コード例 #1
0
def test_contains():
    assert 6 in ConditionSet(x, x > 5, Interval(1, 7))
    assert (8 in ConditionSet(x, y > 5, Interval(1, 7))) is False
    # `in` should give True or False; in this case there is not
    # enough information for that result
    raises(TypeError,
        lambda: 6 in ConditionSet(x, y > 5, Interval(1, 7)))
    # here, there is enough information but the comparison is
    # not defined
    raises(TypeError, lambda: 0 in ConditionSet(x, 1/x >= 0, S.Reals))
    assert ConditionSet(x, y > 5, Interval(1, 7)
        ).contains(6) == (y > 5)
    assert ConditionSet(x, y > 5, Interval(1, 7)
        ).contains(8) is S.false
    assert ConditionSet(x, y > 5, Interval(1, 7)
        ).contains(w) == And(Contains(w, Interval(1, 7)), y > 5)
    # This returns an unevaluated Contains object
    # because 1/0 should not be defined for 1 and 0 in the context of
    # reals.
    assert ConditionSet(x, 1/x >= 0, S.Reals).contains(0) == \
        Contains(0, ConditionSet(x, 1/x >= 0, S.Reals), evaluate=False)
    c = ConditionSet((x, y), x + y > 1, S.Integers**2)
    assert not c.contains(1)
    assert c.contains((2, 1))
    assert not c.contains((0, 1))
    c = ConditionSet((w, (x, y)), w + x + y > 1, S.Integers*S.Integers**2)
    assert not c.contains(1)
    assert not c.contains((1, 2))
    assert not c.contains(((1, 2), 3))
    assert not c.contains(((1, 2), (3, 4)))
    assert c.contains((1, (3, 4)))
コード例 #2
0
def test_flatten():
    """Tests whether there is basic denesting functionality"""
    inner = ConditionSet(x, sin(x) + x > 0)
    outer = ConditionSet(x, Contains(x, inner), S.Reals)
    assert outer == ConditionSet(x, sin(x) + x > 0, S.Reals)

    inner = ConditionSet(y, sin(y) + y > 0)
    outer = ConditionSet(x, Contains(y, inner), S.Reals)
    assert outer != ConditionSet(x, sin(x) + x > 0, S.Reals)

    inner = ConditionSet(x, sin(x) + x > 0).intersect(Interval(-1, 1))
    outer = ConditionSet(x, Contains(x, inner), S.Reals)
    assert outer == ConditionSet(x, sin(x) + x > 0, Interval(-1, 1))
コード例 #3
0
def test_failing_contains():
    # XXX This may have to return unevaluated Contains object
    # because 1/0 should not be defined for 1 and 0 in the context of
    # reals, but there is a nonsensical evaluation to ComplexInfinity
    # and the comparison is giving an error.
    assert ConditionSet(x, 1/x >= 0, S.Reals).contains(0) == \
        Contains(0, ConditionSet(x, 1/x >= 0, S.Reals), evaluate=False)
コード例 #4
0
def test_contains():
    assert 6 in ConditionSet(x, x > 5, Interval(1, 7))
    assert (8 in ConditionSet(x, y > 5, Interval(1, 7))) is False
    # `in` should give True or False; in this case there is not
    # enough information for that result
    raises(TypeError, lambda: 6 in ConditionSet(x, y > 5, Interval(1, 7)))
    assert ConditionSet(x, y > 5, Interval(1, 7)).contains(6) == (y > 5)
    assert ConditionSet(x, y > 5, Interval(1, 7)).contains(8) is S.false
    assert ConditionSet(x, y > 5, Interval(1, 7)).contains(w) == And(
        Contains(w, Interval(1, 7)), y > 5)
コード例 #5
0
ファイル: test_conditionset.py プロジェクト: vijairam20/sympy
def test_flatten():
    """Tests whether there is basic denesting functionality"""
    inner = ConditionSet(x, sin(x) + x > 0)
    outer = ConditionSet(x, Contains(x, inner), S.Reals)
    assert outer == ConditionSet(x, sin(x) + x > 0, S.Reals)

    inner = ConditionSet(y, sin(y) + y > 0)
    outer = ConditionSet(x, Contains(y, inner), S.Reals)
    assert outer != ConditionSet(x, sin(x) + x > 0, S.Reals)

    inner = ConditionSet(x, sin(x) + x > 0).intersect(Interval(-1, 1))
    outer = ConditionSet(x, Contains(x, inner), S.Reals)
    assert outer == ConditionSet(x, sin(x) + x > 0, Interval(-1, 1))

    def test_duplicate():
        from sympy.core.function import BadSignatureError
        # test coverage for line 95 in conditionset.py, check for duplicates in symbols
        dup = symbols('a,a')
        raises(BadSignatureError, lambda: ConditionSet(dup, x < 0))
コード例 #6
0
def test_subs_CondSet():
    s = FiniteSet(z, y)
    c = ConditionSet(x, x < 2, s)
    # you can only replace sym with a symbol that is not in
    # the free symbols
    assert c.subs(x, 1) == c
    assert c.subs(x, y) == ConditionSet(y, y < 2, s)

