コード例 #1
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_issue_7840():
    # daveknippers' example
    C393 = sympify( \
        'Piecewise((C391 - 1.65, C390 < 0.5), (Piecewise((C391 - 1.65, \
        C391 > 2.35), (C392, True)), True))'
    )
    C391 = sympify( \
        'Piecewise((2.05*C390**(-1.03), C390 < 0.5), (2.5*C390**(-0.625), True))'
    )
    C393 = C393.subs('C391', C391)
    # simple substitution
    sub = {}
    sub['C390'] = 0.703451854
    sub['C392'] = 1.01417794
    ss_answer = C393.subs(sub)
    # cse
    substitutions, new_eqn = cse(C393)
    for pair in substitutions:
        sub[pair[0].name] = pair[1].subs(sub)
    cse_answer = new_eqn[0].subs(sub)
    # both methods should be the same
    assert ss_answer == cse_answer

    # GitRay's example
    expr = sympify(
        "Piecewise((Symbol('ON'), Equality(Symbol('mode'), Symbol('ON'))), \
        (Piecewise((Piecewise((Symbol('OFF'), StrictLessThan(Symbol('x'), \
        Symbol('threshold'))), (Symbol('ON'), true)), Equality(Symbol('mode'), \
        Symbol('AUTO'))), (Symbol('OFF'), true)), true))")
    substitutions, new_eqn = cse(expr)
    # this Piecewise should be exactly the same
    assert new_eqn[0] == expr
    # there should not be any replacements
    assert len(substitutions) < 1
コード例 #2
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_issue_11230():
    # a specific test that always failed
    a, b, f, k, l, i = symbols('a b f k l i')
    p = [a * b * f * k * l, a * i * k**2 * l, f * i * k**2 * l]
    R, C = cse(p)
    assert not any(i.is_Mul for a in C for i in a.args)

    # random tests for the issue
    from sympy.core.random import choice
    from sympy.core.function import expand_mul
    s = symbols('a:m')
    # 35 Mul tests, none of which should ever fail
    ex = [Mul(*[choice(s) for i in range(5)]) for i in range(7)]
    for p in subsets(ex, 3):
        p = list(p)
        R, C = cse(p)
        assert not any(i.is_Mul for a in C for i in a.args)
        for ri in reversed(R):
            for i in range(len(C)):
                C[i] = C[i].subs(*ri)
        assert p == C
    # 35 Add tests, none of which should ever fail
    ex = [Add(*[choice(s[:7]) for i in range(5)]) for i in range(7)]
    for p in subsets(ex, 3):
        p = list(p)
        R, C = cse(p)
        assert not any(i.is_Add for a in C for i in a.args)
        for ri in reversed(R):
            for i in range(len(C)):
                C[i] = C[i].subs(*ri)
        # use expand_mul to handle cases like this:
        # p = [a + 2*b + 2*e, 2*b + c + 2*e, b + 2*c + 2*g]
        # x0 = 2*(b + e) is identified giving a rebuilt p that
        # is now `[a + 2*(b + e), c + 2*(b + e), b + 2*c + 2*g]`
        assert p == [expand_mul(i) for i in C]
コード例 #3
0
 def genEval(self):
     text = "        bool evaluate(\n"
     args=[]
     for name,v in self.variables:
         if v.is_Matrix:
             args.append("           const Eigen::MatrixXd & %s" % name)
         else:
             args.append("           double %s" % name)
     args.append("           bool evalF=true,bool evalJ=true")
     text += ",\n".join(args) + ") {\n"
     text += "           if (evalF) {\n"
     (interm, expr) = cse(self.function,numbered_symbols("__x"));
     for dummy,exp in interm:
         text += "               double %s = %s;\n" % (str(dummy),ccode(exp))
     for i in range(self.function.rows):
         text += "               F(%d) = %s;\n" % (i,ccode(expr[0][i]))
     text += "           }\n"
     text += "           if (evalJ) {\n"
     (interm, expr) = cse(self.J,numbered_symbols("__x"));
     for dummy,exp in interm:
         text += "               double %s = %s;\n" % (str(dummy),ccode(exp))
     for i in range(self.J.rows):
         for j in range(self.J.cols):
             text += "               J(%d,%d) = %s;\n" % (i,j,ccode(expr[0][i,j]))
     text += "           }\n"
     text += "           return true;\n"
     text += "       }\n"
     return text
コード例 #4
0
ファイル: test_cse.py プロジェクト: vishalbelsare/sympy
def test_cse_ignore():
    exprs = [exp(y)*(3*y + 3*sqrt(x+1)), exp(y)*(5*y + 5*sqrt(x+1))]
    subst1, red1 = cse(exprs)
    assert any(y in sub.free_symbols for _, sub in subst1), "cse failed to identify any term with y"

    subst2, red2 = cse(exprs, ignore=(y,))  # y is not allowed in substitutions
    assert not any(y in sub.free_symbols for _, sub in subst2), "Sub-expressions containing y must be ignored"
    assert any(sub - sqrt(x + 1) == 0 for _, sub in subst2), "cse failed to identify sqrt(x + 1) as sub-expression"
コード例 #5
0
ファイル: test_cse.py プロジェクト: vishalbelsare/sympy
def test_cse_MatrixSymbol():
    # MatrixSymbols have non-Basic args, so make sure that works
    A = MatrixSymbol("A", 3, 3)
    assert cse(A) == ([], [A])

