コード例 #1
0
def symbol_eqtn_fx2y2(n, x2_neg=False, shape=None):

    y2eq, vy = symbol_eqtn_fy2(n, x2_neg=x2_neg)[1:]
    y2eq = y2eq.tolist()

    for iv in range(n):
        y2eq[iv] = y2eq[iv].subs([(vy["tau1"][iv], 1.0), (vy["tau2"][iv], 1.0), (vy["y2"][iv], 0.0)])

    fx2, v = symbol_eqtn_fx2(n, Iext2="Iext2")[1:]
    fx2 = fx2.tolist()

    v.update(vy)
    del vy

    for iv in range(n):
        fx2[iv] = fx2[iv].subs(v["y2"][iv], y2eq[iv])

    fx2 = Array(fx2)
    if shape is not None:
        if len(shape) > 1:
            fx2 = fx2.reshape(shape[0], shape[1])
        else:
            fx2 = fx2.reshape(shape[0], )

    return lambdify([v["x2"], v["z"], v["g"], v["Iext2"], v["s"], v["tau1"]], fx2, 'numpy'), fx2, v
コード例 #2
0
def symbol_calc_fx1y1_6d_diff_x1(n, shape=None):

    fx1, v = symbol_eqtn_fx1(n, model="6d", x1_neg=True, slope="slope", Iext1="Iext1", shape=None)[1:]
    fx1 = fx1.tolist()

    fy1, vy = symbol_eqtn_fy1(n, shape=None)[1:]
    fy1 = fy1.tolist()

    v.update(vy)
    del vy

    dfx1 = []
    for ix in range(n):
        fy1[ix] = fy1[ix].subs(v["y1"][ix], 0.0).subs(v["tau1"][ix], 1.0)
        fx1[ix] = fx1[ix].subs(v["y1"][ix], fy1[ix])
        dfx1.append(fx1[ix].diff(v["x1"][ix]))

    dfx1 = Array(dfx1)
    if shape is not None:
        if len(shape) > 1:
            dfx1 = dfx1.reshape(shape[0], shape[1])
        else:
            dfx1 = dfx1.reshape(shape[0], )

    return lambdify([v["x1"], v["yc"], v["Iext1"], v["a"], v["b"], v["d"], v["tau1"]], dfx1, "numpy"), dfx1, v
コード例 #3
0
def symbol_calc_2d_taylor(n,
                          x_taylor="x1lin",
                          order=2,
                          x1_neg=True,
                          slope="slope",
                          Iext1="Iext1",
                          shape=None):
    fx1ser, v = symbol_eqtn_fx1(n,
                                model="2d",
                                x1_neg=x1_neg,
                                slope=slope,
                                Iext1=Iext1)[1:]
    fx1ser = fx1ser.tolist()
    x_taylor = symbol_vars(n, [x_taylor])[0]
    v.update({"x_taylor": x_taylor})
    for ix in range(shape_to_size(v["x1"].shape)):
        fx1ser[ix] = series(fx1ser[ix],
                            x=v["x1"][ix],
                            x0=x_taylor[ix],
                            n=order).removeO()  #
    fx1ser = Array(fx1ser)
    if shape is not None:
        if len(shape) > 1:
            fx1ser = fx1ser.reshape(shape[0], shape[1])
        else:
            fx1ser = fx1ser.reshape(shape[0], )
    return lambdify([
        v["x1"], x_taylor, v["z"], v["y1"], v[Iext1], v[slope], v["a"], v["b"],
        v["d"], v["tau1"]
    ], fx1ser, "numpy"), fx1ser, v
コード例 #4
0
def symbol_calc_x0cr_r(n, zmode=array("lin"), shape=None):

    # Define the z equilibrium expression...
    # if epileptor_model == "2d":
    zeq, vx = symbol_eqtn_fx1(n, model="2d", x1_neg=True, slope="slope", Iext1="Iext1")[1:]
    zeq = zeq.tolist()

    for iv in range(n):
        zeq[iv] = zeq[iv].subs([(vx["z"][iv], 0.0), (vx["tau1"][iv], 1.0)])

    # else:
    # zeq = calc_fx1(x1eq, z=0.0, y1=y1=calc_fy1(x1eq, y11), Iext1=I1, model="6d", x1_neg=True,
    # shape=Iext1.shape).tolist()

