コード例 #1
0
ファイル: factorials.py プロジェクト: KonstantinTogoi/sympy
 def _eval_simplify(self, ratio, measure):
     from sympy.simplify.combsimp import combsimp
     # combinatorial function with non-integer arguments is
     # automatically passed to gammasimp
     expr = combsimp(self)
     if measure(expr) <= ratio*measure(self):
         return expr
     return self
コード例 #2
0
 def _eval_simplify(self, ratio, measure, rational, inverse):
     from sympy.simplify.combsimp import combsimp
     # combinatorial function with non-integer arguments is
     # automatically passed to gammasimp
     expr = combsimp(self)
     if measure(expr) <= ratio * measure(self):
         return expr
     return self
コード例 #3
0
ファイル: factorials.py プロジェクト: zenquiorra/sympy
 def _eval_simplify(self, **kwargs):
     from sympy.simplify.combsimp import combsimp
     # combinatorial function with non-integer arguments is
     # automatically passed to gammasimp
     expr = combsimp(self)
     measure = kwargs['measure']
     if measure(expr) <= kwargs['ratio'] * measure(self):
         return expr
     return self
コード例 #4
0
 def test_the_product(m, n):
     # g
     g = i**3 + 2*i**2 - 3*i
     # f = Delta g
     f = simplify(g.subs(i, i+1) / g)
     # The product
     a = m
     b = n - 1
     P = Product(f, (i, a, b)).doit()
     # Test if Product_{m <= i < n} f(i) = g(n) / g(m)
     assert combsimp(P / (g.subs(i, n) / g.subs(i, m))) == 1
コード例 #5
0
ファイル: summations.py プロジェクト: msgoff/sympy
def _eval_sum_hyper(f, i, a):
    """ Returns (res, cond). Sums from a to oo. """
    from sympy.functions import hyper
    from sympy.simplify import hyperexpand, hypersimp, fraction, simplify
    from sympy.polys.polytools import Poly, factor
    from sympy.core.numbers import Float

    if a != 0:
        return _eval_sum_hyper(f.subs(i, i + a), i, 0)

    if f.subs(i, 0) == 0:
        if simplify(f.subs(i, Dummy("i", integer=True, positive=True))) == 0:
            return S.Zero, True
        return _eval_sum_hyper(f.subs(i, i + 1), i, 0)

    hs = hypersimp(f, i)
    if hs is None:
        return None

    if isinstance(hs, Float):
        from sympy.simplify.simplify import nsimplify

        hs = nsimplify(hs)

    numer, denom = fraction(factor(hs))
    top, topl = numer.as_coeff_mul(i)
    bot, botl = denom.as_coeff_mul(i)
    ab = [top, bot]
    factors = [topl, botl]
    params = [[], []]
    for k in range(2):
        for fac in factors[k]:
            mul = 1
            if fac.is_Pow:
                mul = fac.exp
                fac = fac.base
                if not mul.is_Integer:
                    return None
            p = Poly(fac, i)
            if p.degree() != 1:
                return None
            m, n = p.all_coeffs()
            ab[k] *= m ** mul
            params[k] += [n / m] * mul

    # Add "1" to numerator parameters, to account for implicit n! in
    # hypergeometric series.
    ap = params[0] + [1]
    bq = params[1]
    x = ab[0] / ab[1]
    h = hyper(ap, bq, x)
    f = combsimp(f)
    return f.subs(i, 0) * hyperexpand(h), h.convergence_statement
コード例 #6
0
ファイル: summations.py プロジェクト: nicoguaro/sympy
def _eval_sum_hyper(f, i, a):
    """ Returns (res, cond). Sums from a to oo. """
    from sympy.functions import hyper
    from sympy.simplify import hyperexpand, hypersimp, fraction, simplify
    from sympy.polys.polytools import Poly, factor
    from sympy.core.numbers import Float

    if a != 0:
        return _eval_sum_hyper(f.subs(i, i + a), i, 0)

    if f.subs(i, 0) == 0:
        if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0:
            return S(0), True
        return _eval_sum_hyper(f.subs(i, i + 1), i, 0)

    hs = hypersimp(f, i)
    if hs is None:
        return None

    if isinstance(hs, Float):
        from sympy.simplify.simplify import nsimplify
        hs = nsimplify(hs)

    numer, denom = fraction(factor(hs))
    top, topl = numer.as_coeff_mul(i)
    bot, botl = denom.as_coeff_mul(i)
    ab = [top, bot]
    factors = [topl, botl]
    params = [[], []]
    for k in range(2):
        for fac in factors[k]:
            mul = 1
            if fac.is_Pow:
                mul = fac.exp
                fac = fac.base
                if not mul.is_Integer:
                    return None
            p = Poly(fac, i)
            if p.degree() != 1:
                return None
            m, n = p.all_coeffs()
            ab[k] *= m**mul
            params[k] += [n/m]*mul

    # Add "1" to numerator parameters, to account for implicit n! in
    # hypergeometric series.
    ap = params[0] + [1]
    bq = params[1]
    x = ab[0]/ab[1]
    h = hyper(ap, bq, x)
    f = combsimp(f)
    return f.subs(i, 0)*hyperexpand(h), h.convergence_statement
コード例 #7
0
 def test_the_product(l, n, m):
     # Productmand
     s = i**3
     # First product
     a = l
     b = n - 1
     S1 = Product(s, (i, a, b)).doit()
     # Second product
     a = l
     b = m - 1
     S2 = Product(s, (i, a, b)).doit()
     # Third product
     a = m
     b = n - 1
     S3 = Product(s, (i, a, b)).doit()
     # Test if S1 = S2 * S3 as required
     assert combsimp(S1 / (S2 * S3)) == 1
コード例 #8
0
    def is_convergent(self):
        r"""Checks for the convergence of a Sum.

        We divide the study of convergence of infinite sums and products in
        two parts.

        First Part:
        One part is the question whether all the terms are well defined, i.e.,
        they are finite in a sum and also non-zero in a product. Zero
        is the analogy of (minus) infinity in products as
        :math:`e^{-\infty} = 0`.

