 35298, -1175, -762, -34744, -10587, -47574, -62629, -19581, -43659, -54369, -32250, -39545, 15225, -24454, 11241, -67308, -30148, 39929, 37639, 14383, -73475, -77636, -81048, -35992, 41601, -90143, 76937, -8112, 56588, 9124, -40094, -32340, 13253, 10898, -51639, 36390, 12086, -1885, 100714, -28561, -23784, -18735, 18916, 16286, 10742, -87360, -13697, 10689, -19477, -29770, 5060, 20189, -8297, 112407, 47071, 47743, 45519, -4109, 17468, -68831, 78325, -6481, -21641, -19459, 30919, 96115, 8607, 53341, 32105, -16211, 23538, 57259, -76272, -40583, 62093, 38511, -34255, -40665, -40604, -37606, -15274, 33156, -13885, 103636, 118678, -14101, -92682, -100791, 2634, 63791, 98266, 19286, -34590, -21067, -71130, 25380, -40839, -27614, -26060, 52358, -15537, 27138, -6749, 36269, -33306, 13207, -91084, -5540, -57116, 69548, 44169, -57742, -41234, -103327, -62904, -8566, 41149, -12866, 71188, 23980, 1838, 58230, 73950, 5594, 43113, -8159, -15925, 6911, 85598, -75016, -16214, -62726, -39016, 8618, -63882, -4299, 23182, 49959, 49342, -3238, -24913, -37138, 78361, 32451, 6337, -11438, -36241, -37737, 8169, -3077, -24829, 57953, 53016, -31511, -91168, 12599, -41849, 41576, 55275, -62539, 47814, -62319, 12300, -32076, -55137, -84881, -27546, 4312, -3433, -54382, 113288, -30157, 74469, 18219, 79880, -2124, 98911, 17655, -33499, -32861, 47242, -37393, 99765, 14831, -44483, 10800, -31617, -52710, 37406, 22105, 29704, -20050, 13778, 43683, 36628, 8494, 60964, -22644, 31550, -17693, 33805, -124879, -12302, 19343, 20400, -30937, -21574, -34037, -33380, 56539, -24993, -75513, -1527, 53563, 65407, -101, 53577, 37991, 18717, -23795, -8090, -47987, -94717, 41967, 5170, -14815, -94311, 17896, -17734, -57718, -774, -38410, 24830, 29682, 76480, 58802, -46416, -20348, -61353, -68225, -68306, 23822, -31598, 42972, 36327, 28968, -65638, -21638, 24354, -8356, 26777, 52982, -11783, -44051, -26467, -44721, -28435, -53265, -25574, -2669, 44155, 22946, -18454, -30718, -11252, 58420, 8711, 67447, 4425, 41749, 67543, 43162, 11793, -41907, 20477, -13080, 6559, -6104, -13244, 42853, 42935, 29793, 36730, -28087, 28657, 17946, 7503, 7204, 21491, -27450, -24241, -98156, -18082, -42613, -24928, 10775, -14842, -44127, 55910, 14777, 31151, -2194, 39206, -2100, -4211, 11827, -8918, -19471, 72567, 36447, -65590, -34861, -17147, -45303, 9025, -7333, -35473, 11101, 11638, 3441, 6626, -41800, 9416, 13679, 33508, 40502, -60542, 16358, 8392, -43242, -35864, -34127, -48721, 35878, 30598, 28630, 20279, -19983, -14638, -24455, -1851, -11344, 45150, 42051, 26034, -28889, -32382, -3527, -14532, 22564, -22346, 477, 11706, 28338, -25972, -9185, -22867, -12522, 32120, -4424, 11339, -33913, -7184, 5101, -23552, -17115, -31401, -6104, 21906, 25708, 8406, 6317, -7525, 5014, 20750, 20179, 22724, 11692, 13297, 2493, -253, -16841, -17339, -6753, -4808, 2976, -10881, -10228, -13816, -12686, 1385, 2316, 2190, -875, -1924 ], ZZ) assert dup_mul(p1, p2, ZZ) == res p1 = dup_normal([ 83, -61, -86, -24, 12, 43, -88, -9, 42, 55, -66, 74, 95, -25, -12, 68, -99, 4, 45, 6, -15, -19, 78, 65, -55, 47, -13, 17, 86, 81, -58, -27, 50, -40, -24, 39, -41, -92, 75, 90, -1, 40, -15, -27, -35, 68, 70, -64, -40, 78, -88, -58, -39, 69, 46, 12, 28, -94, -37, -50, -80, -96, -61, 25, 1, 71, 4, 12, 48, 4, 34, -47, -75, 5, 48, 82, 88, 23, 98, 35, 17, -10, 48, -61, -95, 47, 65, -19, -66, -57, -6, -51, -42, -89, 