    # Define the fz expression...
    # fz = calc_fz(x1eq, z=zeq, x0=x0, x0cr=x0cr, r=r, zmode=zmode, z_pos=True, model="2d", shape=Iext1.shape).tolist()
    fz, v = symbol_eqtn_fz(n, zmode, z_pos=True, model="2d", x0="x0", K="K")[1:]
    fz = fz.tolist()

    for iv in range(n):
        fz[iv] = fz[iv].subs([(v['K'][iv], 0.0), (v["tau1"][iv], 1.0), (v["tau0"][iv], 1.0), (v["z"][iv], zeq[iv])])

    v.update(vx)
    del vx

    x1_rest, x1_cr, x0_rest, x0_cr, vv = symbol_vars(len(zeq), ["x1_rest", "x1_cr", "x0_rest", "x0_cr"],
                                                     shape=v["x1"].shape)
    v.update(vv)
    del vv

    # solve the fz expression for rx0 and x0cr, assuming the following two points (x1eq,x0) = [(-5/3,0.0),(-4/3,1.0)]...
    # ...and WITHOUT COUPLING
    x0cr = []
    r = []
    for iv in range(n):
        fz_sol = solve([fz[iv].subs([(v["x1"][iv], x1_rest[iv]), (v["x0"][iv], x0_rest[iv]),
                                (zeq[iv], zeq[iv].subs(v["x1"][iv], x1_rest[iv]))]),
                        fz[iv].subs([(v["x1"][iv], x1_cr[iv]), (v["x0"][iv], x0_cr[iv]),
                                (zeq[iv], zeq[iv].subs(v["x1"][iv], x1_cr[iv]))])],
                        v["x0cr"][iv], v["r"][iv])
        x0cr.append(fz_sol[v["x0cr"][iv]])
        r.append(fz_sol[v["r"][iv]])

    # Convert the solution of x0cr from expression to function that accepts numpy arrays as inputs:
    x0cr = Array(x0cr)
    r = Array(r)
    if shape is not None:
        if len(shape) > 1:
            x0cr = x0cr.reshape(shape[0], shape[1])
            r = r.reshape(shape[0], shape[1])
        else:
            x0cr = x0cr.reshape(shape[0], )
            r = r.reshape(shape[0], )

    return (lambdify([v["y1"], v["Iext1"], v["a"], v["b"], v["x1_rest"], v["x1_cr"], v["x0_rest"], v["x0_cr"]],
                     x0cr, 'numpy'),
           lambdify([v["y1"], v["Iext1"], v["a"], v["b"], v["x1_rest"], v["x1_cr"], v["x0_rest"], v["x0_cr"]],
                    r, 'numpy')), \
           (x0cr, r), v
コード例 #5
0
def symbol_eqtn_fx1z(n, model="6d", zmode=array("lin"), shape=None):  #x1_neg=True, z_pos=True,

    # TODO: for the extreme z_pos = False case where we have terms like 0.1 * z ** 7
    # TODO: for the extreme x1_neg = False case where we have to solve for x2 as well

    fx1, v = symbol_eqtn_fx1(n, model, x1_neg=True, slope="slope", Iext1="Iext1")[1:]
    fx1 = fx1.tolist()

    fz, vz = symbol_eqtn_fz(n, zmode, True, model, x0="x0", K="K")[1:]
    fz = fz.tolist()

    v.update(vz)
    del vz

    if model != "2d":

        y1eq, vy = symbol_eqtn_fy1(n)[1:]
        y1eq = y1eq.tolist()

        for iv in range(n):
            y1eq[iv] = y1eq[iv].subs([(vy["tau1"][iv], 1.0), (vy["y1"][iv], 0.0)])

        v.update(vy)
        del vy

        z = []
        for iv in range(n):
            z.append(fx1[iv].subs([(v["tau1"][iv], 1.0), (v["y1"][iv], y1eq[iv]), (v["z"][iv], 0.0)]))

    else:

        z = []
        for iv in range(n):
            z.append(fx1[iv].subs([(v["tau1"][iv], 1.0), (v["z"][iv], 0.0)]))

    fx1z = []
    for iv in range(n):
        fx1z.append(fz[iv].subs([(v["z"][iv], z[iv])]))