        Second Part:
        The second part is the question of convergence after infinities,
        and zeros in products, have been omitted assuming that their number
        is finite. This means that we only consider the tail of the sum or
        product, starting from some point after which all terms are well
        defined.

        For example, in a sum of the form:

        .. math::

            \sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}

        where a and b are numbers. The routine will return true, even if there
        are infinities in the term sequence (at most two). An analogous
        product would be:

        .. math::

            \prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}

        This is how convergence is interpreted. It is concerned with what
        happens at the limit. Finding the bad terms is another independent
        matter.

        Note: It is responsibility of user to see that the sum or product
        is well defined.

        There are various tests employed to check the convergence like
        divergence test, root test, integral test, alternating series test,
        comparison tests, Dirichlet tests. It returns true if Sum is convergent
        and false if divergent and NotImplementedError if it can not be checked.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Convergence_tests

        Examples
        ========

        >>> from sympy import factorial, S, Sum, Symbol, oo
        >>> n = Symbol('n', integer=True)
        >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
        True
        >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
        False
        >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
        False
        >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
        True

        See Also
        ========

        Sum.is_absolutely_convergent()
        Product.is_convergent()
        """
        from sympy import Interval, Integral, log, symbols, simplify
        p, q, r = symbols('p q r', cls=Wild)

        sym = self.limits[0][0]
        lower_limit = self.limits[0][1]
        upper_limit = self.limits[0][2]
        sequence_term = self.function

        if len(sequence_term.free_symbols) > 1:
            raise NotImplementedError("convergence checking for more than one symbol "
                                      "containing series is not handled")

        if lower_limit.is_finite and upper_limit.is_finite:
            return S.true

        # transform sym -> -sym and swap the upper_limit = S.Infinity
        # and lower_limit = - upper_limit
        if lower_limit is S.NegativeInfinity:
            if upper_limit is S.Infinity:
                return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
                        Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
            sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
            lower_limit = -upper_limit
            upper_limit = S.Infinity

        sym_ = Dummy(sym.name, integer=True, positive=True)
        sequence_term = sequence_term.xreplace({sym: sym_})
        sym = sym_

        interval = Interval(lower_limit, upper_limit)

        # Piecewise function handle
        if sequence_term.is_Piecewise:
            for func, cond in sequence_term.args:
                # see if it represents something going to oo
                if cond == True or cond.as_set().sup is S.Infinity:
                    s = Sum(func, (sym, lower_limit, upper_limit))
                    return s.is_convergent()
            return S.true

        ###  -------- Divergence test ----------- ###
        try:
            lim_val = limit_seq(sequence_term, sym)
            if lim_val is not None and lim_val.is_zero is False:
                return S.false
        except NotImplementedError:
            pass

        try:
            lim_val_abs = limit_seq(abs(sequence_term), sym)
            if lim_val_abs is not None and lim_val_abs.is_zero is False:
                return S.false
        except NotImplementedError:
            pass

        order = O(sequence_term, (sym, S.Infinity))

        ### --------- p-series test (1/n**p) ---------- ###
        p1_series_test = order.expr.match(sym**p)
        if p1_series_test is not None:
            if p1_series_test[p] < -1:
                return S.true
            if p1_series_test[p] >= -1:
                return S.false

        p2_series_test = order.expr.match((1/sym)**p)
        if p2_series_test is not None:
            if p2_series_test[p] > 1:
                return S.true
            if p2_series_test[p] <= 1:
                return S.false

        ### ------------- comparison test ------------- ###
        # 1/(n**p*log(n)**q*log(log(n))**r) comparison
        n_log_test = order.expr.match(1/(sym**p*log(sym)**q*log(log(sym))**r))
        if n_log_test is not None:
            if (n_log_test[p] > 1 or
                (n_log_test[p] == 1 and n_log_test[q] > 1) or
                (n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)):
                    return S.true
            return S.false

        ### ------------- Limit comparison test -----------###
        # (1/n) comparison
        try:
            lim_comp = limit_seq(sym*sequence_term, sym)
            if lim_comp is not None and lim_comp.is_number and lim_comp > 0:
                return S.false
        except NotImplementedError:
            pass

        ### ----------- ratio test ---------------- ###
        next_sequence_term = sequence_term.xreplace({sym: sym + 1})
        ratio = combsimp(powsimp(next_sequence_term/sequence_term))
        try:
            lim_ratio = limit_seq(ratio, sym)
            if lim_ratio is not None and lim_ratio.is_number:
                if abs(lim_ratio) > 1:
                    return S.false
                if abs(lim_ratio) < 1:
                    return S.true
        except NotImplementedError:
            pass

        ### ----------- root test ---------------- ###
        # lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
        try:
            lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym)
            if lim_evaluated is not None and lim_evaluated.is_number:
                if lim_evaluated < 1:
                    return S.true
                if lim_evaluated > 1:
                    return S.false
        except NotImplementedError:
            pass

        ### ------------- alternating series test ----------- ###
        dict_val = sequence_term.match((-1)**(sym + p)*q)
        if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
            return S.true


        ### ------------- integral test -------------- ###
        check_interval = None
        maxima = solveset(sequence_term.diff(sym), sym, interval)
        if not maxima:
            check_interval = interval
        elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
            check_interval = Interval(maxima.sup, interval.sup)
        if (check_interval is not None and
            (is_decreasing(sequence_term, check_interval) or
            is_decreasing(-sequence_term, check_interval))):
                integral_val = Integral(
                    sequence_term, (sym, lower_limit, upper_limit))
                try:
                    integral_val_evaluated = integral_val.doit()
                    if integral_val_evaluated.is_number:
                        return S(integral_val_evaluated.is_finite)
                except NotImplementedError:
                    pass