66, -13, 18, 37, 90, -23, 72, 96, -53, 0, 40, -73, -52, -68, 32, -25, -53, 79, -52, 18, 44, 73, -81, 31, -90, 70, 3, 36, 48, 76, -24, -44, 23, 98, -4, 73, 69, 88, -70, 14, -68, 94, -78, -15, -64, -97, -70, -35, 65, 88, 49, -53, -7, 12, -45, -7, 59, -94, 99, -2, 67, -60, -71, 29, -62, -77, 1, 51, 17, 80, -20, -47, -19, 24, -9, 39, -23, 21, -84, 10, 84, 56, -17, -21, -66, 85, 70, 46, -51, -22, -95, 78, -60, -96, -97, -45, 72, 35, 30, -61, -92, -93, -60, -61, 4, -4, -81, -73, 46, 53, -11, 26, 94, 45, 14, -78, 55, 84, -68, 98, 60, 23, 100, -63, 68, 96, -16, 3, 56, 21, -58, 62, -67, 66, 85, 41, -79, -22, 97, -67, 82, 82, -96, -20, -7, 48, -67, 48, -9, -39, 78 ], ZZ) p2 = dup_normal([ 52, 88, 76, 66, 9, -64, 46, -20, -28, 69, 60, 96, -36, -92, -30, -11, -35, 35, 55, 63, -92, -7, 25, -58, 74, 55, -6, 4, 47, -92, -65, 67, -45, 74, -76, 59, -6, 69, 39, 24, -71, -7, 39, -45, 60, -68, 98, 97, -79, 17, 4, 94, -64, 68, -100, -96, -2, 3, 22, 96, 54, -77, -86, 67, 6, 57, 37, 40, 89, -78, 64, -94, -45, -92, 57, 87, -26, 36, 19, 97, 25, 77, -87, 24, 43, -5, 35, 57, 83, 71, 35, 63, 61, 96, -22, 8, -1, 96, 43, 45, 94, -93, 36, 71, -41, -99, 85, -48, 59, 52, -17, 5, 87, -16, -68, -54, 76, -18, 100, 91, -42, -70, -66, -88, -12, 1, 95, -82, 52, 43, -29, 3, 12, 72, -99, -43, -32, -93, -51, 16, -20, -12, -11, 5, 33, -38, 93, -5, -74, 25, 74, -58, 93, 59, -63, -86, 63, -20, -4, -74, -73, -95, 29, -28, 93, -91, -2, -38, -62, 77, -58, -85, -28, 95, 38, 19, -69, 86, 94, 25, -2, -4, 47, 34, -59, 35, -48, 29, -63, -53, 34, 29, 66, 73, 6, 92, -84, 89, 15, 81, 93, 97, 51, -72, -78, 25, 60, 90, -45, 39, 67, -84, -62, 57, 26, -32, -56, -14, -83, 76, 5, -2, 99, -100, 28, 46, 94, -7, 53, -25, 16, -23, -36, 89, -78, -63, 31, 1, 84, -99, -52, 76, 48, 90, -76, 44, -19, 54, -36, -9, -73, -100, -69, 31, 42, 25, -39, 76, -26, -8, -14, 51, 3, 37, 45, 2, -54, 13, -34, -92, 17, -25, -65, 53, -63, 30, 4, -70, -67, 90, 52, 51, 18, -3, 31, -45, -9, 59, 63, -87, 22, -32, 29, -38, 21, 36, -82, 27, -11 ], ZZ) res = dup_normal([ 4316, 4132, -3532, -7974, -11303, -10069, 5484, -3330, -5874, 7734, 4673, 11327, -9884, -8031, 17343, 21035, -10570, -9285, 15893, 3780, -14083, 8819, 17592, 10159, 7174, -11587, 8598, -16479, 3602, 25596, 9781, 12163, 150, 18749, -21782, -12307, 27578, -2757, -12573, 12565, 6345, -18956, 19503, -15617, 1443, -16778, 36851, 23588, -28474, 5749, 40695, -7521, -53669, -2497, -18530, 6770, 57038, 3926, -6927, -15399, 1848, -64649, -27728, 3644, 49608, 15187, -8902, -9480, -7398, -40425, 4824, 23767, -7594, -6905, 33089, 18786, 12192, 24670, 31114, 35334, -4501, -14676, 7107, -59018, -21352, 20777, 19661, 20653, 33754, -885, -43758, 6269, 51897, -28719, -97488, -9527, 13746, 11644, 17644, -21720, 23782, -10481, 47867, 20752, 33810, -1875, 39918, -7710, -40840, 19808, -47075, 23066, 46616, 25201, 9287, 35436, -1602, 9645, -11978, 13273, 15544, 33465, 20063, 44539, 11687, 27314, -6538, -37467, 14031, 32970, -27086, 41323, 29551, 65910, -39027, -37800, -22232, 8212, 46316, -28981, -55282, 50417, -44929, -44062, 73879, 37573, -2596, -10877, -21893, -133218, -33707, -25753, -9531, 17530, 61126, 2748, -56235, 43874, -10872, -90459, -30387, 115267, -7264, -44452, 122626, 14839, -599, 10337, 57166, -67467, -54957, 63669, 1202, 18488, 52594, 7205, -97822, 612, 78069, -5403, -63562, 47236, 36873, -154827, -26188, 82427, -39521, 