コード例 #1
0
def _(expr: ArrayElementwiseApplyFunc, x: Expr):
    fdiff = expr._get_function_fdiff()
    subexpr = expr.expr
    dsubexpr = array_derive(subexpr, x)
    tp = _array_tensor_product(dsubexpr,
                               ArrayElementwiseApplyFunc(fdiff, subexpr))
    b = get_rank(x)
    c = get_rank(expr)
    diag_indices = [(b + i, b + c + i) for i in range(c)]
    return _array_diagonal(tp, *diag_indices)
コード例 #2
0
def test_arrayexpr_derivatives1():

    res = array_derive(X, X)
    assert res == PermuteDims(ArrayTensorProduct(I, I), [0, 2, 1, 3])

    cg = ArrayTensorProduct(A, X, B)
    res = array_derive(cg, X)
    assert res == PermuteDims(
        ArrayTensorProduct(I, A, I, B),
        [0, 4, 2, 3, 1, 5, 6, 7])

    cg = ArrayContraction(X, (0, 1))
    res = array_derive(cg, X)
    assert res == ArrayContraction(ArrayTensorProduct(I, I), (1, 3))

    cg = ArrayDiagonal(X, (0, 1))
    res = array_derive(cg, X)
    assert res == ArrayDiagonal(ArrayTensorProduct(I, I), (1, 3))

    cg = ElementwiseApplyFunction(sin, X)
    res = array_derive(cg, X)
    assert res.dummy_eq(ArrayDiagonal(
        ArrayTensorProduct(
            ElementwiseApplyFunction(cos, X),
            I,
            I
        ), (0, 3), (1, 5)))

    cg = ArrayElementwiseApplyFunc(sin, X)
    res = array_derive(cg, X)
    assert res.dummy_eq(ArrayDiagonal(
        ArrayTensorProduct(
            I,
            I,
            ArrayElementwiseApplyFunc(cos, X)
        ), (1, 4), (3, 5)))

    res = array_derive(A1, A1)
    assert res == PermuteDims(
        ArrayTensorProduct(Identity(3), Identity(2), Identity(k)),
        [0, 2, 4, 1, 3, 5]
    )

    cg = ArrayElementwiseApplyFunc(sin, A1)
    res = array_derive(cg, A1)
    assert res.dummy_eq(ArrayDiagonal(
        ArrayTensorProduct(
            Identity(3), Identity(2), Identity(k),
            ArrayElementwiseApplyFunc(cos, A1)
        ), (1, 6), (3, 7), (5, 8)
    ))
コード例 #3
0
def test_convert_array_elementwise_function_to_matrix():

    d = Dummy("d")

    expr = ArrayElementwiseApplyFunc(Lambda(d, sin(d)), x.T*y)
    assert convert_array_to_matrix(expr) == sin(x.T*y)

    expr = ArrayElementwiseApplyFunc(Lambda(d, d**2), x.T*y)
    assert convert_array_to_matrix(expr) == (x.T*y)**2

    expr = ArrayElementwiseApplyFunc(Lambda(d, sin(d)), x)
    assert convert_array_to_matrix(expr).dummy_eq(x.applyfunc(sin))