        ### ----- Dirichlet and bounded times convergent tests ----- ###
        # TODO
        #
        # Dirichlet_test
        # https://en.wikipedia.org/wiki/Dirichlet%27s_test
        #
        # Bounded times convergent test
        # It is based on comparison theorems for series.
        # In particular, if the general term of a series can
        # be written as a product of two terms a_n and b_n
        # and if a_n is bounded and if Sum(b_n) is absolutely
        # convergent, then the original series Sum(a_n * b_n)
        # is absolutely convergent and so convergent.
        #
        # The following code can grows like 2**n where n is the
        # number of args in order.expr
        # Possibly combined with the potentially slow checks
        # inside the loop, could make this test extremely slow
        # for larger summation expressions.

        if order.expr.is_Mul:
            args = order.expr.args
            argset = set(args)

            ### -------------- Dirichlet tests -------------- ###
            m = Dummy('m', integer=True)
            def _dirichlet_test(g_n):
                try:
                    ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m)
                    if ing_val is not None and ing_val.is_finite:
                        return S.true
                except NotImplementedError:
                    pass

            ### -------- bounded times convergent test ---------###
            def _bounded_convergent_test(g1_n, g2_n):
                try:
                    lim_val = limit_seq(g1_n, sym)
                    if lim_val is not None and (lim_val.is_finite or (
                        isinstance(lim_val, AccumulationBounds)
                        and (lim_val.max - lim_val.min).is_finite)):
                            if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent():
                                return S.true
                except NotImplementedError:
                    pass

            for n in range(1, len(argset)):
                for a_tuple in itertools.combinations(args, n):
                    b_set = argset - set(a_tuple)
                    a_n = Mul(*a_tuple)
                    b_n = Mul(*b_set)

                    if is_decreasing(a_n, interval):
                        dirich = _dirichlet_test(b_n)
                        if dirich is not None:
                            return dirich

                    bc_test = _bounded_convergent_test(a_n, b_n)
                    if bc_test is not None:
                        return bc_test

        _sym = self.limits[0][0]
        sequence_term = sequence_term.xreplace({sym: _sym})
        raise NotImplementedError("The algorithm to find the Sum convergence of %s "
                                  "is not yet implemented" % (sequence_term))
コード例 #9
0
ファイル: summations.py プロジェクト: carstimon/sympy
    def is_convergent(self):
        r"""Checks for the convergence of a Sum.

        We divide the study of convergence of infinite sums and products in
        two parts.

        First Part:
        One part is the question whether all the terms are well defined, i.e.,
        they are finite in a sum and also non-zero in a product. Zero
        is the analogy of (minus) infinity in products as
        :math:`e^{-\infty} = 0`.

        Second Part:
        The second part is the question of convergence after infinities,
        and zeros in products, have been omitted assuming that their number
        is finite. This means that we only consider the tail of the sum or
        product, starting from some point after which all terms are well
        defined.

        For example, in a sum of the form:

        .. math::

            \sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}

        where a and b are numbers. The routine will return true, even if there
        are infinities in the term sequence (at most two). An analogous
        product would be:

        .. math::

            \prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}

        This is how convergence is interpreted. It is concerned with what
        happens at the limit. Finding the bad terms is another independent
        matter.

        Note: It is responsibility of user to see that the sum or product
        is well defined.

        There are various tests employed to check the convergence like
        divergence test, root test, integral test, alternating series test,
        comparison tests, Dirichlet tests. It returns true if Sum is convergent
        and false if divergent and NotImplementedError if it can not be checked.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Convergence_tests

        Examples
        ========

        >>> from sympy import factorial, S, Sum, Symbol, oo
        >>> n = Symbol('n', integer=True)
        >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
        True
        >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
        False
        >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
        False
        >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
        True

        See Also
        ========

        Sum.is_absolutely_convergent()

        Product.is_convergent()
        """
        from sympy import Interval, Integral, Limit, log, symbols, Ge, Gt, simplify
        p, q = symbols('p q', cls=Wild)

        sym = self.limits[0][0]
        lower_limit = self.limits[0][1]
        upper_limit = self.limits[0][2]
        sequence_term = self.function

        if len(sequence_term.free_symbols) > 1:
            raise NotImplementedError("convergence checking for more than one symbol "
                                      "containing series is not handled")

        if lower_limit.is_finite and upper_limit.is_finite:
            return S.true

        # transform sym -> -sym and swap the upper_limit = S.Infinity
        # and lower_limit = - upper_limit
        if lower_limit is S.NegativeInfinity:
            if upper_limit is S.Infinity:
                return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
                        Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
            sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
            lower_limit = -upper_limit
            upper_limit = S.Infinity

        sym_ = Dummy(sym.name, integer=True, positive=True)
        sequence_term = sequence_term.xreplace({sym: sym_})
        sym = sym_

        interval = Interval(lower_limit, upper_limit)

        # Piecewise function handle
        if sequence_term.is_Piecewise:
            for func, cond in sequence_term.args:
                # see if it represents something going to oo
                if cond == True or cond.as_set().sup is S.Infinity:
                    s = Sum(func, (sym, lower_limit, upper_limit))
                    return s.is_convergent()
            return S.true

        ###  -------- Divergence test ----------- ###
        try:
            lim_val = limit(sequence_term, sym, upper_limit)
            if lim_val.is_number and lim_val is not S.Zero:
                return S.false
        except NotImplementedError:
            pass

        try:
            lim_val_abs = limit(abs(sequence_term), sym, upper_limit)
            if lim_val_abs.is_number and lim_val_abs is not S.Zero:
                return S.false
        except NotImplementedError:
            pass

        order = O(sequence_term, (sym, S.Infinity))

        ### ----------- ratio test ---------------- ###
        next_sequence_term = sequence_term.xreplace({sym: sym + 1})
        ratio = combsimp(powsimp(next_sequence_term/sequence_term))
        lim_ratio = limit(ratio, sym, upper_limit)
        if lim_ratio.is_number:
            if abs(lim_ratio) > 1:
                return S.false
            if abs(lim_ratio) < 1:
                return S.true

        ### --------- p-series test (1/n**p) ---------- ###
        p1_series_test = order.expr.match(sym**p)
        if p1_series_test is not None:
            if p1_series_test[p] < -1:
                return S.true
            if p1_series_test[p] >= -1:
                return S.false

        p2_series_test = order.expr.match((1/sym)**p)
        if p2_series_test is not None:
            if p2_series_test[p] > 1:
                return S.true
            if p2_series_test[p] <= 1:
                return S.false