5628, 7416, 5276, -53095, 47050, 26121, -42207, 79021, -13035, 2499, -66943, 29040, -72355, -23480, 23416, -12885, -44225, -42688, -4224, 19858, 55299, 15735, 11465, 101876, -39169, 51786, 14723, 43280, -68697, 16410, 92295, 56767, 7183, 111850, 4550, 115451, -38443, -19642, -35058, 10230, 93829, 8925, 63047, 3146, 29250, 8530, 5255, -98117, -115517, -76817, -8724, 41044, 1312, -35974, 79333, -28567, 7547, -10580, -24559, -16238, 10794, -3867, 24848, 57770, -51536, -35040, 71033, 29853, 62029, -7125, -125585, -32169, -47907, 156811, -65176, -58006, -15757, -57861, 11963, 30225, -41901, -41681, 31310, 27982, 18613, 61760, 60746, -59096, 33499, 30097, -17997, 24032, 56442, -83042, 23747, -20931, -21978, -158752, -9883, -73598, -7987, -7333, -125403, -116329, 30585, 53281, 51018, -29193, 88575, 8264, -40147, -16289, 113088, 12810, -6508, 101552, -13037, 34440, -41840, 101643, 24263, 80532, 61748, 65574, 6423, -20672, 6591, -10834, -71716, 86919, -92626, 39161, 28490, 81319, 46676, 106720, 43530, 26998, 57456, -8862, 60989, 13982, 3119, -2224, 14743, 55415, -49093, -29303, 28999, 1789, 55953, -84043, -7780, -65013, 57129, -47251, 61484, 61994, -78361, -82778, 22487, -26894, 9756, -74637, -15519, -4360, 30115, 42433, 35475, 15286, 69768, 21509, -20214, 78675, -21163, 13596, 11443, -10698, -53621, -53867, -24155, 64500, -42784, -33077, -16500, 873, -52788, 14546, -38011, 36974, -39849, -34029, -94311, 83068, -50437, -26169, -46746, 59185, 42259, -101379, -12943, 30089, -59086, 36271, 22723, -30253, -52472, -70826, -23289, 3331, -31687, 14183, -857, -28627, 35246, -51284, 5636, -6933, 66539, 36654, 50927, 24783, 3457, 33276, 45281, 45650, -4938, -9968, -22590, 47995, 69229, 5214, -58365, -17907, -14651, 18668, 18009, 12649, -11851, -13387, 20339, 52472, -1087, -21458, -68647, 52295, 15849, 40608, 15323, 25164, -29368, 10352, -7055, 7159, 21695, -5373, -54849, 101103, -24963, -10511, 33227, 7659, 41042, -69588, 26718, -20515, 6441, 38135, -63, 24088, -35364, -12785, -18709, 47843, 48533, -48575, 17251, -19394, 32878, -9010, -9050, 504, -12407, 28076, -3429, 25324, -4210, -26119, 752, -29203, 28251, -11324, -32140, -3366, -25135, 18702, -31588, -7047, -24267, 49987, -14975, -33169, 37744, -7720, -9035, 16964, -2807, -421, 14114, -17097, -13662, 40628, -12139, -9427, 5369, 17551, -13232, -16211, 9804, -7422, 2677, 28635, -8280, -4906, 2908, -22558, 5604, 12459, 8756, -3980, -4745, -18525, 7913, 5970, -16457, 20230, -6247, -13812, 2505, 11899, 1409, -15094, 22540, -18863, 137, 11123, -4516, 2290, -8594, 12150, -10380, 3005, 5235, -7350, 2535, -858 ], ZZ) assert dup_mul(p1, p2, ZZ) == res
def test_lfsr_autocorrelation(): raises(TypeError, lambda: lfsr_autocorrelation(1, 2, 3)) F = FF(2) s = lfsr_sequence([F(1), F(0)], [F(0), F(1)], 5) assert lfsr_autocorrelation(s, 2, 0) == 1 assert lfsr_autocorrelation(s, 2, 1) == -1
def test_issue_21410(): R, x = ring('x', FF(2)) p = x**6 + x**5 + x**4 + x**3 + 1 assert p._pow_multinomial(4) == x**24 + x**20 + x**16 + x**12 + 1