    # double subs needed to change dummy if the base set
    # also contains the dummy
    orig = ConditionSet(y, y < 2, s)
    base = orig.subs(y, w)
    and_dummy = base.subs(y, w)
    assert base == ConditionSet(y, y < 2, {w, z})
    assert and_dummy == ConditionSet(w, w < 2, {w, z})

    assert c.subs(x, w) == ConditionSet(w, w < 2, s)
    assert ConditionSet(x, x < y,
                        s).subs(y, w) == ConditionSet(x, x < w, s.subs(y, w))
    # if the user uses assumptions that cause the condition
    # to evaluate, that can't be helped from SymPy's end
    n = Symbol('n', negative=True)
    assert ConditionSet(n, 0 < n, S.Integers) is S.EmptySet
    p = Symbol('p', positive=True)
    assert ConditionSet(n, n < y, S.Integers).subs(n, x) == ConditionSet(
        x, x < y, S.Integers)
    nc = Symbol('nc', commutative=False)
    raises(ValueError, lambda: ConditionSet(x, x < p, S.Integers).subs(x, nc))
    raises(ValueError, lambda: ConditionSet(x, x < p, S.Integers).subs(x, n))
    raises(ValueError, lambda: ConditionSet(x + 1, x < 1, S.Integers))
    raises(ValueError, lambda: ConditionSet(x + 1, x < 1, s))
    assert ConditionSet(n, n < x, Interval(0, oo)).subs(x,
                                                        p) == Interval(0, oo)
    assert ConditionSet(n, n < x, Interval(-oo,
                                           0)).subs(x, p) == Interval(-oo, 0)

    assert ConditionSet(f(x),
                        f(x) < 1,
                        {w, z}).subs(f(x),
                                     y) == ConditionSet(y, y < 1, {w, z})

    # issue 17341
    k = Symbol('k')
    img1 = ImageSet(Lambda(k, 2 * k * pi + asin(y)), S.Integers)
    img2 = ImageSet(Lambda(k, 2 * k * pi + asin(S.One / 3)), S.Integers)
    assert ConditionSet(x, Contains(y, Interval(-1, 1)),
                        img1).subs(y, S.One / 3).dummy_eq(img2)
コード例 #7
0
def test_subs_CondSet():
    s = FiniteSet(z, y)
    c = ConditionSet(x, x < 2, s)
    assert c.subs(x, y) == c
    assert c.subs(z, y) == ConditionSet(x, x < 2, FiniteSet(y))
    assert c.xreplace({x: y}) == ConditionSet(y, y < 2, s)

    assert ConditionSet(x, x < y, s
        ).subs(y, w) == ConditionSet(x, x < w, s.subs(y, w))
    # if the user uses assumptions that cause the condition
    # to evaluate, that can't be helped from SymPy's end
    n = Symbol('n', negative=True)
    assert ConditionSet(n, 0 < n, S.Integers) is S.EmptySet
    p = Symbol('p', positive=True)
    assert ConditionSet(n, n < y, S.Integers
        ).subs(n, x) == ConditionSet(n, n < y, S.Integers)
    raises(ValueError, lambda: ConditionSet(
        x + 1, x < 1, S.Integers))
    assert ConditionSet(
        p, n < x, Interval(-5, 5)).subs(x, p) == Interval(-5, 5), ConditionSet(
        p, n < x, Interval(-5, 5)).subs(x, p)
    assert ConditionSet(
        n, n < x, Interval(-oo, 0)).subs(x, p
        ) == Interval(-oo, 0)

    assert ConditionSet(f(x), f(x) < 1, {w, z}
        ).subs(f(x), y) == ConditionSet(f(x), f(x) < 1, {w, z})

    # issue 17341
    k = Symbol('k')
    img1 = ImageSet(Lambda(k, 2*k*pi + asin(y)), S.Integers)
    img2 = ImageSet(Lambda(k, 2*k*pi + asin(S.One/3)), S.Integers)
    assert ConditionSet(x, Contains(
        y, Interval(-1,1)), img1).subs(y, S.One/3).dummy_eq(img2)

    assert (0, 1) in ConditionSet((x, y), x + y < 3, S.Integers**2)

    raises(TypeError, lambda: ConditionSet(n, n < -10, Interval(0, 10)))
コード例 #8
0
def test_as_relational():
    assert ConditionSet((x, y), x > 1, S.Integers**2).as_relational((x, y)
        ) == (x > 1) & Contains((x, y), S.Integers**2)
    assert ConditionSet(x, x > 1, S.Integers).as_relational(x
        ) == Contains(x, S.Integers) & (x > 1)