コード例 #1
0
def elim(pols, v):
    deg = lambda p: p.degree(v)
    els = []
    for p in pols:
        if deg(p) < 2: continue
        for r in trunc(p, v):
            for j in range(deg(r) - 1):
                els.append(sRes(r, r.diff(v), j))

    tps = truncs(pols)
    for r in tps:
        for s in tps:
            if deg(r) > deg(s):
                for j in range(deg(s)):
                    els.append(sRes(r, s, j))
            elif deg(s) > deg(r):
                for j in range(deg(r)):
                    els.append(sRes(s, r, j))
            else:
                rb = LC(s, v) * r - LC(R, v) * s
                for j in range(deg(rb)):
                    els.append(sRes(s, rb, j))

    for r in tps:
        els.append(LC(r, v))

    return els
コード例 #2
0
ファイル: intpoly.py プロジェクト: cosmosZhou/sagemath
def strip(monom):
    if monom == S.Zero:
        return 0, 0
    elif monom.is_number:
        return monom, 1
    else:
        coeff = LC(monom)
        return coeff, S(monom) / coeff
コード例 #3
0
ファイル: intpoly.py プロジェクト: sidhu1012/sympy
def strip(monom):
    if monom.is_zero:
        return S.Zero, S.Zero
    elif monom.is_number:
        return monom, S.One
    else:
        coeff = LC(monom)
        return coeff, monom / coeff
コード例 #4
0
def PSC(F, G, x):
    n = min(degree(F, x), degree(G, x))
    if n < 0:
        return []
    subs = sRes(F, G, -1, x)[2:]  # subresultants PRS
    s = []
    for p in reversed(subs):
        s.append(LC(p, x))
    return s
コード例 #5
0
 def sres(j):
     n = p + q - 2 * j
     if j == p:
         return sign(LC(P, v))
     elif p > j > q:
         return 0
     sh = SyHa(P, Q, j, v)
     assert sh.shape[0] == n
     return (sh[:, :n]).det()
コード例 #6
0
def proj2(poly_set, x):
    p_out = []
    # F is a polynomial in A
    for i in range(len(poly_set)):
        F = poly_set[i]
        R = reducta(F, x)
        for j in range(i + 1, len(poly_set)):
            G = poly_set[j]
            S = reducta(G, x)
            for H in R:
                if degree(H, x) > 0:
                    for I in S:
                        if degree(I, x) > 0:
                            if degree(H, x) > degree(I, x):
                                psc = PSC(H, I, x)
                                if len(psc) > 0:
                                    if degree(I, x) == 1:
                                        p_out.append(poly(psc[0]))
                                    else:
                                        for aux in psc[0:degree(I, x) - 1]:
                                            p_out.append(poly(aux))

                            elif degree(H, x) < degree(I, x):
                                psc = PSC(I, H, x)
                                if len(psc) > 0:
                                    if degree(H, x) == 1:
                                        p_out.append(poly(psc[0]))
                                    else:
                                        for aux in psc[0:degree(H, x) - 1]:
                                            p_out.append(poly(aux))

                            elif degree(H, x) == degree(I, x):
                                HH = H.mul_ground(
                                    LC(I)).add(-I.mul_ground(LC(H)))
                                psc = PSC(I, HH, x)
                                if len(psc) > 0:
                                    if degree(HH, x) == 1:
                                        p_out.append(poly(psc[0]))
                                    else:
                                        for aux in psc[0:degree(HH, x) - 1]:
                                            p_out.append(poly(aux))

    return p_out
コード例 #7
0
 def sres(j):
     n = p + q - 2 * j
     if j == p:
         return sign(LC(P, v))
     return (SyHa(P, Q, j, v)[:, :n]).det()
コード例 #8
0
def polytope_integrate(poly, expr, **kwargs):
    """Integrates polynomials over 2/3-Polytopes.

    This function accepts the polytope in `poly` and the function in `expr`
    (uni/bi/trivariate polynomials are implemented) and returns
    the exact integral of `expr` over `poly`.
    Parameters
    ==========
    poly : The input Polygon.
    expr : The input polynomial.

    Optional Parameters:
    --------------------
    clockwise : Binary value to sort input points of the 2-Polytope clockwise.
    max_degree : The maximum degree of any monomial of the input polynomial.
    Examples
    ========
    >>> from sympy.abc import x, y
    >>> from sympy.geometry.polygon import Polygon
    >>> from sympy.geometry.point import Point
    >>> from sympy.integrals.intpoly import polytope_integrate
    >>> polygon = Polygon(Point(0,0), Point(0,1), Point(1,1), Point(1,0))
    >>> polys = [1, x, y, x*y, x**2*y, x*y**2]
    >>> expr = x*y
    >>> polytope_integrate(polygon, expr)
    1/4
    >>> polytope_integrate(polygon, polys, max_degree=3)
    {1: 1, x: 1/2, y: 1/2, x*y: 1/4, x*y**2: 1/6, x**2*y: 1/6}
    """
    clockwise = kwargs.get('clockwise', False)
    max_degree = kwargs.get('max_degree', None)

    if clockwise is True:
        if isinstance(poly, Polygon):
            poly = point_sort(poly)
        else:
            raise TypeError("clockwise=True works for only 2-Polytope"
                            "V-representation input")

    expr = S(expr)

    if isinstance(poly, Polygon):
        # For Vertex Representation(2D case)
        hp_params = hyperplane_parameters(poly)
        facets = poly.sides
    elif len(poly[0]) == 2:
        # For Hyperplane Representation(2D case)
        plen = len(poly)
        if len(poly[0][0]) == 2:
            intersections = [intersection(poly[(i - 1) % plen], poly[i],
                                          "plane2D")
                             for i in range(0, plen)]
            hp_params = poly
            lints = len(intersections)
            facets = [Segment2D(intersections[i],
                                intersections[(i + 1) % lints])
                      for i in range(0, lints)]
        else:
            raise NotImplementedError("Integration for H-representation 3D"
                                      "case not implemented yet.")
    else:
        # For Vertex Representation(3D case)
        vertices = poly[0]
        facets = poly[1:]
        hp_params = hyperplane_parameters(facets, vertices)
        return main_integrate3d(expr, facets, vertices, hp_params)

    if max_degree is not None:
        result = {}
        if not isinstance(expr, list):
            raise TypeError('Input polynomials must be list of expressions')
        result_dict = main_integrate(0, facets, hp_params, max_degree)
        for poly in expr:
            if poly not in result:
                if poly is S.Zero:
                    result[S.Zero] = S.Zero
                    continue
                integral_value = S.Zero
                monoms = decompose(poly, separate=True)
                for monom in monoms:
                    if monom.is_number:
                        integral_value += result_dict[1] * monom
                    else:
                        coeff = LC(monom)
                        integral_value += result_dict[monom / coeff] * coeff
                result[poly] = integral_value
        return result

    return main_integrate(expr, facets, hp_params)