def test_dmp_factor_list(): assert dmp_factor_list([[]], 1, ZZ) == (ZZ(0), []) assert dmp_factor_list([[]], 1, QQ) == (QQ(0), []) assert dmp_factor_list([[]], 1, ZZ['y']) == (DMP([],ZZ), []) assert dmp_factor_list([[]], 1, QQ['y']) == (DMP([],QQ), []) assert dmp_factor_list_include([[]], 1, ZZ) == [([[]], 1)] assert dmp_factor_list([[ZZ(7)]], 1, ZZ) == (ZZ(7), []) assert dmp_factor_list([[QQ(1,7)]], 1, QQ) == (QQ(1,7), []) assert dmp_factor_list([[DMP([ZZ(7)],ZZ)]], 1, ZZ['y']) == (DMP([ZZ(7)],ZZ), []) assert dmp_factor_list([[DMP([QQ(1,7)],QQ)]], 1, QQ['y']) == (DMP([QQ(1,7)],QQ), []) assert dmp_factor_list_include([[ZZ(7)]], 1, ZZ) == [([[ZZ(7)]], 1)] f, g = [ZZ(1),ZZ(2),ZZ(1)], [ZZ(1),ZZ(1)] assert dmp_factor_list(dmp_nest(f, 200, ZZ), 200, ZZ) == \ (ZZ(1), [(dmp_nest(g, 200, ZZ), 2)]) assert dmp_factor_list(dmp_raise(f, 200, 0, ZZ), 200, ZZ) == \ (ZZ(1), [(dmp_raise(g, 200, 0, ZZ), 2)]) assert dmp_factor_list([ZZ(1),ZZ(2),ZZ(1)], 0, ZZ) == \ (ZZ(1), [([ZZ(1), ZZ(1)], 2)]) assert dmp_factor_list([QQ(1,2),QQ(1),QQ(1,2)], 0, QQ) == \ (QQ(1,2), [([QQ(1),QQ(1)], 2)]) assert dmp_factor_list([[ZZ(1)],[ZZ(2)],[ZZ(1)]], 1, ZZ) == \ (ZZ(1), [([[ZZ(1)], [ZZ(1)]], 2)]) assert dmp_factor_list([[QQ(1,2)],[QQ(1)],[QQ(1,2)]], 1, QQ) == \ (QQ(1,2), [([[QQ(1)],[QQ(1)]], 2)]) f = [[ZZ(4),ZZ(0)],[ZZ(4),ZZ(0),ZZ(0)],[]] assert dmp_factor_list(f, 1, ZZ) == \ (ZZ(4), [([[ZZ(1),ZZ(0)]], 1), ([[ZZ(1)],[]], 1), ([[ZZ(1)],[ZZ(1),ZZ(0)]], 1)]) assert dmp_factor_list_include(f, 1, ZZ) == \ [([[ZZ(4),ZZ(0)]], 1), ([[ZZ(1)],[]], 1), ([[ZZ(1)],[ZZ(1),ZZ(0)]], 1)] f = [[QQ(1,2),QQ(0)],[QQ(1,2),QQ(0),QQ(0)],[]] assert dmp_factor_list(f, 1, QQ) == \ (QQ(1,2), [([[QQ(1),QQ(0)]], 1), ([[QQ(1)],[]], 1), ([[QQ(1)],[QQ(1),QQ(0)]], 1)]) f = [[RR(2.0)],[],[-RR(8.0),RR(0.0),RR(0.0)]] assert dmp_factor_list(f, 1, RR) == \ (RR(2.0), [([[RR(1.0)],[-RR(2.0),RR(0.0)]], 1), ([[RR(1.0)],[ RR(2.0),RR(0.0)]], 1)]) f = [[DMP([ZZ(4),ZZ(0)],ZZ)],[DMP([ZZ(4),ZZ(0),ZZ(0)],ZZ)],[DMP([],ZZ)]] assert dmp_factor_list(f, 1, ZZ['y']) == \ (DMP([ZZ(4)],ZZ), [([[DMP([ZZ(1),ZZ(0)],ZZ)]], 1), ([[DMP([ZZ(1)],ZZ)],[]], 1), ([[DMP([ZZ(1)],ZZ)],[DMP([ZZ(1),ZZ(0)],ZZ)]], 1)]) f = [[DMP([QQ(1,2),QQ(0)],ZZ)],[DMP([QQ(1,2),QQ(0),QQ(0)],ZZ)],[DMP([],ZZ)]] assert dmp_factor_list(f, 1, QQ['y']) == \ (DMP([QQ(1,2)],QQ), [([[DMP([QQ(1),QQ(0)],QQ)]], 1), ([[DMP([QQ(1)],QQ)],[]], 1), ([[DMP([QQ(1)],QQ)],[DMP([QQ(1),QQ(0)],QQ)]], 1)]) K = FF(2) raises(DomainError, "dmp_factor_list([[K(1)],[],[K(1),K(0),K(0)]], 1, K)") raises(DomainError, "dmp_factor_list([[EX(sin(1))]], 1, EX)")
def lfsr_connection_polynomial(s): """ This function computes the lsfr connection polynomial. INPUT: ``s``: a sequence of elements of even length, with entries in a finite field OUTPUT: ``C(x)``: the connection polynomial of a minimal LFSR yielding ``s``. This implements the algorithm in section 3 of J. L. Massey's article [M]_. References ========== .. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding." IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127, Jan 1969. Examples ======== >>> from sympy.crypto.crypto import lfsr_sequence, lfsr_connection_polynomial >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**4 + x + 1 >>> fill = [F(1), F(0), F(0), F(1)] >>> key = [F(1), F(1), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + 1 >>> fill = [F(1), F(0), F(1)] >>> key = [F(1), F(1), F(0)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + x**2 + 1 >>> fill = [F(1), F(0), F(1)] >>> key = [F(1), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + x + 1 """ # Initialization: p = s[0].mod F = FF(p) x = Symbol("x") C = 1 * x**0 B = 1 * x**0 m = 1 b = 1 * x**0 L = 0 N = 0 while N < len(s): if L > 0: dC = Poly(C).degree() r = min(L + 