    n = symbols('n', integer=True)
    B = MatrixSymbol("B", n, n)
    assert cse(B) == ([], [B])
コード例 #6
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_bypass_non_commutatives():
    A, B, C = symbols('A B C', commutative=False)
    l = [A * B * C, A * C]
    assert cse(l) == ([], l)
    l = [A * B * C, A * B]
    assert cse(l) == ([], l)
    l = [B * C, A * B * C]
    assert cse(l) == ([], l)
コード例 #7
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_cse_not_possible():
    # No substitution possible.
    e = Add(x, y)
    substs, reduced = cse([e])
    assert substs == []
    assert reduced == [x + y]
    # issue 6329
    eq = (meijerg((1, 2), (y, 4), (5, ), [], x) + meijerg((1, 3), (y, 4),
                                                          (5, ), [], x))
    assert cse(eq) == ([], [eq])
コード例 #8
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_cse_single():
    # Simple substitution.
    e = Add(Pow(x + y, 2), sqrt(x + y))
    substs, reduced = cse([e])
    assert substs == [(x0, x + y)]
    assert reduced == [sqrt(x0) + x0**2]

    subst42, (red42, ) = cse([42])  # issue_15082
    assert len(subst42) == 0 and red42 == 42
    subst_half, (red_half, ) = cse([0.5])
    assert len(subst_half) == 0 and red_half == 0.5
コード例 #9
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_issue_10228():
    assert cse([x * y**2 + x * y]) == ([(x0, x * y)], [x0 * y + x0])
    assert cse([x + y, 2 * x + y]) == ([(x0, x + y)], [x0, x + x0])
    assert cse((w + 2 * x + y + z, w + x + 1)) == ([(x0, w + x)],
                                                   [x0 + x + y + z, x0 + 1])
    assert cse(((w + x + y + z) * (w - x)) / (w + x)) == ([(x0, w + x)], [
        (x0 + y + z) * (w - x) / x0
    ])
    a, b, c, d, f, g, j, m = symbols('a, b, c, d, f, g, j, m')
    exprs = (d * g**2 * j * m, 4 * a * f * g * m, a * b * c * f**2)
    assert cse(exprs) == ([(x0, g * m), (x1, a * f)],
                          [d * g * j * x0, 4 * x0 * x1, b * c * f * x1])
コード例 #10
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_cse_single2():
    # Simple substitution, test for being able to pass the expression directly
    e = Add(Pow(x + y, 2), sqrt(x + y))
    substs, reduced = cse(e)
    assert substs == [(x0, x + y)]
    assert reduced == [sqrt(x0) + x0**2]
    substs, reduced = cse(Matrix([[1]]))
    assert isinstance(reduced[0], Matrix)

    subst42, (red42, ) = cse(42)  # issue 15082
    assert len(subst42) == 0 and red42 == 42
    subst_half, (red_half, ) = cse(0.5)  # issue 15082
    assert len(subst_half) == 0 and red_half == 0.5
コード例 #11
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_cse_MatrixSymbol():
    # MatrixSymbols have non-Basic args, so make sure that works
    A = MatrixSymbol("A", 3, 3)
    assert cse(A) == ([], [A])

    n = symbols('n', integer=True)
    B = MatrixSymbol("B", n, n)
    assert cse(B) == ([], [B])

    assert cse(A[0] * A[0]) == ([], [A[0] * A[0]])

    assert cse(A[0, 0] * A[0, 1] + A[0, 0] * A[0, 1] * A[0, 2]) == ([
        (x0, A[0, 0] * A[0, 1])
    ], [x0 * A[0, 2] + x0])
コード例 #12
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_cse_MatrixExpr():
    A = MatrixSymbol('A', 3, 3)
    y = MatrixSymbol('y', 3, 1)

    expr1 = (A.T * A).I * A * y
    expr2 = (A.T * A) * A * y
    replacements, reduced_exprs = cse([expr1, expr2])
    assert len(replacements) > 0

    replacements, reduced_exprs = cse([expr1 + expr2, expr1])
    assert replacements

    replacements, reduced_exprs = cse([A**2, A + A**2])
    assert replacements
コード例 #13
0
ファイル: test_subs.py プロジェクト: vishalbelsare/sympy
def test_derivative_subs():
    f = Function('f')
    g = Function('g')
    assert Derivative(f(x), x).subs(f(x), y) != 0
    # need xreplace to put the function back, see #13803
    assert Derivative(f(x), x).subs(f(x), y).xreplace({y: f(x)}) == \
        Derivative(f(x), x)
    # issues 5085, 5037
    assert cse(Derivative(f(x), x) + f(x))[1][0].has(Derivative)
    assert cse(Derivative(f(x, y), x) +
               Derivative(f(x, y), y))[1][0].has(Derivative)
    eq = Derivative(g(x), g(x))
    assert eq.subs(g, f) == Derivative(f(x), f(x))
    assert eq.subs(g(x), f(x)) == Derivative(f(x), f(x))
    assert eq.subs(g, cos) == Subs(Derivative(y, y), y, cos(x))
コード例 #14
0
ファイル: simplify.py プロジェクト: gnulinooks/sympy
def trigsimp(expr, deep=False, recursive=False):
    """
    Usage
    =====
        trigsimp(expr) -> reduces expression by using known trig identities

    Notes
    =====

    deep ........ apply trigsimp inside functions
    recursive ... use common subexpression elimination (cse()) and apply
                  trigsimp recursively (recursively==True is quite expensive
                  operation if the expression is large)