    expr = ArrayElementwiseApplyFunc(Lambda(d, 1 / (2 * sqrt(d))), x)
    assert convert_array_to_matrix(expr) == S.Half * HadamardPower(x, -S.Half)
コード例 #4
0
def convert_matrix_to_array(expr: MatrixExpr) -> Basic:
    if isinstance(expr, MatMul):
        args_nonmat = []
        args = []
        for arg in expr.args:
            if isinstance(arg, MatrixExpr):
                args.append(arg)
            else:
                args_nonmat.append(convert_matrix_to_array(arg))
        contractions = [(2 * i + 1, 2 * i + 2) for i in range(len(args) - 1)]
        scalar = ArrayTensorProduct.fromiter(
            args_nonmat) if args_nonmat else S.One
        if scalar == 1:
            tprod = ArrayTensorProduct(
                *[convert_matrix_to_array(arg) for arg in args])
        else:
            tprod = ArrayTensorProduct(
                scalar, *[convert_matrix_to_array(arg) for arg in args])
        return ArrayContraction(tprod, *contractions)
    elif isinstance(expr, MatAdd):
        return ArrayAdd(*[convert_matrix_to_array(arg) for arg in expr.args])
    elif isinstance(expr, Transpose):
        return PermuteDims(convert_matrix_to_array(expr.args[0]), [1, 0])
    elif isinstance(expr, Trace):
        inner_expr = convert_matrix_to_array(expr.arg)
        return ArrayContraction(inner_expr, (0, len(inner_expr.shape) - 1))
    elif isinstance(expr, Mul):
        return ArrayTensorProduct.fromiter(
            convert_matrix_to_array(i) for i in expr.args)
    elif isinstance(expr, Pow):
        base = convert_matrix_to_array(expr.base)
        if (expr.exp > 0) == True:
            return ArrayTensorProduct.fromiter(base for i in range(expr.exp))
        else:
            return expr
    elif isinstance(expr, MatPow):
        base = convert_matrix_to_array(expr.base)
        if expr.exp.is_Integer != True:
            b = symbols("b", cls=Dummy)
            return ArrayElementwiseApplyFunc(Lambda(b, b**expr.exp),
                                             convert_matrix_to_array(base))
        elif (expr.exp > 0) == True:
            return convert_matrix_to_array(
                MatMul.fromiter(base for i in range(expr.exp)))
        else:
            return expr
    elif isinstance(expr, HadamardProduct):
        tp = ArrayTensorProduct.fromiter(expr.args)
        diag = [[2 * i for i in range(len(expr.args))],
                [2 * i + 1 for i in range(len(expr.args))]]
        return ArrayDiagonal(tp, *diag)
    elif isinstance(expr, HadamardPower):
        base, exp = expr.args
        return convert_matrix_to_array(
            HadamardProduct.fromiter(base for i in range(exp)))
    else:
        return expr
コード例 #5
0
def test_array_expr_as_explicit_with_explicit_component_arrays():
    # Test if .as_explicit() works with explicit-component arrays
    # nested in array expressions:
    from sympy.abc import x, y, z, t
    A = Array([[x, y], [z, t]])
    assert ArrayTensorProduct(A, A).as_explicit() == tensorproduct(A, A)
    assert ArrayDiagonal(A, (0, 1)).as_explicit() == tensordiagonal(A, (0, 1))
    assert ArrayContraction(A, (0, 1)).as_explicit() == tensorcontraction(A, (0, 1))
    assert ArrayAdd(A, A).as_explicit() == A + A
    assert ArrayElementwiseApplyFunc(sin, A).as_explicit() == A.applyfunc(sin)
    assert PermuteDims(A, [1, 0]).as_explicit() == permutedims(A, [1, 0])
    assert Reshape(A, [4]).as_explicit() == A.reshape(4)
コード例 #6
0
def _(expr: ArrayElementwiseApplyFunc):
    subexpr = _array2matrix(expr.expr)
    if isinstance(subexpr, MatrixExpr):
        if subexpr.shape != (1, 1):
            d = expr.function.bound_symbols[0]
            w = Wild("w", exclude=[d])
            p = Wild("p", exclude=[d])
            m = expr.function.expr.match(w * d**p)
            if m is not None:
                return m[w] * HadamardPower(subexpr, m[p])
        return ElementwiseApplyFunction(expr.function, subexpr)
    else:
        return ArrayElementwiseApplyFunc(expr.function, subexpr)
コード例 #7
0
def test_arrayexpr_array_expr_applyfunc():

    A = ArraySymbol("A", (3, k, 2))
    aaf = ArrayElementwiseApplyFunc(sin, A)
    assert aaf.shape == (3, k, 2)
コード例 #8
0
def _(expr: ArrayElementwiseApplyFunc):
    subexpr, removed = _remove_trivial_dims(expr.expr)
    return ArrayElementwiseApplyFunc(expr.function, subexpr), removed
コード例 #9
0
def _(expr: ArrayElementwiseApplyFunc):
    subexpr = _array2matrix(expr.expr)
    if isinstance(subexpr, MatrixExpr):
        return ElementwiseApplyFunction(expr.function, subexpr)
    else:
        return ArrayElementwiseApplyFunc(expr.function, subexpr)
コード例 #10
0
def convert_matrix_to_array(expr: Basic) -> Basic:
    if isinstance(expr, MatMul):
        args_nonmat = []
        args = []
        for arg in expr.args:
            if isinstance(arg, MatrixExpr):
                args.append(arg)
            else:
                args_nonmat.append(convert_matrix_to_array(arg))
        contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)]
        scalar = _array_tensor_product(*args_nonmat) if args_nonmat else S.One
        if scalar == 1:
            tprod = _array_tensor_product(
                *[convert_matrix_to_array(arg) for arg in args])
        else:
            tprod = _array_tensor_product(
                scalar,
                *[convert_matrix_to_array(arg) for arg in args])
        return _array_contraction(
                tprod,
                *contractions
        )
    elif isinstance(expr, MatAdd):
        return _array_add(
                *[convert_matrix_to_array(arg) for arg in expr.args]
        )
    elif isinstance(expr, Transpose):
        return _permute_dims(
                convert_matrix_to_array(expr.args[0]), [1, 0]
        )
    elif isinstance(expr, Trace):
        inner_expr: MatrixExpr = convert_matrix_to_array(expr.arg) # type: ignore
        return _array_contraction(inner_expr, (0, len(inner_expr.shape) - 1))
    elif isinstance(expr, Mul):
        return _array_tensor_product(*[convert_matrix_to_array(i) for i in expr.args])
    elif isinstance(expr, Pow):
        base = convert_matrix_to_array(expr.base)
        if (expr.exp > 0) == True:
            return _array_tensor_product(*[base for i in range(expr.exp)])
        else:
            return expr
    elif isinstance(expr, MatPow):
        base = convert_matrix_to_array(expr.base)
        if expr.exp.is_Integer != True:
            b = symbols("b", cls=Dummy)
            return ArrayElementwiseApplyFunc(Lambda(b, b**expr.exp), convert_matrix_to_array(base))
        elif (expr.exp > 0) == True:
            return convert_matrix_to_array(MatMul.fromiter(base for i in range(expr.exp)))
        else:
            return expr
    elif isinstance(expr, HadamardProduct):
        tp = _array_tensor_product(*[convert_matrix_to_array(arg) for arg in expr.args])
        diag = [[2*i for i in range(len(expr.args))], [2*i+1 for i in range(len(expr.args))]]
        return _array_diagonal(tp, *diag)
    elif isinstance(expr, HadamardPower):
        base, exp = expr.args
        if isinstance(exp, Integer) and exp > 0:
            return convert_matrix_to_array(HadamardProduct.fromiter(base for i in range(exp)))
        else:
            d = Dummy("d")
            return ArrayElementwiseApplyFunc(Lambda(d, d**exp), base)
    elif isinstance(expr, KroneckerProduct):
        kp_args = [convert_matrix_to_array(arg) for arg in expr.args]
        permutation = [2*i for i in range(len(kp_args))] + [2*i + 1 for i in range(len(kp_args))]
        return Reshape(_permute_dims(_array_tensor_product(*kp_args), permutation), expr.shape)
    else:
        return expr
コード例 #11
0
def test_arrayexpr_convert_matrix_to_array():