    # Convert the solution of x0cr from expression to function that accepts numpy arrays as inputs:
    fx1z = Array(fx1z)
    if shape is not None:
        if len(shape) > 1:
            fx1z = fx1z.reshape(shape[0], shape[1])
        else:
            fx1z = fx1z.reshape(shape[0], )

    if model == "2d":
        fx1z_lambda = lambdify([v["x1"], v["x0"], v["K"], v["w"], v["x0cr"], v["r"], v["y1"], v["Iext1"], v["a"],
                                v["b"], v["tau1"], v["tau0"]], fx1z, 'numpy')
    else:
        fx1z_lambda = lambdify([v["x1"], v["x0"], v["K"], v["w"], v["yc"], v["Iext1"], v["a"], v["b"], v["d"],
                                v["tau1"], v["tau0"]], fx1z, 'numpy')

    return fx1z_lambda, fx1z, v
コード例 #6
0
def test_array_permutedims():
    sa = symbols('a0:144')

    m1 = Array(sa[:6], (2, 3))
    assert permutedims(m1, (1, 0)) == transpose(m1)
    assert m1.tomatrix().T == permutedims(m1, (1, 0)).tomatrix()

    assert m1.tomatrix().T == transpose(m1).tomatrix()
    assert m1.tomatrix().C == conjugate(m1).tomatrix()
    assert m1.tomatrix().H == adjoint(m1).tomatrix()

    assert m1.tomatrix().T == m1.transpose().tomatrix()
    assert m1.tomatrix().C == m1.conjugate().tomatrix()
    assert m1.tomatrix().H == m1.adjoint().tomatrix()

    raises(ValueError, lambda: permutedims(m1, (0,)))
    raises(ValueError, lambda: permutedims(m1, (0, 0)))
    raises(ValueError, lambda: permutedims(m1, (1, 2, 0)))

    # Some tests with random arrays:
    dims = 6
    shape = [random.randint(1,5) for i in range(dims)]
    elems = [random.random() for i in range(tensorproduct(*shape))]
    ra = Array(elems, shape)
    perm = list(range(dims))
    # Randomize the permutation:
    random.shuffle(perm)
    # Test inverse permutation:
    assert permutedims(permutedims(ra, perm), _af_invert(perm)) == ra
    # Test that permuted shape corresponds to action by `Permutation`:
    assert permutedims(ra, perm).shape == tuple(Permutation(perm)(shape))

    z = Array.zeros(4,5,6,7)

    assert permutedims(z, (2, 3, 1, 0)).shape == (6, 7, 5, 4)
    assert permutedims(z, [2, 3, 1, 0]).shape == (6, 7, 5, 4)
    assert permutedims(z, Permutation([2, 3, 1, 0])).shape == (6, 7, 5, 4)

    po = Array(sa, [2, 2, 3, 3, 2, 2])

    raises(ValueError, lambda: permutedims(po, (1, 1)))
    raises(ValueError, lambda: po.transpose())
    raises(ValueError, lambda: po.adjoint())

    assert permutedims(po, reversed(range(po.rank()))) == Array(
        [[[[[[sa[0], sa[72]], [sa[36], sa[108]]], [[sa[12], sa[84]], [sa[48], sa[120]]], [[sa[24],
                                                                                           sa[96]], [sa[60], sa[132]]]],
           [[[sa[4], sa[76]], [sa[40], sa[112]]], [[sa[16],
                                                    sa[88]], [sa[52], sa[124]]],
            [[sa[28], sa[100]], [sa[64], sa[136]]]],
           [[[sa[8],
              sa[80]], [sa[44], sa[116]]], [[sa[20], sa[92]], [sa[56], sa[128]]], [[sa[32],
                                                                                    sa[104]], [sa[68], sa[140]]]]],
          [[[[sa[2], sa[74]], [sa[38], sa[110]]], [[sa[14],
                                                    sa[86]], [sa[50], sa[122]]], [[sa[26], sa[98]], [sa[62], sa[134]]]],
           [[[sa[6],
              sa[78]], [sa[42], sa[114]]], [[sa[18], sa[90]], [sa[54], sa[126]]], [[sa[30],
                                                                                    sa[102]], [sa[66], sa[138]]]],
           [[[sa[10], sa[82]], [sa[46], sa[118]]], [[sa[22],
                                                     sa[94]], [sa[58], sa[130]]],
            [[sa[34], sa[106]], [sa[70], sa[142]]]]]],
         [[[[[sa[1],
              sa[73]], [sa[37], sa[109]]], [[sa[13], sa[85]], [sa[49], sa[121]]], [[sa[25],
                                                                                    sa[97]], [sa[61], sa[133]]]],
           [[[sa[5], sa[77]], [sa[41], sa[113]]], [[sa[17],
                                                    sa[89]], [sa[53], sa[125]]],
            [[sa[29], sa[101]], [sa[65], sa[137]]]],
           [[[sa[9],
              sa[81]], [sa[45], sa[117]]], [[sa[21], sa[93]], [sa[57], sa[129]]], [[sa[33],
                                                                                    sa[105]], [sa[69], sa[141]]]]],
          [[[[sa[3], sa[75]], [sa[39], sa[111]]], [[sa[15],
                                                    sa[87]], [sa[51], sa[123]]], [[sa[27], sa[99]], [sa[63], sa[135]]]],
           [[[sa[7],
              sa[79]], [sa[43], sa[115]]], [[sa[19], sa[91]], [sa[55], sa[127]]], [[sa[31],
                                                                                    sa[103]], [sa[67], sa[139]]]],
           [[[sa[11], sa[83]], [sa[47], sa[119]]], [[sa[23],
                                                     sa[95]], [sa[59], sa[131]]],
            [[sa[35], sa[107]], [sa[71], sa[143]]]]]]])