    Examples
    ========
        >>> from sympy import *
        >>> x = Symbol('x')
        >>> y = Symbol('y')
        >>> e = 2*sin(x)**2 + 2*cos(x)**2
        >>> trigsimp(e)
        2
        >>> trigsimp(log(e))
        log(2*cos(x)**2 + 2*sin(x)**2)
        >>> trigsimp(log(e), deep=True)
        log(2)
    """
    from sympy.core.basic import S
    sin, cos, tan, cot = C.sin, C.cos, C.tan, C.cot
    if recursive:
        w, g = cse(expr)
        g = trigsimp_nonrecursive(g[0])
        for sub in reversed(w):
            g = g.subs(sub[0], sub[1])
            g = trigsimp_nonrecursive(g)
        result = g
    else:
        result = trigsimp_nonrecursive(expr, deep)

    # do some final simplifications like sin/cos -> tan:
    a,b,c = map(Wild, 'abc')
    matchers = (
            (a*sin(b)**c/cos(b)**c, a*tan(b)**c),
    )
    for pattern, simp in matchers:
        res = result.match(pattern)
        if res is not None:
            # if c is missing or zero, do nothing:
            if (not c in res) or res[c] == 0:
                continue
            # if "a" contains the argument of sin/cos "b", skip the
            # simplification:
            if res[a].has(res[b]):
                continue
            # simplify and finish:
            result = simp.subs(res)
            break

    return result
コード例 #15
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_issue_8891():
    for cls in (MutableDenseMatrix, MutableSparseMatrix, ImmutableDenseMatrix,
                ImmutableSparseMatrix):
        m = cls(2, 2, [x + y, 0, 0, 0])
        res = cse([x + y, m])
        ans = ([(x0, x + y)], [x0, cls([[x0, 0], [0, 0]])])
        assert res == ans
        assert isinstance(res[1][-1], cls)
コード例 #16
0
ファイル: test_cse.py プロジェクト: vishalbelsare/sympy
def test_cse_ignore_issue_15002():
    l = [
        w*exp(x)*exp(-z),
        exp(y)*exp(x)*exp(-z)
    ]
    substs, reduced = cse(l, ignore=(x,))
    rl = [e.subs(reversed(substs)) for e in reduced]
    assert rl == l
コード例 #17
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_dont_cse_tuples():
    from sympy.core.function import Subs
    f = Function("f")
    g = Function("g")

    name_val, (expr, ) = cse(
        Subs(f(x, y), (x, y), (0, 1)) + Subs(g(x, y), (x, y), (0, 1)))

    assert name_val == []
    assert expr == (Subs(f(x, y), (x, y),
                         (0, 1)) + Subs(g(x, y), (x, y), (0, 1)))

    name_val, (expr, ) = cse(
        Subs(f(x, y), (x, y), (0, x + y)) + Subs(g(x, y), (x, y), (0, x + y)))

    assert name_val == [(x0, x + y)]
    assert expr == Subs(f(x, y), (x, y), (0, x0)) + \
        Subs(g(x, y), (x, y), (0, x0))
コード例 #18
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_issue_11577():
    def check(eq):
        r, c = cse(eq)
        assert eq.count_ops() >= \
            len(r) + sum([i[1].count_ops() for i in r]) + \
            count_ops(c)

    eq = x**5 * y**2 + x**5 * y + x**5
    assert cse(eq) == ([(x0, x**4),
                        (x1, x * y)], [x**5 + x0 * x1 * y + x0 * x1])
    # ([(x0, x**5*y)], [x0*y + x0 + x**5]) or
    # ([(x0, x**5)], [x0*y**2 + x0*y + x0])
    check(eq)

    eq = x**2 / (y + 1)**2 + x / (y + 1)
    assert cse(eq) == ([(x0, y + 1)], [x**2 / x0**2 + x / x0])
    # ([(x0, x/(y + 1))], [x0**2 + x0])
    check(eq)
コード例 #19
0
def trigsimp(expr, deep=False, recursive=False):
    """
    == Usage ==

    trigsimp(expr) -> reduces expression by using known trig identities

    == Notes ==

    deep:
    - Apply trigsimp inside functions
    recursive:
    - Use common subexpression elimination (cse()) and apply
    trigsimp recursively (recursively==True is quite expensive
    operation if the expression is large)

    == Examples ==
        >>> from sympy import *
        >>> x = Symbol('x')
        >>> y = Symbol('y')
        >>> e = 2*sin(x)**2 + 2*cos(x)**2
        >>> trigsimp(e)
        2
        >>> trigsimp(log(e))
        log(2*cos(x)**2 + 2*sin(x)**2)
        >>> trigsimp(log(e), deep=True)
        log(2)
    """
    from sympy.core.basic import S
    sin, cos, tan, cot = C.sin, C.cos, C.tan, C.cot
    if recursive:
        w, g = cse(expr)
        g = trigsimp_nonrecursive(g[0])
        for sub in reversed(w):
            g = g.subs(sub[0], sub[1])
            g = trigsimp_nonrecursive(g)
        result = g
    else:
        result = trigsimp_nonrecursive(expr, deep)

    # do some final simplifications like sin/cos -> tan:
    a, b, c = map(Wild, 'abc')
    matchers = ((a * sin(b)**c / cos(b)**c, a * tan(b)**c), )
    for pattern, simp in matchers:
        res = result.match(pattern)
        if res is not None:
            # if c is missing or zero, do nothing:
            if (not c in res) or res[c] == 0:
                continue
            # if "a" contains the argument of sin/cos "b", skip the
            # simplification:
            if res[a].has(res[b]):
                continue
            # simplify and finish:
            result = simp.subs(res)
            break

    return result
コード例 #20
0
    def cse(self,
            symbols=None,
            optimizations=None,
            postprocess=None,
            order='canonical'):
        """
        Return a new code block with common subexpressions eliminated

        See the docstring of :func:`sympy.simplify.cse_main.cse` for more
        information.