    expr = M * N
    result = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
    assert convert_matrix_to_array(expr) == result

    expr = M * N * M
    result = _array_contraction(ArrayTensorProduct(M, N, M), (1, 2), (3, 4))
    assert convert_matrix_to_array(expr) == result

    expr = Transpose(M)
    assert convert_matrix_to_array(expr) == PermuteDims(M, [1, 0])

    expr = M * Transpose(N)
    assert convert_matrix_to_array(expr) == _array_contraction(
        _array_tensor_product(M, PermuteDims(N, [1, 0])), (1, 2))

    expr = 3 * M * N
    res = convert_matrix_to_array(expr)
    rexpr = convert_array_to_matrix(res)
    assert expr == rexpr

    expr = 3 * M + N * M.T * M + 4 * k * N
    res = convert_matrix_to_array(expr)
    rexpr = convert_array_to_matrix(res)
    assert expr == rexpr

    expr = Inverse(M) * N
    rexpr = convert_array_to_matrix(convert_matrix_to_array(expr))
    assert expr == rexpr

    expr = M**2
    rexpr = convert_array_to_matrix(convert_matrix_to_array(expr))
    assert expr == rexpr

    expr = M * (2 * N + 3 * M)
    res = convert_matrix_to_array(expr)
    rexpr = convert_array_to_matrix(res)
    assert expr == rexpr

    expr = Trace(M)
    result = ArrayContraction(M, (0, 1))
    assert convert_matrix_to_array(expr) == result

    expr = 3 * Trace(M)
    result = ArrayContraction(ArrayTensorProduct(3, M), (0, 1))
    assert convert_matrix_to_array(expr) == result

    expr = 3 * Trace(Trace(M) * M)
    result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3))
    assert convert_matrix_to_array(expr) == result

    expr = 3 * Trace(M)**2
    result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardProduct(M, N)
    result = ArrayDiagonal(ArrayTensorProduct(M, N), (0, 2), (1, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardProduct(M * N, N * M)
    result = ArrayDiagonal(
        ArrayContraction(ArrayTensorProduct(M, N, N, M), (1, 2), (5, 6)),
        (0, 2), (1, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardPower(M, 2)
    result = ArrayDiagonal(ArrayTensorProduct(M, M), (0, 2), (1, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardPower(M * N, 2)
    result = ArrayDiagonal(
        ArrayContraction(ArrayTensorProduct(M, N, M, N), (1, 2), (5, 6)),
        (0, 2), (1, 3))
    assert convert_matrix_to_array(expr) == result

    expr = HadamardPower(M, n)
    d0 = Dummy("d0")
    result = ArrayElementwiseApplyFunc(Lambda(d0, d0**n), M)
    assert convert_matrix_to_array(expr).dummy_eq(result)

    expr = M**2
    assert isinstance(expr, MatPow)
    assert convert_matrix_to_array(expr) == ArrayContraction(
        ArrayTensorProduct(M, M), (1, 2))

    expr = a.T * b
    cg = convert_matrix_to_array(expr)
    assert cg == ArrayContraction(ArrayTensorProduct(a, b), (0, 2))