        ### ------------- Limit comparison test -----------###
        # (1/n) comparison
        try:
            lim_comp = limit(sym*sequence_term, sym, S.Infinity)
            if lim_comp.is_number and lim_comp > 0:
                    return S.false
        except NotImplementedError:
            pass

        ### ----------- root test ---------------- ###
        lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
        lim_evaluated = lim.doit()
        if lim_evaluated.is_number:
            if lim_evaluated < 1:
                return S.true
            if lim_evaluated > 1:
                return S.false

        ### ------------- alternating series test ----------- ###
        dict_val = sequence_term.match((-1)**(sym + p)*q)
        if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
            return S.true

        ### ------------- comparison test ------------- ###
        # (1/log(n)**p) comparison
        log_test = order.expr.match(1/(log(sym)**p))
        if log_test is not None:
            return S.false

        # (1/(n*log(n)**p)) comparison
        log_n_test = order.expr.match(1/(sym*(log(sym))**p))
        if log_n_test is not None:
            if log_n_test[p] > 1:
                return S.true
            return S.false

        # (1/(n*log(n)*log(log(n))*p)) comparison
        log_log_n_test = order.expr.match(1/(sym*(log(sym)*log(log(sym))**p)))
        if log_log_n_test is not None:
            if log_log_n_test[p] > 1:
                return S.true
            return S.false

        # (1/(n**p*log(n))) comparison
        n_log_test = order.expr.match(1/(sym**p*log(sym)))
        if n_log_test is not None:
            if n_log_test[p] > 1:
                return S.true
            return S.false

        ### ------------- integral test -------------- ###
        maxima = solveset(sequence_term.diff(sym), sym, interval)
        if not maxima:
            check_interval = interval
        elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
            check_interval = Interval(maxima.sup, interval.sup)
            if (
                    is_decreasing(sequence_term, check_interval) or
                    is_decreasing(-sequence_term, check_interval)):
                integral_val = Integral(
                    sequence_term, (sym, lower_limit, upper_limit))
                try:
                    integral_val_evaluated = integral_val.doit()
                    if integral_val_evaluated.is_number:
                        return S(integral_val_evaluated.is_finite)
                except NotImplementedError:
                    pass

        ### -------------- Dirichlet tests -------------- ###
        if order.expr.is_Mul:
            a_n, b_n = order.expr.args[0], order.expr.args[1]
            m = Dummy('m', integer=True)

            def _dirichlet_test(g_n):
                try:
                    ing_val = limit(Sum(g_n, (sym, interval.inf, m)).doit(), m, S.Infinity)
                    if ing_val.is_finite:
                        return S.true
                except NotImplementedError:
                    pass

            if is_decreasing(a_n, interval):
                dirich1 = _dirichlet_test(b_n)
                if dirich1 is not None:
                    return dirich1

            if is_decreasing(b_n, interval):
                dirich2 = _dirichlet_test(a_n)
                if dirich2 is not None:
                    return dirich2

        _sym = self.limits[0][0]
        sequence_term = sequence_term.xreplace({sym: _sym})
        raise NotImplementedError("The algorithm to find the Sum convergence of %s "
                                  "is not yet implemented" % (sequence_term))
コード例 #10
0
def simplify(expr, ratio=1.7, measure=count_ops, fu=False):
    """
    Simplifies the given expression.

    Simplification is not a well defined term and the exact strategies
    this function tries can change in the future versions of SymPy. If
    your algorithm relies on "simplification" (whatever it is), try to
    determine what you need exactly  -  is it powsimp()?, radsimp()?,
    together()?, logcombine()?, or something else? And use this particular
    function directly, because those are well defined and thus your algorithm
    will be robust.

    Nonetheless, especially for interactive use, or when you don't know
    anything about the structure of the expression, simplify() tries to apply
    intelligent heuristics to make the input expression "simpler".  For
    example:

    >>> from sympy import simplify, cos, sin
    >>> from sympy.abc import x, y
    >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
    >>> a
    (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
    >>> simplify(a)
    x + 1

    Note that we could have obtained the same result by using specific
    simplification functions:

    >>> from sympy import trigsimp, cancel
    >>> trigsimp(a)
    (x**2 + x)/x
    >>> cancel(_)
    x + 1

    In some cases, applying :func:`simplify` may actually result in some more
    complicated expression. The default ``ratio=1.7`` prevents more extreme
    cases: if (result length)/(input length) > ratio, then input is returned
    unmodified.  The ``measure`` parameter lets you specify the function used
    to determine how complex an expression is.  The function should take a
    single argument as an expression and return a number such that if
    expression ``a`` is more complex than expression ``b``, then
    ``measure(a) > measure(b)``.  The default measure function is
    :func:`count_ops`, which returns the total number of operations in the
    expression.

    For example, if ``ratio=1``, ``simplify`` output can't be longer
    than input.

    ::

        >>> from sympy import sqrt, simplify, count_ops, oo
        >>> root = 1/(sqrt(2)+3)

    Since ``simplify(root)`` would result in a slightly longer expression,
    root is returned unchanged instead::

       >>> simplify(root, ratio=1) == root
       True

    If ``ratio=oo``, simplify will be applied anyway::

        >>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
        True

    Note that the shortest expression is not necessary the simplest, so
    setting ``ratio`` to 1 may not be a good idea.
    Heuristically, the default value ``ratio=1.7`` seems like a reasonable
    choice.

    You can easily define your own measure function based on what you feel
    should represent the "size" or "complexity" of the input expression.  Note
    that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
    good metrics, but have other problems (in this case, the measure function
    may slow down simplify too much for very large expressions).  If you don't
    know what a good metric would be, the default, ``count_ops``, is a good
    one.