        Examples
        ========

        >>> from sympy import symbols, sin
        >>> from sympy.codegen.ast import CodeBlock, Assignment
        >>> x, y, z = symbols('x y z')

        >>> c = CodeBlock(
        ...     Assignment(x, 1),
        ...     Assignment(y, sin(x) + 1),
        ...     Assignment(z, sin(x) - 1),
        ... )
        ...
        >>> c.cse()
        CodeBlock(Assignment(x, 1), Assignment(x0, sin(x)), Assignment(y, x0 +
        1), Assignment(z, x0 - 1))
        """
        # TODO: Check that the symbols are new
        from sympy.simplify.cse_main import cse

        if not all(isinstance(i, Assignment) for i in self.args):
            # Will support more things later
            raise NotImplementedError(
                "CodeBlock.cse only supports Assignments")

        if any(isinstance(i, AugmentedAssignment) for i in self.args):
            raise NotImplementedError(
                "CodeBlock.cse doesn't yet work with AugmentedAssignments")

        for i, lhs in enumerate(self.left_hand_sides):
            if lhs in self.left_hand_sides[:i]:
                raise NotImplementedError(
                    "Duplicate assignments to the same "
                    "variable are not yet supported (%s)" % lhs)

        replacements, reduced_exprs = cse(self.right_hand_sides,
                                          symbols=symbols,
                                          optimizations=optimizations,
                                          postprocess=postprocess,
                                          order=order)
        assert len(reduced_exprs) == 1
        new_block = tuple(
            Assignment(var, expr)
            for var, expr in zip(self.left_hand_sides, reduced_exprs[0]))
        new_assignments = tuple(Assignment(*i) for i in replacements)
        return self.topological_sort(new_assignments + new_block)
コード例 #21
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_cse_Indexed():
    len_y = 5
    y = IndexedBase('y', shape=(len_y, ))
    x = IndexedBase('x', shape=(len_y, ))
    i = Idx('i', len_y - 1)

    expr1 = (y[i + 1] - y[i]) / (x[i + 1] - x[i])
    expr2 = 1 / (x[i + 1] - x[i])
    replacements, reduced_exprs = cse([expr1, expr2])
    assert len(replacements) > 0
コード例 #22
0
ファイル: test_subs.py プロジェクト: vishalbelsare/sympy
def test_issue_6559():
    assert (-12 * x + y).subs(-x, 1) == 12 + y
    # though this involves cse it generated a failure in Mul._eval_subs
    x0, x1 = symbols('x0 x1')
    e = -log(-12 * sqrt(2) + 17) / 24 - log(-2 * sqrt(2) +
                                            3) / 12 + sqrt(2) / 3
    # XXX modify cse so x1 is eliminated and x0 = -sqrt(2)?
    assert cse(e) == ([
        (x0, sqrt(2))
    ], [x0 / 3 - log(-12 * x0 + 17) / 24 - log(-2 * x0 + 3) / 12])
コード例 #23
0
ファイル: test_cse.py プロジェクト: vishalbelsare/sympy
def test_subtraction_opt():
    # Make sure subtraction is optimized.
    e = (x - y)*(z - y) + exp((x - y)*(z - y))
    substs, reduced = cse(
        [e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)])
    assert substs == [(x0, (x - y)*(y - z))]
    assert reduced == [-x0 + exp(-x0)]
    e = -(x - y)*(z - y) + exp(-(x - y)*(z - y))
    substs, reduced = cse(
        [e], optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)])
    assert substs == [(x0, (x - y)*(y - z))]
    assert reduced == [x0 + exp(x0)]
    # issue 4077
    n = -1 + 1/x
    e = n/x/(-n)**2 - 1/n/x
    assert cse(e, optimizations=[(cse_opts.sub_pre, cse_opts.sub_post)]) == \
        ([], [0])
    assert cse(((w + x + y + z)*(w - y - z))/(w + x)**3) == \
        ([(x0, w + x), (x1, y + z)], [(w - x1)*(x0 + x1)/x0**3])
コード例 #24
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_cse_list():
    _cse = lambda x: cse(x, list=False)
    assert _cse(x) == ([], x)
    assert _cse('x') == ([], 'x')
    it = [x]
    for c in (list, tuple, set):
        assert _cse(c(it)) == ([], c(it))
    #Tuple works different from tuple:
    assert _cse(Tuple(*it)) == ([], Tuple(*it))
    d = {x: 1}
    assert _cse(d) == ([], d)
コード例 #25
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_cse__performance():
    nexprs, nterms = 3, 20
    x = symbols('x:%d' % nterms)
    exprs = [
        reduce(add, [x[j] * (-1)**(i + j) for j in range(nterms)])
        for i in range(nexprs)
    ]
    assert (exprs[0] + exprs[1]).simplify() == 0
    subst, red = cse(exprs)
    assert len(subst) > 0, "exprs[0] == -exprs[2], i.e. a CSE"
    for i, e in enumerate(red):
        assert (e.subs(reversed(subst)) - exprs[i]).simplify() == 0
コード例 #26
0
ファイル: parse.py プロジェクト: jole6826/video-diff
def Main():
    #Read("spec.in")
    #Read("spec_warp_simpler.in")
    #Read("spec_warpPerspective.in")
    Read("spec_rotate.in")