1, dC + 1) coeffsC = [C.subs(x, 0) ] + [C.coeff(x**i) for i in range(1, dC + 1)] d = (s[N].to_int() + sum([coeffsC[i] * s[N - i].to_int() for i in range(1, r)])) % p if L == 0: d = s[N].to_int() * x**0 if d == 0: m += 1 N += 1 if d > 0: if 2 * L > N: C = (C - d * ((b**(p - 2)) % p) * x**m * B).expand() m += 1 N += 1 else: T = C C = (C - d * ((b**(p - 2)) % p) * x**m * B).expand() L = N + 1 - L m = 1 b = d B = T N += 1 dC = Poly(C).degree() coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)] return sum([ coeffsC[i] % p * x**i for i in range(dC + 1) if coeffsC[i] is not None ])
def lfsr_sequence(key, fill, n): r""" This function creates an lfsr sequence. INPUT: ``key``: a list of finite field elements, `[c_0, c_1, \ldots, c_k].` ``fill``: the list of the initial terms of the lfsr sequence, `[x_0, x_1, \ldots, x_k].` ``n``: number of terms of the sequence that the function returns. OUTPUT: The lfsr sequence defined by `x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}`, for `n \leq k`. Notes ===== S. Golomb [G]_ gives a list of three statistical properties a sequence of numbers `a = \{a_n\}_{n=1}^\infty`, `a_n \in \{0,1\}`, should display to be considered "random". Define the autocorrelation of `a` to be .. math:: C(k) = C(k,a) = \lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n + a_{n+k}}. In the case where `a` is periodic with period `P` then this reduces to .. math:: C(k) = {1\over P}\sum_{n=1}^P (-1)^{a_n + a_{n+k}}. Assume `a` is periodic with period `P`. - balance: .. math:: \left|\sum_{n=1}^P(-1)^{a_n}\right| \leq 1. - low autocorrelation: .. math:: C(k) = \left\{ \begin{array}{cc} 1,& k = 0,\\ \epsilon, & k \ne 0. \end{array} \right. (For sequences satisfying these first two properties, it is known that `\epsilon = -1/P` must hold.) - proportional runs property: In each period, half the runs have length `1`, one-fourth have length `2`, etc. Moreover, there are as many runs of `1`'s as there are of `0`'s. References ========== .. [G] Solomon Golomb, Shift register sequences, Aegean Park Press, Laguna Hills, Ca, 1967 Examples ======== >>> from sympy.crypto.crypto import lfsr_sequence >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> lfsr_sequence(key, fill, 10) [1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2] """ if not isinstance(key, list): raise TypeError("key must be a list") if not isinstance(fill, list): raise TypeError("fill must be a list") p = key[0].mod F = FF(p) s = fill k = len(fill) L = [] for i in range(n): s0 = s[:] L.append(s[0]) s = s[1:k] x = sum([int(key[i] * s0[i]) for i in range(k)]) s.append(F(x)) return L # use [x.to_int() for x in L] for int version
def test_dup_sqf(): assert dup_sqf_part([], ZZ) == [] assert dup_sqf_p([], ZZ) == True assert dup_sqf_part([7], ZZ) == [1] assert dup_sqf_p([7], ZZ) == True assert dup_sqf_part([2,2], ZZ) == [1,1] assert dup_sqf_p([2,2], ZZ) == True assert dup_sqf_part([1,0,1,1], ZZ) == [1,0,1,1] assert dup_sqf_p([1,0,1,1], ZZ) == True assert dup_sqf_part([-1,0,1,1], ZZ) == [1,0,-1,-1] assert dup_sqf_p([-1,0,1,1], ZZ) == True assert dup_sqf_part([2,3,0,0], ZZ) == [2,3,0] assert dup_sqf_p([2,3,0,0], ZZ) == False assert dup_sqf_part([-2,3,0,0], ZZ) == [2,-3,0] assert dup_sqf_p([-2,3,0,0], ZZ) == False assert dup_sqf_list([], ZZ) == (0, []) assert dup_sqf_list([1], ZZ) == (1, []) assert dup_sqf_list([1,0], ZZ) == (1, [([1,0], 