    For example:

    >>> from sympy import symbols, log
    >>> a, b = symbols('a b', positive=True)
    >>> g = log(a) + log(b) + log(a)*log(1/b)
    >>> h = simplify(g)
    >>> h
    log(a*b**(-log(a) + 1))
    >>> count_ops(g)
    8
    >>> count_ops(h)
    5

    So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
    However, we may not like how ``simplify`` (in this case, using
    ``logcombine``) has created the ``b**(log(1/a) + 1)`` term.  A simple way
    to reduce this would be to give more weight to powers as operations in
    ``count_ops``.  We can do this by using the ``visual=True`` option:

    >>> print(count_ops(g, visual=True))
    2*ADD + DIV + 4*LOG + MUL
    >>> print(count_ops(h, visual=True))
    2*LOG + MUL + POW + SUB

    >>> from sympy import Symbol, S
    >>> def my_measure(expr):
    ...     POW = Symbol('POW')
    ...     # Discourage powers by giving POW a weight of 10
    ...     count = count_ops(expr, visual=True).subs(POW, 10)
    ...     # Every other operation gets a weight of 1 (the default)
    ...     count = count.replace(Symbol, type(S.One))
    ...     return count
    >>> my_measure(g)
    8
    >>> my_measure(h)
    14
    >>> 15./8 > 1.7 # 1.7 is the default ratio
    True
    >>> simplify(g, measure=my_measure)
    -log(a)*log(b) + log(a) + log(b)

    Note that because ``simplify()`` internally tries many different
    simplification strategies and then compares them using the measure
    function, we get a completely different result that is still different
    from the input expression by doing this.
    """
    expr = sympify(expr)

    try:
        return expr._eval_simplify(ratio=ratio, measure=measure)
    except AttributeError:
        pass

    original_expr = expr = signsimp(expr)

    from sympy.simplify.hyperexpand import hyperexpand
    from sympy.functions.special.bessel import BesselBase
    from sympy import Sum, Product

    if not isinstance(expr, Basic) or not expr.args:  # XXX: temporary hack
        return expr

    if not isinstance(expr, (Add, Mul, Pow, ExpBase)):
        if isinstance(expr, Function) and hasattr(expr, "inverse"):
            if len(expr.args) == 1 and len(expr.args[0].args) == 1 and \
               isinstance(expr.args[0], expr.inverse(argindex=1)):
                return simplify(expr.args[0].args[0], ratio=ratio,
                                measure=measure, fu=fu)
        return expr.func(*[simplify(x, ratio=ratio, measure=measure, fu=fu)
                         for x in expr.args])

    # TODO: Apply different strategies, considering expression pattern:
    # is it a purely rational function? Is there any trigonometric function?...
    # See also https://github.com/sympy/sympy/pull/185.

    def shorter(*choices):
        '''Return the choice that has the fewest ops. In case of a tie,
        the expression listed first is selected.'''
        if not has_variety(choices):
            return choices[0]
        return min(choices, key=measure)

    expr = bottom_up(expr, lambda w: w.normal())
    expr = Mul(*powsimp(expr).as_content_primitive())
    _e = cancel(expr)
    expr1 = shorter(_e, _mexpand(_e).cancel())  # issue 6829
    expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))

    if ratio is S.Infinity:
        expr = expr2
    else:
        expr = shorter(expr2, expr1, expr)
    if not isinstance(expr, Basic):  # XXX: temporary hack
        return expr

    expr = factor_terms(expr, sign=False)

    # hyperexpand automatically only works on hypergeometric terms
    expr = hyperexpand(expr)

    expr = piecewise_fold(expr)

    if expr.has(BesselBase):
        expr = besselsimp(expr)

    if expr.has(TrigonometricFunction) and not fu or expr.has(
            HyperbolicFunction):
        expr = trigsimp(expr, deep=True)

    if expr.has(log):
        expr = shorter(expand_log(expr, deep=True), logcombine(expr))

    if expr.has(CombinatorialFunction, gamma):
        expr = combsimp(expr)

    if expr.has(Sum):
        expr = sum_simplify(expr)

    if expr.has(Product):
        expr = product_simplify(expr)

    short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
    short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
    if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase):
        short = exptrigsimp(short, simplify=False)

    # get rid of hollow 2-arg Mul factorization
    hollow_mul = Transform(
        lambda x: Mul(*x.args),
        lambda x:
        x.is_Mul and
        len(x.args) == 2 and
        x.args[0].is_Number and
        x.args[1].is_Add and
        x.is_commutative)
    expr = short.xreplace(hollow_mul)

    numer, denom = expr.as_numer_denom()
    if denom.is_Add:
        n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
        if n is not S.One:
            expr = (numer*n).expand()/d

    if expr.could_extract_minus_sign():
        n, d = fraction(expr)
        if d != 0:
            expr = signsimp(-n/(-d))

    if measure(expr) > ratio*measure(original_expr):
        expr = original_expr

    return expr
コード例 #11
0
ファイル: 55903_simplify.py プロジェクト: yashkgp/sympy
def simplify(expr, ratio=1.7, measure=count_ops, rational=False):
    # type: (object, object, object, object) -> object
    """
    Simplifies the given expression.

    Simplification is not a well defined term and the exact strategies
    this function tries can change in the future versions of SymPy. If
    your algorithm relies on "simplification" (whatever it is), try to
    determine what you need exactly  -  is it powsimp()?, radsimp()?,
    together()?, logcombine()?, or something else? And use this particular
    function directly, because those are well defined and thus your algorithm
    will be robust.

    Nonetheless, especially for interactive use, or when you don't know
    anything about the structure of the expression, simplify() tries to apply
    intelligent heuristics to make the input expression "simpler".  For
    example:

    >>> from sympy import simplify, cos, sin
    >>> from sympy.abc import x, y
    >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
    >>> a
    (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
    >>> simplify(a)
    x + 1

    Note that we could have obtained the same result by using specific
    simplification functions:

    >>> from sympy import trigsimp, cancel
    >>> trigsimp(a)
    (x**2 + x)/x
    >>> cancel(_)
    x + 1

    In some cases, applying :func:`simplify` may actually result in some more
    complicated expression. The default ``ratio=1.7`` prevents more extreme
    cases: if (result length)/(input length) > ratio, then input is returned
    unmodified.  The ``measure`` parameter lets you specify the function used
    to determine how complex an expression is.  The function should take a
    single argument as an expression and return a number such that if
    expression ``a`` is more complex than expression ``b``, then
    ``measure(a) > measure(b)``.  The default measure function is
    :func:`count_ops`, which returns the total number of operations in the
    expression.