    if False:
        [(c_name, c_code), (h_name, c_header)] = codegen([("xdst", eqList[0]),
                                                          ("ydst", eqList[1])],
                                                         "C",
                                                         "test",
                                                         header=False,
                                                         empty=False)

        print("c_code = %s" % c_code)

    print("eqList = %s" % str(eqList))
    resEqSysMat = eqs2matrix(eqs=eqList,
                             unknownSymbols=(xdst, ydst),
                             augment=True)
    print("resEqSysMat = %s" % str(resEqSysMat))

    from sympy import Matrix, solve_linear_system
    res = solve_linear_system(resEqSysMat, xdst, ydst)
    print("The result is (xdst, ydst) = %s" % str(res))
    print("res[xdst] = %s" % str(res[xdst]))
    print("res[ydst] = %s" % str(res[ydst]))

    #sympy.simplify.cse_main.cse(res[xdst], res[ydst])
    expListWithBoundedVars = cse([res[xdst], res[ydst]])
    print("After performing CSE, we have: %s" % str(expListWithBoundedVars))

    print("expListWithBoundedVars[0] (the bounded vars) = %s" %
          str(expListWithBoundedVars[0]))
    print("expListWithBoundedVars[1][0] = %s" %
          str(expListWithBoundedVars[1][0]))
    eFinal = []
    for e in expListWithBoundedVars[0]:
        eFinal.append((str(e[0]), e[1]))

    #expListWithBoundedVars[0] + \
    expListWithBoundedVars = eFinal + \
                            [("xdst", expListWithBoundedVars[1][0])] + \
                            [("ydst", expListWithBoundedVars[1][1])]
    print("expListWithBoundedVars = %s" % str(expListWithBoundedVars))
    [(c_name, c_code), (h_name, c_header)] = codegen(expListWithBoundedVars,
                                                     "C",
                                                     "final_test",
                                                     header=False,
                                                     empty=False)

    print("c_code = %s" % c_code)
コード例 #27
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_cse_release_variables():
    from sympy.simplify.cse_main import cse_release_variables
    _0, _1, _2, _3, _4 = symbols('_:5')
    eqs = [(x + y - 1)**2, x, x + y, (x + y) / (2 * x + 1) + (x + y - 1)**2,
           (2 * x + 1)**(x + y)]
    r, e = cse(eqs, postprocess=cse_release_variables)
    # this can change in keeping with the intention of the function
    assert r, e == ([(x0, x + y), (x1, (x0 - 1)**2), (x2, 2 * x + 1),
                     (_3, x0 / x2 + x1), (_4, x2**x0), (x2, None), (_0, x1),
                     (x1, None), (_2, x0), (x0, None),
                     (_1, x)], (_0, _1, _2, _3, _4))
    r.reverse()
    assert eqs == [i.subs(r) for i in e]
コード例 #28
0
 def genEval(self):
     text = "        bool evaluate(\n"
     args=[]
     for name,v,lD in self.variables:
         if isinstance(v, Matrix):
             args.append("           const Eigen::Matrix<double, %d, 1> & %s" % (v.rows, name))
         else:
             args.append("           double %s" % name)
             
     args.append("           Eigen::Matrix<double, %d, 1> * F" % self.function.rows)
     
     for name,v,localDim in self.variables:
         if isinstance(v, Matrix):
             args.append("           Eigen::Matrix<double, %d, %d> * J%s" % (self.J.rows, localDim, name))
         else:
             args.append("           Eigen::Matrix<double, %d, 1> * J%s" % (self.J.rows, name))
     text += ",\n".join(args) + ") {\n"
     text += "           if (F) {\n"
     (interm, expr) = cse(self.function,numbered_symbols("__x"));
     for dummy,exp in interm:
         text += "               double %s = %s;\n" % (str(dummy),ccode(exp))
     for i in range(self.function.rows):
         text += "               (*F)(%d) = %s;\n" % (i,ccode(expr[0][i]))
     text += "           }\n"
     text += "           if (%s) {\n" % " && ".join([ "J" + name for name,v,lD in self.variables ])
     (interm, expr) = cse(self.J,numbered_symbols("__x"));
     for dummy,exp in interm:
         text += "               double %s = %s;\n" % (str(dummy),ccode(exp))
     colBase = 0;
     for name,v,localDim in self.variables:
         for i in range(self.J.rows):
             for j in range(0, localDim):
                 text += "               (*J%s)(%d,%d) = %s;\n" % (name, i,j,ccode(expr[0][i,colBase + j]))
         colBase+=localDim
     text += "           }\n"
     text += "           return true;\n"
     text += "       }\n"
     return text
コード例 #29
0
ファイル: test_cse.py プロジェクト: quangpq/sympy
def test_pow_invpow():
    assert cse(1/x**2 + x**2) == \
        ([(x0, x**2)], [x0 + 1/x0])
    assert cse(x**2 + (1 + 1/x**2)/x**2) == \
        ([(x0, x**2), (x1, 1/x0)], [x0 + x1*(x1 + 1)])
    assert cse(1/x**2 + (1 + 1/x**2)*x**2) == \
        ([(x0, x**2), (x1, 1/x0)], [x0*(x1 + 1) + x1])
    assert cse(cos(1/x**2) + sin(1/x**2)) == \
        ([(x0, x**(-2))], [sin(x0) + cos(x0)])
    assert cse(cos(x**2) + sin(x**2)) == \
        ([(x0, x**2)], [sin(x0) + cos(x0)])
    assert cse(y/(2 + x**2) + z/x**2/y) == \
        ([(x0, x**2)], [y/(x0 + 2) + z/(x0*y)])
    assert cse(exp(x**2) + x**2*cos(1/x**2)) == \
        ([(x0, x**2)], [x0*cos(1/x0) + exp(x0)])
    assert cse((1 + 1/x**2)/x**2) == \
        ([(x0, x**(-2))], [x0*(x0 + 1)])
    assert cse(x**(2*y) + x**(-2*y)) == \
        ([(x0, x**(2*y))], [x0 + 1/x0])
コード例 #30
0
ファイル: generate_derivatives.py プロジェクト: thnam/Offline
    def build_cse_fn(symname, symfunc, symbolslist):
        tmpsyms = numbered_symbols("R")
        symbols, simple = cse(symfunc, symbols=tmpsyms)

