def test_partial_simp(): # First test that hypergeometric function formulae work. a, b, c, d, e = map(lambda _: randcplx(), range(5)) for idxp in [IndexPair([a, b, c], [d, e]), IndexPair([], [a, b, c, d, e])]: f = build_hypergeometric_formula(idxp) z = f.z assert f.closed_form == hyper(idxp.ap, idxp.bq, z) deriv1 = f.B.diff(z) * z deriv2 = f.M * f.B for func1, func2 in zip(deriv1, deriv2): assert tn(func1, func2, z) # Now test that formulae are partially simplified. from sympy.abc import a, b, z assert hyperexpand(hyper([3, a], [1, b], z)) == \ (-a*b/2 + a*z/2 + 2*a)*hyper([a + 1], [b], z) \ + (a*b/2 - 2*a + 1)*hyper([a], [b], z) assert tn(hyperexpand(hyper([3, d], [1, e], z)), hyper([3, d], [1, e], z), z) assert hyperexpand(hyper([3], [1, a, b], z)) == \ hyper((), (a, b), z) \ + z*hyper((), (a + 1, b), z)/(2*a) \ - z*(b - 4)*hyper((), (a + 1, b + 1), z)/(2*a*b) assert tn(hyperexpand(hyper([3], [1, d, e], z)), hyper([3], [1, d, e], z), z)
def test_plan_derivatives(): a1, a2, a3 = 1, 2, S('1/2') b1, b2 = 3, S('5/2') h = hyper((a1, a2, a3), (b1, b2), z) h2 = hyper((a1 + 1, a2 + 1, a3 + 2), (b1 + 1, b2 + 1), z) ops = devise_plan(IndexPair((a1 + 1, a2 + 1, a3 + 2), (b1 + 1, b2 + 1)), IndexPair((a1, a2, a3), (b1, b2)), z) f = Formula((a1, a2, a3), (b1, b2), z, h, []) deriv = make_derivative_operator(f.M, z) assert tn((apply_operators(f.C, ops, deriv)*f.B)[0], h2, z) h2 = hyper((a1, a2 - 1, a3 - 2), (b1 - 1, b2 - 1), z) ops = devise_plan(IndexPair((a1, a2 - 1, a3 - 2), (b1 - 1, b2 - 1)), IndexPair((a1, a2, a3), (b1, b2)), z) assert tn((apply_operators(f.C, ops, deriv)*f.B)[0], h2, z)
def test_plan(): assert devise_plan(IndexPair([0], ()), IndexPair([0], ()), z) == [] raises(ValueError, 'devise_plan(IndexPair([1], ()), IndexPair((), ()), z)') raises(ValueError, 'devise_plan(IndexPair([2], [1]), IndexPair([2], [2]), z)') raises(KeyError, 'devise_plan(IndexPair([2], []), IndexPair([S("1/2")], []), z)') # We cannot use pi/(10000 + n) because polys is insanely slow. a1, a2, b1 = map(lambda n: randcplx(n), range(3)) b1 += 2 * I h = hyper([a1, a2], [b1], z) h2 = hyper((a1 + 1, a2), [b1], z) assert tn( apply_operators( h, devise_plan(IndexPair((a1 + 1, a2), [b1]), IndexPair( (a1, a2), [b1]), z), op), h2, z) h2 = hyper((a1 + 1, a2 - 1), [b1], z) assert tn( apply_operators( h, devise_plan(IndexPair((a1 + 1, a2 - 1), [b1]), IndexPair((a1, a2), [b1]), z), op), h2, z)
def test_reduction_operators(): a1, a2, b1 = map(lambda n: randcplx(n), range(3)) h = hyper([a1], [b1], z) assert ReduceOrder(2, 0) is None assert ReduceOrder(2, -1) is None assert ReduceOrder(1, S('1/2')) is None h2 = hyper((a1, a2), (b1, a2), z) assert tn(ReduceOrder(a2, a2).apply(h, op), h2, z) h2 = hyper((a1, a2 + 1), (b1, a2), z) assert tn(ReduceOrder(a2 + 1, a2).apply(h, op), h2, z) h2 = hyper((a2 + 4, a1), (b1, a2), z) assert tn(ReduceOrder(a2 + 4, a2).apply(h, op), h2, z) # test several step order reduction ap = (a2 + 4, a1, b1 + 1) bq = (a2, b1, b1) nip, ops = reduce_order(IndexPair(ap, bq)) assert nip.ap == (a1,) assert nip.bq == (b1,) assert tn(apply_operators(h, ops, op), hyper(ap, bq, z), z)