    For example, if ``ratio=1``, ``simplify`` output can't be longer
    than input.

    ::

        >>> from sympy import sqrt, simplify, count_ops, oo
        >>> root = 1/(sqrt(2)+3)

    Since ``simplify(root)`` would result in a slightly longer expression,
    root is returned unchanged instead::

       >>> simplify(root, ratio=1) == root
       True

    If ``ratio=oo``, simplify will be applied anyway::

        >>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
        True

    Note that the shortest expression is not necessary the simplest, so
    setting ``ratio`` to 1 may not be a good idea.
    Heuristically, the default value ``ratio=1.7`` seems like a reasonable
    choice.

    You can easily define your own measure function based on what you feel
    should represent the "size" or "complexity" of the input expression.  Note
    that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
    good metrics, but have other problems (in this case, the measure function
    may slow down simplify too much for very large expressions).  If you don't
    know what a good metric would be, the default, ``count_ops``, is a good
    one.

    For example:

    >>> from sympy import symbols, log
    >>> a, b = symbols('a b', positive=True)
    >>> g = log(a) + log(b) + log(a)*log(1/b)
    >>> h = simplify(g)
    >>> h
    log(a*b**(-log(a) + 1))
    >>> count_ops(g)
    8
    >>> count_ops(h)
    5

    So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
    However, we may not like how ``simplify`` (in this case, using
    ``logcombine``) has created the ``b**(log(1/a) + 1)`` term.  A simple way
    to reduce this would be to give more weight to powers as operations in
    ``count_ops``.  We can do this by using the ``visual=True`` option:

    >>> print(count_ops(g, visual=True))
    2*ADD + DIV + 4*LOG + MUL
    >>> print(count_ops(h, visual=True))
    2*LOG + MUL + POW + SUB

    >>> from sympy import Symbol, S
    >>> def my_measure(expr):
    ...     POW = Symbol('POW')
    ...     # Discourage powers by giving POW a weight of 10
    ...     count = count_ops(expr, visual=True).subs(POW, 10)
    ...     # Every other operation gets a weight of 1 (the default)
    ...     count = count.replace(Symbol, type(S.One))
    ...     return count
    >>> my_measure(g)
    8
    >>> my_measure(h)
    14
    >>> 15./8 > 1.7 # 1.7 is the default ratio
    True
    >>> simplify(g, measure=my_measure)
    -log(a)*log(b) + log(a) + log(b)

    Note that because ``simplify()`` internally tries many different
    simplification strategies and then compares them using the measure
    function, we get a completely different result that is still different
    from the input expression by doing this.

    If rational=True, Floats will be recast as Rationals before simplification.
    If rational=None, Floats will be recast as Rationals but the result will
    be recast as Floats. If rational=False(default) then nothing will be done
    to the Floats.
    """
    expr = sympify(expr)

    try:
        return expr._eval_simplify(ratio=ratio, measure=measure)
    except AttributeError:
        pass

    original_expr = expr = signsimp(expr)

    from sympy.simplify.hyperexpand import hyperexpand
    from sympy.functions.special.bessel import BesselBase
    from sympy import Sum, Product

    if not isinstance(expr, Basic) or not expr.args:  # XXX: temporary hack
        return expr

    if not isinstance(expr, (Add, Mul, Pow, ExpBase)):
        if isinstance(expr, Function) and hasattr(expr, "inverse"):
            if len(expr.args) == 1 and len(expr.args[0].args) == 1 and \
               isinstance(expr.args[0], expr.inverse(argindex=1)):
                return simplify(expr.args[0].args[0], ratio=ratio,
                                measure=measure, rational=rational)
        return expr.func(*[simplify(x, ratio=ratio, measure=measure, rational=rational)
                         for x in expr.args])

    # TODO: Apply different strategies, considering expression pattern:
    # is it a purely rational function? Is there any trigonometric function?...
    # See also https://github.com/sympy/sympy/pull/185.

    def shorter(*choices):
        '''Return the choice that has the fewest ops. In case of a tie,
        the expression listed first is selected.'''
        if not has_variety(choices):
            return choices[0]
        return min(choices, key=measure)

    # rationalize Floats
    floats = False
    if rational is not False and expr.has(Float):
        floats = True
        expr = nsimplify(expr, rational=True)

    expr = bottom_up(expr, lambda w: w.normal())
    expr = Mul(*powsimp(expr).as_content_primitive())
    _e = cancel(expr)
    expr1 = shorter(_e, _mexpand(_e).cancel())  # issue 6829
    expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))

    if ratio is S.Infinity:
        expr = expr2
    else:
        expr = shorter(expr2, expr1, expr)
    if not isinstance(expr, Basic):  # XXX: temporary hack
        return expr

    expr = factor_terms(expr, sign=False)

    # hyperexpand automatically only works on hypergeometric terms
    expr = hyperexpand(expr)

    expr = piecewise_fold(expr)

    if expr.has(BesselBase):
        expr = besselsimp(expr)

    if expr.has(TrigonometricFunction, HyperbolicFunction):
        expr = trigsimp(expr, deep=True)

    if expr.has(log):
        expr = shorter(expand_log(expr, deep=True), logcombine(expr))

    if expr.has(CombinatorialFunction, gamma):
        # expression with gamma functions or non-integer arguments is
        # automatically passed to gammasimp
        expr = combsimp(expr)

    if expr.has(Sum):
        expr = sum_simplify(expr)

    if expr.has(Product):
        expr = product_simplify(expr)

    short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
    short = shorter(short, cancel(short))
    short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
    if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase):
        short = exptrigsimp(short)

    # get rid of hollow 2-arg Mul factorization
    hollow_mul = Transform(
        lambda x: Mul(*x.args),
        lambda x:
        x.is_Mul and
        len(x.args) == 2 and
        x.args[0].is_Number and
        x.args[1].is_Add and
        x.is_commutative)
    expr = short.xreplace(hollow_mul)

    numer, denom = expr.as_numer_denom()
    if denom.is_Add:
        n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
        if n is not S.One:
            expr = (numer*n).expand()/d

    if expr.could_extract_minus_sign():
        n, d = fraction(expr)
        if d != 0:
            expr = signsimp(-n/(-d))

    if measure(expr) > ratio*measure(original_expr):
        expr = original_expr

    # restore floats
    if floats and rational is None:
        expr = nfloat(expr, exponent=False)

    return expr
コード例 #12
0
    def is_convergent(self):
        r"""Checks for the convergence of a Sum.