        code = "double %s(%s)\n" % (str(symname), ", ".join(
            "double const& %s" % x for x in symbolslist))
        code += "{\n"
        for s in symbols:
            code += "    double %s = %s;\n" % (ccode(s[0]), ccode(s[1]))
        code += "    double result = %s;\n" % ccode(simple[0])
        code += "    return result;\n"
        code += "}\n"

        return code
コード例 #31
0
ファイル: ast.py プロジェクト: KonstantinTogoi/sympy
    def cse(self, symbols=None, optimizations=None, postprocess=None,
        order='canonical'):
        """
        Return a new code block with common subexpressions eliminated

        See the docstring of :func:`sympy.simplify.cse_main.cse` for more
        information.

        Examples
        ========

        >>> from sympy import symbols, sin
        >>> from sympy.codegen.ast import CodeBlock, Assignment
        >>> x, y, z = symbols('x y z')

        >>> c = CodeBlock(
        ...     Assignment(x, 1),
        ...     Assignment(y, sin(x) + 1),
        ...     Assignment(z, sin(x) - 1),
        ... )
        ...
        >>> c.cse()
        CodeBlock(Assignment(x, 1), Assignment(x0, sin(x)), Assignment(y, x0 + 1), Assignment(z, x0 - 1))

        """
        # TODO: Check that the symbols are new
        from sympy.simplify.cse_main import cse

        if not all(isinstance(i, Assignment) for i in self.args):
            # Will support more things later
            raise NotImplementedError("CodeBlock.cse only supports Assignments")

        if any(isinstance(i, AugmentedAssignment) for i in self.args):
            raise NotImplementedError("CodeBlock.cse doesn't yet work with AugmentedAssignments")

        for i, lhs in enumerate(self.left_hand_sides):
            if lhs in self.left_hand_sides[:i]:
                raise NotImplementedError("Duplicate assignments to the same "
                    "variable are not yet supported (%s)" % lhs)

        replacements, reduced_exprs = cse(self.right_hand_sides, symbols=symbols,
            optimizations=optimizations, postprocess=postprocess, order=order)
        assert len(reduced_exprs) == 1
        new_block = tuple(Assignment(var, expr) for var, expr in
            zip(self.left_hand_sides, reduced_exprs[0]))
        new_assignments = tuple(Assignment(*i) for i in replacements)
        return self.topological_sort(new_assignments + new_block)
コード例 #32
0
ファイル: parse.py プロジェクト: alexsusu/video-diff
def Main():
    #Read("spec.in")
    #Read("spec_warp_simpler.in")
    #Read("spec_warpPerspective.in")
    Read("spec_rotate.in")

    if False:
        [(c_name, c_code), (h_name, c_header)] = codegen(
            [("xdst", eqList[0]), ("ydst", eqList[1])], "C", "test", header=False, empty=False)

        print("c_code = %s" % c_code)

    print("eqList = %s" % str(eqList))
    resEqSysMat = eqs2matrix(eqs=eqList, unknownSymbols=(xdst, ydst), augment=True)
    print("resEqSysMat = %s" % str(resEqSysMat))

    from sympy import Matrix, solve_linear_system
    res = solve_linear_system(resEqSysMat, xdst, ydst)
    print("The result is (xdst, ydst) = %s" % str(res))
    print("res[xdst] = %s" % str(res[xdst]))
    print("res[ydst] = %s" % str(res[ydst]))

    #sympy.simplify.cse_main.cse(res[xdst], res[ydst])
    expListWithBoundedVars = cse([res[xdst], res[ydst]])
    print("After performing CSE, we have: %s" % str(expListWithBoundedVars))

    print("expListWithBoundedVars[0] (the bounded vars) = %s" % str(expListWithBoundedVars[0]))
    print("expListWithBoundedVars[1][0] = %s" % str(expListWithBoundedVars[1][0]))
    eFinal = []
    for e in expListWithBoundedVars[0]:
        eFinal.append( (str(e[0]), e[1]) )