    assert permutedims(po, (1, 0, 2, 3, 4, 5)) == Array(
        [[[[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10],
                                                                                                  sa[11]]]],
           [[[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18],
                                                                      sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]]],
           [[[sa[24], sa[25]], [sa[26],
                                sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34],
                                                                                                    sa[35]]]]],
          [[[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78],
                                                                      sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]]],
           [[[sa[84], sa[85]], [sa[86],
                                sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94],
                                                                                                    sa[95]]]],
           [[[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102],
                                                                        sa[103]]],
            [[sa[104], sa[105]], [sa[106], sa[107]]]]]], [[[[[sa[36], sa[37]], [sa[38],
                                                                                sa[39]]],
                                                            [[sa[40], sa[41]], [sa[42], sa[43]]],
                                                            [[sa[44], sa[45]], [sa[46],
                                                                                sa[47]]]],
                                                           [[[sa[48], sa[49]], [sa[50], sa[51]]],
                                                            [[sa[52], sa[53]], [sa[54],
                                                                                sa[55]]],
                                                            [[sa[56], sa[57]], [sa[58], sa[59]]]],
                                                           [[[sa[60], sa[61]], [sa[62],
                                                                                sa[63]]],
                                                            [[sa[64], sa[65]], [sa[66], sa[67]]],
                                                            [[sa[68], sa[69]], [sa[70],
                                                                                sa[71]]]]], [
                                                              [[[sa[108], sa[109]], [sa[110], sa[111]]],
                                                               [[sa[112], sa[113]], [sa[114],
                                                                                     sa[115]]],
                                                               [[sa[116], sa[117]], [sa[118], sa[119]]]],
                                                              [[[sa[120], sa[121]], [sa[122],
                                                                                     sa[123]]],
                                                               [[sa[124], sa[125]], [sa[126], sa[127]]],
                                                               [[sa[128], sa[129]], [sa[130],
                                                                                     sa[131]]]],
                                                              [[[sa[132], sa[133]], [sa[134], sa[135]]],
                                                               [[sa[136], sa[137]], [sa[138],
                                                                                     sa[139]]],
                                                               [[sa[140], sa[141]], [sa[142], sa[143]]]]]]])

    assert permutedims(po, (0, 2, 1, 4, 3, 5)) == Array(
        [[[[[[sa[0], sa[1]], [sa[4], sa[5]], [sa[8], sa[9]]], [[sa[2], sa[3]], [sa[6], sa[7]], [sa[10],
                                                                                                sa[11]]]],
           [[[sa[36], sa[37]], [sa[40], sa[41]], [sa[44], sa[45]]], [[sa[38],
                                                                      sa[39]], [sa[42], sa[43]], [sa[46], sa[47]]]]],
          [[[[sa[12], sa[13]], [sa[16],
                                sa[17]], [sa[20], sa[21]]], [[sa[14], sa[15]], [sa[18], sa[19]], [sa[22],
                                                                                                  sa[23]]]],
           [[[sa[48], sa[49]], [sa[52], sa[53]], [sa[56], sa[57]]], [[sa[50],
                                                                      sa[51]], [sa[54], sa[55]], [sa[58], sa[59]]]]],
          [[[[sa[24], sa[25]], [sa[28],
                                sa[29]], [sa[32], sa[33]]], [[sa[26], sa[27]], [sa[30], sa[31]], [sa[34],
                                                                                                  sa[35]]]],
           [[[sa[60], sa[61]], [sa[64], sa[65]], [sa[68], sa[69]]], [[sa[62],
                                                                      sa[63]], [sa[66], sa[67]], [sa[70], sa[71]]]]]],
         [[[[[sa[72], sa[73]], [sa[76],
                                sa[77]], [sa[80], sa[81]]], [[sa[74], sa[75]], [sa[78], sa[79]], [sa[82],
                                                                                                  sa[83]]]],
           [[[sa[108], sa[109]], [sa[112], sa[113]], [sa[116], sa[117]]], [[sa[110],
                                                                            sa[111]], [sa[114], sa[115]],
                                                                           [sa[118], sa[119]]]]],
          [[[[sa[84], sa[85]], [sa[88],
                                sa[89]], [sa[92], sa[93]]], [[sa[86], sa[87]], [sa[90], sa[91]], [sa[94],
                                                                                                  sa[95]]]],
           [[[sa[120], sa[121]], [sa[124], sa[125]], [sa[128], sa[129]]], [[sa[122],
                                                                            sa[123]], [sa[126], sa[127]],
                                                                           [sa[130], sa[131]]]]],
          [[[[sa[96], sa[97]], [sa[100],
                                sa[101]], [sa[104], sa[105]]], [[sa[98], sa[99]], [sa[102], sa[103]], [sa[106],
                                                                                                       sa[107]]]],
           [[[sa[132], sa[133]], [sa[136], sa[137]], [sa[140], sa[141]]], [[sa[134],
                                                                            sa[135]], [sa[138], sa[139]],
                                                                           [sa[142], sa[143]]]]]]])

