def test_rademacher(): X = Rademacher('X') assert E(X) == 0 assert variance(X) == 1 assert density(X)[-1] == S.Half assert density(X)[1] == S.Half
def test_sample_scipy(): distribs_scipy = [ FiniteRV('F', { 1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4) }), DiscreteUniform("Y", list(range(5))), Die("D"), Bernoulli("Be", 0.3), Binomial("Bi", 5, 0.4), BetaBinomial("Bb", 2, 1, 1), Hypergeometric("H", 1, 1, 1), Rademacher("R") ] size = 3 scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for _sample_scipy.') else: for X in distribs_scipy: samps = sample(X, size=size) samps2 = sample(X, size=(2, 2)) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set
def test_sample_scipy(): distribs_scipy = [ FiniteRV('F', {1: S.Half, 2: Rational(1, 4), 3: Rational(1, 4)}), DiscreteUniform("Y", list(range(5))), Die("D"), Bernoulli("Be", 0.3), Binomial("Bi", 5, 0.4), BetaBinomial("Bb", 2, 1, 1), Hypergeometric("H", 1, 1, 1), Rademacher("R") ] size = 3 numsamples = 5 scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed h_sample = list(sample(Hypergeometric("H", 1, 1, 1), size=size, numsamples=numsamples)) assert len(h_sample) == numsamples for X in distribs_scipy: samps = next(sample(X, size=size)) samps2 = next(sample(X, size=(2, 2))) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set
def test_rademacher(): X = Rademacher('X') t = Symbol('t') assert E(X) == 0 assert variance(X) == 1 assert density(X)[-1] == S.Half assert density(X)[1] == S.Half assert characteristic_function(X)(t) == exp(I * t) / 2 + exp(-I * t) / 2
def test_rademacher(): X = Rademacher("X") t = Symbol("t") assert E(X) == 0 assert variance(X) == 1 assert density(X)[-1] == S.Half assert density(X)[1] == S.Half assert characteristic_function(X)(t) == exp(I * t) / 2 + exp(-I * t) / 2 assert moment_generating_function(X)(t) == exp(t) / 2 + exp(-t) / 2