    #expListWithBoundedVars[0] + \
    expListWithBoundedVars = eFinal + \
                            [("xdst", expListWithBoundedVars[1][0])] + \
                            [("ydst", expListWithBoundedVars[1][1])]
    print("expListWithBoundedVars = %s" % str(expListWithBoundedVars))
    [(c_name, c_code), (h_name, c_header)] = codegen(
        expListWithBoundedVars, "C", "final_test", header=False, empty=False)

    print("c_code = %s" % c_code)
コード例 #33
0
ファイル: test_cse.py プロジェクト: vishalbelsare/sympy
def test_issue_4499():
    # previously, this gave 16 constants
    from sympy.abc import a, b
    B = Function('B')
    G = Function('G')
    t = Tuple(*
        (a, a + S.Half, 2*a, b, 2*a - b + 1, (sqrt(z)/2)**(-2*a + 1)*B(2*a -
        b, sqrt(z))*B(b - 1, sqrt(z))*G(b)*G(2*a - b + 1),
        sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b,
        sqrt(z))*G(b)*G(2*a - b + 1), sqrt(z)*(sqrt(z)/2)**(-2*a + 1)*B(b - 1,
        sqrt(z))*B(2*a - b + 1, sqrt(z))*G(b)*G(2*a - b + 1),
        (sqrt(z)/2)**(-2*a + 1)*B(b, sqrt(z))*B(2*a - b + 1,
        sqrt(z))*G(b)*G(2*a - b + 1), 1, 0, S.Half, z/2, -b + 1, -2*a + b,
        -2*a))
    c = cse(t)
    ans = (
        [(x0, 2*a), (x1, -b + x0), (x2, x1 + 1), (x3, b - 1), (x4, sqrt(z)),
         (x5, B(x3, x4)), (x6, (x4/2)**(1 - x0)*G(b)*G(x2)), (x7, x6*B(x1, x4)),
         (x8, B(b, x4)), (x9, x6*B(x2, x4))],
        [(a, a + S.Half, x0, b, x2, x5*x7, x4*x7*x8, x4*x5*x9, x8*x9,
          1, 0, S.Half, z/2, -x3, -x1, -x0)])
    assert ans == c
コード例 #34
0
ファイル: trigsimp.py プロジェクト: asmeurer/sympy
def trigsimp_old(expr, **opts):
    """
    reduces expression by using known trig identities

    Notes
    =====

    deep:
    - Apply trigsimp inside all objects with arguments

    recursive:
    - Use common subexpression elimination (cse()) and apply
    trigsimp recursively (this is quite expensive if the
    expression is large)

    method:
    - Determine the method to use. Valid choices are 'matching' (default),
    'groebner', 'combined', 'fu' and 'futrig'. If 'matching', simplify the
    expression recursively by pattern matching. If 'groebner', apply an
    experimental groebner basis algorithm. In this case further options
    are forwarded to ``trigsimp_groebner``, please refer to its docstring.
    If 'combined', first run the groebner basis algorithm with small
    default parameters, then run the 'matching' algorithm. 'fu' runs the
    collection of trigonometric transformations described by Fu, et al.
    (see the `fu` docstring) while `futrig` runs a subset of Fu-transforms
    that mimic the behavior of `trigsimp`.

    compare:
    - show input and output from `trigsimp` and `futrig` when different,
    but returns the `trigsimp` value.

    Examples
    ========

    >>> from sympy import trigsimp, sin, cos, log, cosh, sinh, tan, cot
    >>> from sympy.abc import x, y
    >>> e = 2*sin(x)**2 + 2*cos(x)**2
    >>> trigsimp(e, old=True)
    2
    >>> trigsimp(log(e), old=True)
    log(2*sin(x)**2 + 2*cos(x)**2)
    >>> trigsimp(log(e), deep=True, old=True)
    log(2)

    Using `method="groebner"` (or `"combined"`) can sometimes lead to a lot
    more simplification:

    >>> e = (-sin(x) + 1)/cos(x) + cos(x)/(-sin(x) + 1)
    >>> trigsimp(e, old=True)
    (1 - sin(x))/cos(x) + cos(x)/(1 - sin(x))
    >>> trigsimp(e, method="groebner", old=True)
    2/cos(x)

    >>> trigsimp(1/cot(x)**2, compare=True, old=True)
          futrig: tan(x)**2
    cot(x)**(-2)

    """
    old = expr
    first = opts.pop('first', True)
    if first:
        if not expr.has(*_trigs):
            return expr

        trigsyms = set().union(*[t.free_symbols for t in expr.atoms(*_trigs)])
        if len(trigsyms) > 1:
            from sympy.simplify.simplify import separatevars

            d = separatevars(expr)
            if d.is_Mul:
                d = separatevars(d, dict=True) or d
            if isinstance(d, dict):
                expr = 1
                for k, v in d.items():
                    # remove hollow factoring
                    was = v
                    v = expand_mul(v)
                    opts['first'] = False
                    vnew = trigsimp(v, **opts)
                    if vnew == v:
                        vnew = was
                    expr *= vnew
                old = expr
            else:
                if d.is_Add:
                    for s in trigsyms:
                        r, e = expr.as_independent(s)
                        if r:
                            opts['first'] = False
                            expr = r + trigsimp(e, **opts)
                            if not expr.is_Add:
                                break
                    old = expr

    recursive = opts.pop('recursive', False)
    deep = opts.pop('deep', False)
    method = opts.pop('method', 'matching')

    def groebnersimp(ex, deep, **opts):
        def traverse(e):
            if e.is_Atom:
                return e
            args = [traverse(x) for x in e.args]
            if e.is_Function or e.is_Pow:
                args = [trigsimp_groebner(x, **opts) for x in args]
            return e.func(*args)
        if deep:
            ex = traverse(ex)
        return trigsimp_groebner(ex, **opts)