    po2 = po.reshape(4, 9, 2, 2)
    assert po2 == Array([[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10], sa[11]]], [[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18], sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]], [[sa[24], sa[25]], [sa[26], sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34], sa[35]]]], [[[sa[36], sa[37]], [sa[38], sa[39]]], [[sa[40], sa[41]], [sa[42], sa[43]]], [[sa[44], sa[45]], [sa[46], sa[47]]], [[sa[48], sa[49]], [sa[50], sa[51]]], [[sa[52], sa[53]], [sa[54], sa[55]]], [[sa[56], sa[57]], [sa[58], sa[59]]], [[sa[60], sa[61]], [sa[62], sa[63]]], [[sa[64], sa[65]], [sa[66], sa[67]]], [[sa[68], sa[69]], [sa[70], sa[71]]]], [[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78], sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]], [[sa[84], sa[85]], [sa[86], sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94], sa[95]]], [[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102], sa[103]]], [[sa[104], sa[105]], [sa[106], sa[107]]]], [[[sa[108], sa[109]], [sa[110], sa[111]]], [[sa[112], sa[113]], [sa[114], sa[115]]], [[sa[116], sa[117]], [sa[118], sa[119]]], [[sa[120], sa[121]], [sa[122], sa[123]]], [[sa[124], sa[125]], [sa[126], sa[127]]], [[sa[128], sa[129]], [sa[130], sa[131]]], [[sa[132], sa[133]], [sa[134], sa[135]]], [[sa[136], sa[137]], [sa[138], sa[139]]], [[sa[140], sa[141]], [sa[142], sa[143]]]]])

    assert permutedims(po2, (3, 2, 0, 1)) == Array([[[[sa[0], sa[4], sa[8], sa[12], sa[16], sa[20], sa[24], sa[28], sa[32]], [sa[36], sa[40], sa[44], sa[48], sa[52], sa[56], sa[60], sa[64], sa[68]], [sa[72], sa[76], sa[80], sa[84], sa[88], sa[92], sa[96], sa[100], sa[104]], [sa[108], sa[112], sa[116], sa[120], sa[124], sa[128], sa[132], sa[136], sa[140]]], [[sa[2], sa[6], sa[10], sa[14], sa[18], sa[22], sa[26], sa[30], sa[34]], [sa[38], sa[42], sa[46], sa[50], sa[54], sa[58], sa[62], sa[66], sa[70]], [sa[74], sa[78], sa[82], sa[86], sa[90], sa[94], sa[98], sa[102], sa[106]], [sa[110], sa[114], sa[118], sa[122], sa[126], sa[130], sa[134], sa[138], sa[142]]]], [[[sa[1], sa[5], sa[9], sa[13], sa[17], sa[21], sa[25], sa[29], sa[33]], [sa[37], sa[41], sa[45], sa[49], sa[53], sa[57], sa[61], sa[65], sa[69]], [sa[73], sa[77], sa[81], sa[85], sa[89], sa[93], sa[97], sa[101], sa[105]], [sa[109], sa[113], sa[117], sa[121], sa[125], sa[129], sa[133], sa[137], sa[141]]], [[sa[3], sa[7], sa[11], sa[15], sa[19], sa[23], sa[27], sa[31], sa[35]], [sa[39], sa[43], sa[47], sa[51], sa[55], sa[59], sa[63], sa[67], sa[71]], [sa[75], sa[79], sa[83], sa[87], sa[91], sa[95], sa[99], sa[103], sa[107]], [sa[111], sa[115], sa[119], sa[123], sa[127], sa[131], sa[135], sa[139], sa[143]]]]])