        We divide the study of convergence of infinite sums and products in
        two parts.

        First Part:
        One part is the question whether all the terms are well defined, i.e.,
        they are finite in a sum and also non-zero in a product. Zero
        is the analogy of (minus) infinity in products as
        :math:`e^{-\infty} = 0`.

        Second Part:
        The second part is the question of convergence after infinities,
        and zeros in products, have been omitted assuming that their number
        is finite. This means that we only consider the tail of the sum or
        product, starting from some point after which all terms are well
        defined.

        For example, in a sum of the form:

        .. math::

            \sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}

        where a and b are numbers. The routine will return true, even if there
        are infinities in the term sequence (at most two). An analogous
        product would be:

        .. math::

            \prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}

        This is how convergence is interpreted. It is concerned with what
        happens at the limit. Finding the bad terms is another independent
        matter.

        Note: It is responsibility of user to see that the sum or product
        is well defined.

        There are various tests employed to check the convergence like
        divergence test, root test, integral test, alternating series test,
        comparison tests, Dirichlet tests. It returns true if Sum is convergent
        and false if divergent and NotImplementedError if it can not be checked.

        References
        ==========

        .. [1] https://en.wikipedia.org/wiki/Convergence_tests

        Examples
        ========

        >>> from sympy import factorial, S, Sum, Symbol, oo
        >>> n = Symbol('n', integer=True)
        >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
        True
        >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
        False
        >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
        False
        >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
        True

        See Also
        ========

        Sum.is_absolutely_convergent()

        Product.is_convergent()
        """
        from sympy import Interval, Integral, Limit, log, symbols, Ge, Gt, simplify
        p, q = symbols('p q', cls=Wild)

        sym = self.limits[0][0]
        lower_limit = self.limits[0][1]
        upper_limit = self.limits[0][2]
        sequence_term = self.function

        if len(sequence_term.free_symbols) > 1:
            raise NotImplementedError(
                "convergence checking for more than one symbol "
                "containing series is not handled")

        if lower_limit.is_finite and upper_limit.is_finite:
            return S.true

        # transform sym -> -sym and swap the upper_limit = S.Infinity
        # and lower_limit = - upper_limit
        if lower_limit is S.NegativeInfinity:
            if upper_limit is S.Infinity:
                return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
                        Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
            sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
            lower_limit = -upper_limit
            upper_limit = S.Infinity

        sym_ = Dummy(sym.name, integer=True, positive=True)
        sequence_term = sequence_term.xreplace({sym: sym_})
        sym = sym_

        interval = Interval(lower_limit, upper_limit)

        # Piecewise function handle
        if sequence_term.is_Piecewise:
            for func, cond in sequence_term.args:
                # see if it represents something going to oo
                if cond == True or cond.as_set().sup is S.Infinity:
                    s = Sum(func, (sym, lower_limit, upper_limit))
                    return s.is_convergent()
            return S.true

        ###  -------- Divergence test ----------- ###
        try:
            lim_val = limit(sequence_term, sym, upper_limit)
            if lim_val.is_number and lim_val is not S.Zero:
                return S.false
        except NotImplementedError:
            pass

        try:
            lim_val_abs = limit(abs(sequence_term), sym, upper_limit)
            if lim_val_abs.is_number and lim_val_abs is not S.Zero:
                return S.false
        except NotImplementedError:
            pass

        order = O(sequence_term, (sym, S.Infinity))

        ### ----------- ratio test ---------------- ###
        next_sequence_term = sequence_term.xreplace({sym: sym + 1})
        ratio = combsimp(powsimp(next_sequence_term / sequence_term))
        lim_ratio = limit(ratio, sym, upper_limit)
        if abs(lim_ratio) > 1:
            return S.false
        if abs(lim_ratio) < 1:
            return S.true

        ### --------- p-series test (1/n**p) ---------- ###
        p1_series_test = order.expr.match(sym**p)
        if p1_series_test is not None:
            if p1_series_test[p] < -1:
                return S.true
            if p1_series_test[p] >= -1:
                return S.false

        p2_series_test = order.expr.match((1 / sym)**p)
        if p2_series_test is not None:
            if p2_series_test[p] > 1:
                return S.true
            if p2_series_test[p] <= 1:
                return S.false

        ### ----------- root test ---------------- ###
        lim = Limit(abs(sequence_term)**(1 / sym), sym, S.Infinity)
        lim_evaluated = lim.doit()
        if lim_evaluated.is_number:
            if lim_evaluated < 1:
                return S.true
            if lim_evaluated > 1:
                return S.false

        ### ------------- alternating series test ----------- ###
        dict_val = sequence_term.match((-1)**(sym + p) * q)
        if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
            return S.true

        ### ------------- comparison test ------------- ###
        # (1/log(n)**p) comparison
        log_test = order.expr.match(1 / (log(sym)**p))
        if log_test is not None:
            return S.false

        # (1/(n*log(n)**p)) comparison
        log_n_test = order.expr.match(1 / (sym * (log(sym))**p))
        if log_n_test is not None:
            if log_n_test[p] > 1:
                return S.true
            return S.false