    trigsimpfunc = {
        'matching': (lambda x, d: _trigsimp(x, d)),
        'groebner': (lambda x, d: groebnersimp(x, d, **opts)),
        'combined': (lambda x, d: _trigsimp(groebnersimp(x,
                                       d, polynomial=True, hints=[2, tan]),
                                   d))
                   }[method]

    if recursive:
        w, g = cse(expr)
        g = trigsimpfunc(g[0], deep)

        for sub in reversed(w):
            g = g.subs(sub[0], sub[1])
            g = trigsimpfunc(g, deep)
        result = g
    else:
        result = trigsimpfunc(expr, deep)

    if opts.get('compare', False):
        f = futrig(old)
        if f != result:
            print('\tfutrig:', f)

    return result
コード例 #35
0
def trigsimp_old(expr, **opts):
    """
    reduces expression by using known trig identities

    Notes
    =====

    deep:
    - Apply trigsimp inside all objects with arguments

    recursive:
    - Use common subexpression elimination (cse()) and apply
    trigsimp recursively (this is quite expensive if the
    expression is large)

    method:
    - Determine the method to use. Valid choices are 'matching' (default),
    'groebner', 'combined', 'fu' and 'futrig'. If 'matching', simplify the
    expression recursively by pattern matching. If 'groebner', apply an
    experimental groebner basis algorithm. In this case further options
    are forwarded to ``trigsimp_groebner``, please refer to its docstring.
    If 'combined', first run the groebner basis algorithm with small
    default parameters, then run the 'matching' algorithm. 'fu' runs the
    collection of trigonometric transformations described by Fu, et al.
    (see the `fu` docstring) while `futrig` runs a subset of Fu-transforms
    that mimic the behavior of `trigsimp`.

    compare:
    - show input and output from `trigsimp` and `futrig` when different,
    but returns the `trigsimp` value.

    Examples
    ========

    >>> from sympy import trigsimp, sin, cos, log, cosh, sinh, tan, cot
    >>> from sympy.abc import x, y
    >>> e = 2*sin(x)**2 + 2*cos(x)**2
    >>> trigsimp(e, old=True)
    2
    >>> trigsimp(log(e), old=True)
    log(2*sin(x)**2 + 2*cos(x)**2)
    >>> trigsimp(log(e), deep=True, old=True)
    log(2)

    Using `method="groebner"` (or `"combined"`) can sometimes lead to a lot
    more simplification:

    >>> e = (-sin(x) + 1)/cos(x) + cos(x)/(-sin(x) + 1)
    >>> trigsimp(e, old=True)
    (1 - sin(x))/cos(x) + cos(x)/(1 - sin(x))
    >>> trigsimp(e, method="groebner", old=True)
    2/cos(x)

    >>> trigsimp(1/cot(x)**2, compare=True, old=True)
          futrig: tan(x)**2
    cot(x)**(-2)

    """
    old = expr
    first = opts.pop('first', True)
    if first:
        if not expr.has(*_trigs):
            return expr

        trigsyms = set().union(*[t.free_symbols for t in expr.atoms(*_trigs)])
        if len(trigsyms) > 1:
            from sympy.simplify.simplify import separatevars

            d = separatevars(expr)
            if d.is_Mul:
                d = separatevars(d, dict=True) or d
            if isinstance(d, dict):
                expr = 1
                for k, v in d.items():
                    # remove hollow factoring
                    was = v
                    v = expand_mul(v)
                    opts['first'] = False
                    vnew = trigsimp(v, **opts)
                    if vnew == v:
                        vnew = was
                    expr *= vnew
                old = expr
            else:
                if d.is_Add:
                    for s in trigsyms:
                        r, e = expr.as_independent(s)
                        if r:
                            opts['first'] = False
                            expr = r + trigsimp(e, **opts)
                            if not expr.is_Add:
                                break
                    old = expr

    recursive = opts.pop('recursive', False)
    deep = opts.pop('deep', False)
    method = opts.pop('method', 'matching')

    def groebnersimp(ex, deep, **opts):
        def traverse(e):
            if e.is_Atom:
                return e
            args = [traverse(x) for x in e.args]
            if e.is_Function or e.is_Pow:
                args = [trigsimp_groebner(x, **opts) for x in args]
            return e.func(*args)

        if deep:
            ex = traverse(ex)
        return trigsimp_groebner(ex, **opts)

    trigsimpfunc = {
        'matching': (lambda x, d: _trigsimp(x, d)),
        'groebner': (lambda x, d: groebnersimp(x, d, **opts)),
        'combined': (lambda x, d: _trigsimp(
            groebnersimp(x, d, polynomial=True, hints=[2, tan]), d))
    }[method]

    if recursive:
        w, g = cse(expr)
        g = trigsimpfunc(g[0], deep)

        for sub in reversed(w):
            g = g.subs(sub[0], sub[1])
            g = trigsimpfunc(g, deep)
        result = g
    else:
        result = trigsimpfunc(expr, deep)

    if opts.get('compare', False):
        f = futrig(old)
        if f != result:
            print('\tfutrig:', f)

    return result
コード例 #36
0
def cse_print(expr):
    cses, simple_expr = cse(expr)
    print
    print sympy.pretty(simple_expr)
    pp(cses)
    print