1)]) assert dup_sqf_list([2,0,0], ZZ) == (2, [([1,0], 2)]) assert dup_sqf_list([3,0,0,0], ZZ) == (3, [([1,0], 3)]) assert dup_sqf_list([ZZ(2),ZZ(4),ZZ(2)], ZZ) == \ (ZZ(2), [([ZZ(1),ZZ(1)], 2)]) assert dup_sqf_list([QQ(2),QQ(4),QQ(2)], QQ) == \ (QQ(2), [([QQ(1),QQ(1)], 2)]) assert dup_sqf_list([-1,1,0,0,1,-1], ZZ) == \ (-1, [([1,1,1,1], 1), ([1,-1], 2)]) assert dup_sqf_list([1,0,6,0,12,0,8,0,0], ZZ) == \ (1, [([1,0], 2), ([1,0,2], 3)]) K = FF(2) f = map(K, [1,0,1]) assert dup_sqf_list(f, K) == \ (K(1), [([K(1),K(1)], 2)]) K = FF(3) f = map(K, [1,0,0,2,0,0,2,0,0,1,0]) assert dup_sqf_list(f, K) == \ (K(1), [([K(1), K(0)], 1), ([K(1), K(1)], 3), ([K(1), K(2)], 6)]) f = [1,0,0,1] g = map(K, f) assert dup_sqf_part(f, ZZ) == f assert dup_sqf_part(g, K) == [K(1), K(1)] assert dup_sqf_p(f, ZZ) == True assert dup_sqf_p(g, K) == False A = [[1],[],[-3],[],[6]] D = [[1],[],[-5],[],[5],[],[4]] f, g = D, dmp_sub(A, dmp_mul(dmp_diff(D, 1, 1, ZZ), [[1,0]], 1, ZZ), 1, ZZ) res = dmp_resultant(f, g, 1, ZZ) assert dup_sqf_list(res, ZZ) == (45796, [([4,0,1], 3)]) assert dup_sqf_list_include([DMP([1, 0, 0, 0], ZZ), DMP([], ZZ), DMP([], ZZ)], ZZ[x]) == \ [([DMP([1, 0, 0, 0], ZZ)], 1), ([DMP([1], ZZ), DMP([], ZZ)], 2)]
def test_FF_of_type(): assert FF(3).of_type(FF(3)(1)) is True assert FF(5).of_type(FF(5)(3)) is True assert FF(5).of_type(FF(7)(3)) is False
def test_ModularInteger(): F3 = FF(3) a = F3(0) assert isinstance(a, F3.dtype) and a == 0 a = F3(1) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) assert isinstance(a, F3.dtype) and a == 2 a = F3(3) assert isinstance(a, F3.dtype) and a == 0 a = F3(4) assert isinstance(a, F3.dtype) and a == 1 a = F3(F3(0)) assert isinstance(a, F3.dtype) and a == 0 a = F3(F3(1)) assert isinstance(a, F3.dtype) and a == 1 a = F3(F3(2)) assert isinstance(a, F3.dtype) and a == 2 a = F3(F3(3)) assert isinstance(a, F3.dtype) and a == 0 a = F3(F3(4)) assert isinstance(a, F3.dtype) and a == 1 a = -F3(1) assert isinstance(a, F3.dtype) and a == 2 a = -F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2 + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 3 - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 1 % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)**0 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)**1 assert isinstance(a, F3.dtype) and a == 2 a = F3(2)**2 assert isinstance(a, F3.dtype) and a == 1 F7 = FF(7) a = F7(3)**100000000000 assert isinstance(a, F7.dtype) and a == 4 a = F7(3)**-100000000000 assert isinstance(a, F7.dtype) and a == 2 a = F7(3)**S(2) assert isinstance(a, F7.dtype) and a == 2 assert bool(F3(3)) is False assert bool(F3(4)) is True F5 = FF(5) a = F5(1)**(-1) assert isinstance(a, F5.dtype) and a == 1 a = F5(2)**(-1) assert isinstance(a, F5.dtype) and a == 3 a = F5(3)**(-1) assert isinstance(a, F5.dtype) and a == 2 a = F5(4)**(-1) assert isinstance(a, F5.dtype) and a == 4 assert (F5(1) < F5(2)) is True assert (F5(1) <= F5(2)) is True assert (F5(1) > F5(2)) is False assert (F5(1) >= F5(2)) is False assert (F5(3) < F5(2)) is False assert (F5(3) <= F5(2)) is False assert (F5(3) > F5(2)) is True assert (F5(3) >= F5(2)) is True assert (F5(1) < F5(7)) is True assert (F5(1) <= F5(7)) is True assert (F5(1) > F5(7)) is False assert (F5(1) >= F5(7)) is False assert (F5(3) < F5(7)) is False assert (F5(3) <= F5(7)) is False assert (F5(3) > F5(7)) is