        # (1/(n*log(n)*log(log(n))*p)) comparison
        log_log_n_test = order.expr.match(1 / (sym *
                                               (log(sym) * log(log(sym))**p)))
        if log_log_n_test is not None:
            if log_log_n_test[p] > 1:
                return S.true
            return S.false

        # (1/(n**p*log(n))) comparison
        n_log_test = order.expr.match(1 / (sym**p * log(sym)))
        if n_log_test is not None:
            if n_log_test[p] > 1:
                return S.true
            return S.false

        ### ------------- integral test -------------- ###
        maxima = solveset(sequence_term.diff(sym), sym, interval)
        if not maxima:
            check_interval = interval
        elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
            check_interval = Interval(maxima.sup, interval.sup)
            if (is_decreasing(sequence_term, check_interval)
                    or is_decreasing(-sequence_term, check_interval)):
                integral_val = Integral(sequence_term,
                                        (sym, lower_limit, upper_limit))
                try:
                    integral_val_evaluated = integral_val.doit()
                    if integral_val_evaluated.is_number:
                        return S(integral_val_evaluated.is_finite)
                except NotImplementedError:
                    pass

        ### -------------- Dirichlet tests -------------- ###
        if order.expr.is_Mul:
            a_n, b_n = order.expr.args[0], order.expr.args[1]
            m = Dummy('m', integer=True)

            def _dirichlet_test(g_n):
                try:
                    ing_val = limit(
                        Sum(g_n, (sym, interval.inf, m)).doit(), m, S.Infinity)
                    if ing_val.is_finite:
                        return S.true
                except NotImplementedError:
                    pass

            if is_decreasing(a_n, interval):
                dirich1 = _dirichlet_test(b_n)
                if dirich1 is not None:
                    return dirich1

            if is_decreasing(b_n, interval):
                dirich2 = _dirichlet_test(a_n)
                if dirich2 is not None:
                    return dirich2

        _sym = self.limits[0][0]
        sequence_term = sequence_term.xreplace({sym: _sym})
        raise NotImplementedError(
            "The algorithm to find the Sum convergence of %s "
            "is not yet implemented" % (sequence_term))
コード例 #13
0
def test_combsimp():
    assert combsimp(A*B - B*A) == A*B - B*A
コード例 #14
0
ファイル: test_combsimp.py プロジェクト: vishalbelsare/sympy
def test_issue_14528():
    p = symbols("p", integer=True, positive=True)
    assert combsimp(binomial(1, p)) == 1 / (factorial(p) * factorial(1 - p))
    assert combsimp(factorial(2 - p)) == factorial(2 - p)
コード例 #15
0
ファイル: test_combsimp.py プロジェクト: vishalbelsare/sympy
def test_issue_6878():
    n = symbols('n', integer=True)
    assert combsimp(RisingFactorial(
        -10, n)) == 3628800 * (-1)**n / factorial(10 - n)
コード例 #16
0
ファイル: test_combsimp.py プロジェクト: vishalbelsare/sympy
def test_combsimp():
    k, m, n = symbols('k m n', integer=True)

    assert combsimp(factorial(n)) == factorial(n)
    assert combsimp(binomial(n, k)) == binomial(n, k)

    assert combsimp(factorial(n) / factorial(n - 3)) == n * (-1 + n) * (-2 + n)
    assert combsimp(binomial(n + 1, k + 1) /
                    binomial(n, k)) == (1 + n) / (1 + k)

    assert combsimp(binomial(3*n + 4, n + 1)/binomial(3*n + 1, n)) == \
        Rational(3, 2)*((3*n + 2)*(3*n + 4)/((n + 1)*(2*n + 3)))

    assert combsimp(factorial(n)**2/factorial(n - 3)) == \
        factorial(n)*n*(-1 + n)*(-2 + n)
    assert combsimp(factorial(n)*binomial(n + 1, k + 1)/binomial(n, k)) == \
        factorial(n + 1)/(1 + k)

    assert combsimp(gamma(n + 3)) == factorial(n + 2)

    assert combsimp(factorial(x)) == gamma(x + 1)

    # issue 9699
    assert combsimp((n + 1) * factorial(n)) == factorial(n + 1)
    assert combsimp(factorial(n) / n) == factorial(n - 1)

    # issue 6658
    assert combsimp(binomial(n, n - k)) == binomial(n, k)

    # issue 6341, 7135
    assert combsimp(factorial(n)/(factorial(k)*factorial(n - k))) == \
        binomial(n, k)
    assert combsimp(factorial(k)*factorial(n - k)/factorial(n)) == \
        1/binomial(n, k)
    assert combsimp(factorial(2 * n) / factorial(n)**2) == binomial(2 * n, n)
    assert combsimp(
        factorial(2 * n) * factorial(k) * factorial(n - k) /
        factorial(n)**3) == binomial(2 * n, n) / binomial(n, k)

    assert combsimp(factorial(n * (1 + n) - n**2 - n)) == 1

    assert combsimp(6*FallingFactorial(-4, n)/factorial(n)) == \
        (-1)**n*(n + 1)*(n + 2)*(n + 3)
    assert combsimp(6*FallingFactorial(-4, n - 1)/factorial(n - 1)) == \
        (-1)**(n - 1)*n*(n + 1)*(n + 2)
    assert combsimp(6*FallingFactorial(-4, n - 3)/factorial(n - 3)) == \
        (-1)**(n - 3)*n*(n - 1)*(n - 2)
    assert combsimp(6*FallingFactorial(-4, -n - 1)/factorial(-n - 1)) == \
        -(-1)**(-n - 1)*n*(n - 1)*(n - 2)

    assert combsimp(6*RisingFactorial(4, n)/factorial(n)) == \
        (n + 1)*(n + 2)*(n + 3)
    assert combsimp(6*RisingFactorial(4, n - 1)/factorial(n - 1)) == \
        n*(n + 1)*(n + 2)
    assert combsimp(6*RisingFactorial(4, n - 3)/factorial(n - 3)) == \
        n*(n - 1)*(n - 2)
    assert combsimp(6*RisingFactorial(4, -n - 1)/factorial(-n - 1)) == \
        -n*(n - 1)*(n - 2)