def test_derivative_by_array(): from sympy.abc import a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z from sympy.tensor.array import MutableSparseNDimArray, ImmutableSparseNDimArray bexpr = x*y**2*exp(z)*log(t) sexpr = sin(bexpr) cexpr = cos(bexpr) a = Array([sexpr]) assert derive_by_array(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t assert derive_by_array(sexpr, [x, y, z]) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr]) assert derive_by_array(a, [x, y, z]) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]]) assert derive_by_array(sexpr, [[x, y], [z, t]]) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]]) assert derive_by_array(a, [[x, y], [z, t]]) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]]) assert derive_by_array([[x, y], [z, t]], [x, y]) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]]) assert derive_by_array([[x, y], [z, t]], [[x, y], [z, t]]) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t assert diff(sexpr, Array([x, y, z])) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr]) assert diff(a, Array([x, y, z])) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]]) assert diff(sexpr, Array([[x, y], [z, t]])) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]]) assert diff(a, Array([[x, y], [z, t]])) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]]) assert diff(Array([[x, y], [z, t]]), Array([x, y])) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]]) assert diff(Array([[x, y], [z, t]]), Array([[x, y], [z, t]])) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # test for large scale sparse array b = MutableSparseNDimArray.zeros(10000, 20000) b[0, 0] = i b[0, 1] = j assert derive_by_array(b, i) == ImmutableSparseNDimArray({0: 1}, (10000, 20000)) assert derive_by_array(b, (i, j)) == ImmutableSparseNDimArray({0: 1, 200000001: 1}, (2, 10000, 20000))
sqrt(1.0 / 3.0), 1.0 / 3.0, sqrt(1.0 / 3.0), 1.0 / 3.0 ], ]) #-------------------------------------------------------------------- # Matrix modes_to_nodes val_r_inv = val_r**(-1) # Computes coordiantes modes coords_modes_ = val_r_inv * coords_ coords_modes = lambdify(coords_, coords_modes_, "numpy") # Initialized coordiantes interp_coords_ = MutableSparseNDimArray.zeros(nnodes_ie, 3) for inode in range(0, nnodes_ie): for idir in range(0, 3): interp_coords_[inode, idir] = val_i[inode, :] * coords_modes_[:, idir] # Initialized jacobian jacobian_ = MutableSparseNDimArray.zeros(3, 3, nnodes_ie) for inode in range(0, nnodes_ie): jacobian_[0, 0, inode] = ddxi_i[inode, :] * coords_modes_[:, 0] jacobian_[0, 1, inode] = ddeta_i[inode, :] * coords_modes_[:, 0] jacobian_[0, 2, inode] = ddzeta_i[inode, :] * coords_modes_[:, 0] jacobian_[1, 0, inode] = ddxi_i[inode, :] * coords_modes_[:, 1] jacobian_[1, 1, inode] = ddeta_i[inode, :] * coords_modes_[:, 1] jacobian_[1, 2, inode] = ddzeta_i[inode, :] * coords_modes_[:, 1] jacobian_[2, 0, inode] = ddxi_i[inode, :] * coords_modes_[:, 2] jacobian_[2, 1, inode] = ddeta_i[inode, :] * coords_modes_[:, 2]