True assert (F5(3) >= F5(7)) is True assert (F5(1) < 2) is True assert (F5(1) <= 2) is True assert (F5(1) > 2) is False assert (F5(1) >= 2) is False assert (F5(3) < 2) is False assert (F5(3) <= 2) is False assert (F5(3) > 2) is True assert (F5(3) >= 2) is True assert (F5(1) < 7) is True assert (F5(1) <= 7) is True assert (F5(1) > 7) is False assert (F5(1) >= 7) is False assert (F5(3) < 7) is False assert (F5(3) <= 7) is False assert (F5(3) > 7) is True assert (F5(3) >= 7) is True raises(NotInvertible, lambda: F5(0)**(-1)) raises(NotInvertible, lambda: F5(5)**(-1)) raises(ValueError, lambda: FF(0)) raises(ValueError, lambda: FF(2.1))
def test_dup_factor_list(): R, x = ring("x", ZZ) assert R.dup_factor_list(0) == (0, []) assert R.dup_factor_list(7) == (7, []) R, x = ring("x", QQ) assert R.dup_factor_list(0) == (0, []) assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), []) R, x = ring("x", ZZ['t']) assert R.dup_factor_list(0) == (0, []) assert R.dup_factor_list(7) == (7, []) R, x = ring("x", QQ['t']) assert R.dup_factor_list(0) == (0, []) assert R.dup_factor_list(QQ(1, 7)) == (QQ(1, 7), []) R, x = ring("x", ZZ) assert R.dup_factor_list_include(0) == [(0, 1)] assert R.dup_factor_list_include(7) == [(7, 1)] assert R.dup_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)]) assert R.dup_factor_list_include(x**2 + 2*x + 1) == [(x + 1, 2)] R, x = ring("x", QQ) assert R.dup_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1, 2), [(x + 1, 2)]) R, x = ring("x", FF(2)) assert R.dup_factor_list(x**2 + 1) == (1, [(x + 1, 2)]) R, x = ring("x", RR) assert R.dup_factor_list(1.0*x**2 + 2.0*x + 1.0) == (1.0, [(1.0*x + 1.0, 2)]) assert R.dup_factor_list(2.0*x**2 + 4.0*x + 2.0) == (2.0, [(1.0*x + 1.0, 2)]) f = 6.7225336055071*x**2 - 10.6463972754741*x - 0.33469524022264 coeff, factors = R.dup_factor_list(f) assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq(f, 1e-10) and factors[0][1] == 1 Rt, t = ring("t", ZZ) R, x = ring("x", Rt) f = 4*t*x**2 + 4*t**2*x assert R.dup_factor_list(f) == \ (4*t, [(x, 1), (x + t, 1)]) Rt, t = ring("t", QQ) R, x = ring("x", Rt) f = QQ(1, 2)*t*x**2 + QQ(1, 2)*t**2*x assert R.dup_factor_list(f) == \ (QQ(1, 2)*t, [(x, 1), (x + t, 1)]) R, x = ring("x", QQ.algebraic_field(I)) def anp(element): return ANP(element, [QQ(1), QQ(0), QQ(1)], QQ) f = anp([QQ(1, 1)])*x**4 + anp([QQ(2, 1)])*x**2 assert R.dup_factor_list(f) == \ (anp([QQ(1, 1)]), [(anp([QQ(1, 1)])*x, 2), (anp([QQ(1, 1)])*x**2 + anp([])*x + anp([QQ(2, 1)]), 1)]) R, x = ring("x", EX) raises(DomainError, lambda: R.dup_factor_list(EX(sin(1))))
def test_PolyElement_is_(): R, x,y,z = ring("x,y,z", QQ) assert (x - x).is_generator == False assert (x - x).is_ground == True assert (x - x).is_monomial == True assert (x - x).is_term == True assert (x - x + 1).is_generator == False assert (x - x + 1).is_ground == True assert (x - x + 1).is_monomial == True assert (x - x + 1).is_term == True assert x.is_generator == True assert x.is_ground == False assert x.is_monomial == True assert x.is_term == True assert (x*y).is_generator == False assert (x*y).is_ground == False assert (x*y).is_monomial == True assert (x*y).is_term == True assert (3*x).is_generator == False assert (3*x).is_ground == False assert (3*x).is_monomial == False assert (3*x).is_term == True assert (3*x + 1).is_generator == False assert (3*x + 1).is_ground == False assert (3*x + 1).is_monomial == False assert (3*x + 1).is_term == False assert R(0).is_zero is True assert R(1).is_zero is False assert R(0).is_one is False assert R(1).is_one is True assert (x - 1).is_monic is True assert (2*x - 1).is_monic is False assert (3*x + 2).is_primitive is True assert (4*x + 2).is_primitive is False assert (x + y + z + 1).is_linear is True assert (x*y*z + 1).is_linear is False assert (x*y + z + 1).is_quadratic is True assert (x*y*z + 1).is_quadratic is False assert (x - 1).is_squarefree is True assert ((x - 1)**2).is_squarefree is False assert (x**2 + x + 1).is_irreducible is True assert (x**2 + 2*x + 1).is_irreducible is False _, t = ring("t", FF(11)) assert (7*t + 3).is_irreducible is True assert (7*t**2 + 3*t + 1).is_irreducible is False _, u = ring("u", ZZ) f = u**16 + u**14 - u**10 - u**8 - u**6 + u**2 assert f.is_cyclotomic is False assert (f + 1).is_cyclotomic is True raises(MultivariatePolynomialError, lambda: x.is_cyclotomic)
def test_dmp_factor_list(): R, x, y = ring("x,y", ZZ) assert R.dmp_factor_list(0) == (ZZ(0), []) assert R.dmp_factor_list(7) == (7, []) R, x, y = ring("x,y", QQ) assert R.dmp_factor_list(0) == (QQ(0), []) assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), []) Rt, t = ring("t", ZZ) R, x, y = ring("x,y", Rt) assert R.dmp_factor_list(0) == (0, []) assert R.dmp_factor_list(7) == (ZZ(7), []) Rt, t = ring("t", QQ) R, x, y = ring("x,y", Rt) assert R.dmp_factor_list(0) == (0, []) assert R.dmp_factor_list(QQ(1, 7)) == (QQ(1, 7), []) R, x, y = ring("x,y", ZZ) assert R.dmp_factor_list_include(0) == [(0, 1)] assert R.dmp_factor_list_include(7) == [(7, 1)] R, X = xring("x:200", ZZ) f, g = X[0]**2 + 2*X[0] + 1, X[0] + 1 assert R.dmp_factor_list(f) == (1, [(g, 2)]) f, g = X[-1]**2 + 2*X[-1] + 1, X[-1] + 1 assert R.dmp_factor_list(f) == (1, [(g, 2)]) R, x = ring("x", ZZ) assert R.dmp_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)]) R, x = ring("x", QQ) assert R.dmp_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1,2), [(x + 1, 2)]) R, x, y = ring("x,y", ZZ) assert R.dmp_factor_list(x**2 + 2*x + 1) == (1, [(x + 1, 2)]) R, x, y = ring("x,y", QQ) assert R.dmp_factor_list(QQ(1,2)*x**2 + x + QQ(1,2)) == (QQ(1,2), [(x + 1, 2)]) R, x, y = ring("x,y", ZZ) f = 4*x**2*y + 4*x*y**2 assert R.dmp_factor_list(f) == \ (4, [(y, 1), (x, 1), (x + y, 1)]) assert R.dmp_factor_list_include(f) == \ [(4*y, 1), (x, 1), (x + y, 1)] R, x, y = ring("x,y", QQ) f = QQ(1,2)*x**2*y + QQ(1,2)*x*y**2 assert R.dmp_factor_list(f) == \ (QQ(1,2), [(y, 1), (x, 1), (x + y, 1)]) R, x, y = ring("x,y", RR) f = 2.0*x**2 - 8.0*y**2 assert R.dmp_factor_list(f) == \ (RR(2.0), [(1.0*x - 2.0*y, 1), (1.0*x + 2.0*y, 1)]) f = 6.7225336055071*x**2*y**2 - 10.6463972754741*x*y - 0.33469524022264 coeff, factors = R.dmp_factor_list(f) assert coeff == RR(1.0) and len(factors) == 1 and factors[0][0].almosteq(f, 1e-10) and factors[0][1] == 1 Rt, t = ring("t", ZZ) R, x, y = ring("x,y", Rt) f = 4*t*x**2 + 4*t**2*x assert R.dmp_factor_list(f) == \ (4*t, [(x, 1), (x + t, 1)]) Rt, t = ring("t", QQ) R, x, y = ring("x,y", Rt) f = QQ(1, 2)*t*x**2 + QQ(1, 2)*t**2*x assert R.dmp_factor_list(f) == \ (QQ(1, 2)*t, [(x, 1), (x + t, 1)]) R, x, y = ring("x,y", FF(2)) raises(NotImplementedError, lambda: R.dmp_factor_list(x**2 + y**2)) R, x, y = ring("x,y", EX) raises(DomainError, lambda: R.dmp_factor_list(EX(sin(1))))