コード例 #1
0
def d_catalan(dim,n):
    """d-dimensional Catalan numbers.
       The number of standard Young tableaux of shape (n^dim) = (n,..,n)."""
    res = sympy.factorial( dim * n )
    for ell in range(0,dim):
        res /= sympy.ff(n+ell,n)
    return res
コード例 #2
0
ファイル: test_comb_factorials.py プロジェクト: scopatz/sympy
def test_binomial_rewrite():
    n = Symbol("n", integer=True)
    k = Symbol("k", integer=True)

    assert binomial(n, k).rewrite(factorial) == factorial(n) / (factorial(k) * factorial(n - k))
    assert binomial(n, k).rewrite(gamma) == gamma(n + 1) / (gamma(k + 1) * gamma(n - k + 1))
    assert binomial(n, k).rewrite(ff) == ff(n, k) / factorial(k)
コード例 #3
0
def test_rf_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert rf(nan, y) == nan
    assert rf(x, nan) == nan

    assert rf(x, y) == rf(x, y)

    assert rf(oo, 0) == 1
    assert rf(-oo, 0) == 1

    assert rf(oo, 6) == oo
    assert rf(-oo, 7) == -oo

    assert rf(oo, -6) == oo
    assert rf(-oo, -7) == oo

    assert rf(x, 0) == 1
    assert rf(x, 1) == x
    assert rf(x, 2) == x*(x + 1)
    assert rf(x, 3) == x*(x + 1)*(x + 2)
    assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4)

    assert rf(x, -1) == 1/(x - 1)
    assert rf(x, -2) == 1/((x - 1)*(x - 2))
    assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3))

    assert rf(1, 100) == factorial(100)

    assert rf(x**2 + 3*x, 2) == (x**2 + 3*x)*(x**2 + 3*x + 1)
    assert isinstance(rf(x**2 + 3*x, 2), Mul)
    assert rf(x**3 + x, -2) == 1/((x**3 + x - 1)*(x**3 + x - 2))

    assert rf(Poly(x**2 + 3*x, x), 2) == Poly(x**4 + 8*x**3 + 19*x**2 + 12*x, x)
    assert isinstance(rf(Poly(x**2 + 3*x, x), 2), Poly)
    raises(ValueError, lambda: rf(Poly(x**2 + 3*x, x, y), 2))
    assert rf(Poly(x**3 + x, x), -2) == 1/(x**6 - 9*x**5 + 35*x**4 - 75*x**3 + 94*x**2 - 66*x + 20)
    raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2))

    assert rf(x, m).is_integer is None
    assert rf(n, k).is_integer is None
    assert rf(n, m).is_integer is True
    assert rf(n, k + pi).is_integer is False
    assert rf(n, m + pi).is_integer is False
    assert rf(pi, m).is_integer is False

    assert rf(x, k).rewrite(ff) == ff(x + k - 1, k)
    assert rf(x, k).rewrite(binomial) == factorial(k)*binomial(x + k - 1, k)
    assert rf(n, k).rewrite(factorial) == \
        factorial(n + k - 1) / factorial(n - 1)

    import random
    from mpmath import rf as mpmath_rf
    for i in range(100):
        x = -500 + 500 * random.random()
        k = -500 + 500 * random.random()
        assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15))
コード例 #4
0
def test_rf_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert rf(nan, y) == nan
    assert rf(x, nan) == nan

    assert rf(x, y) == rf(x, y)

    assert rf(oo, 0) == 1
    assert rf(-oo, 0) == 1

    assert rf(oo, 6) == oo
    assert rf(-oo, 7) == -oo

    assert rf(oo, -6) == oo
    assert rf(-oo, -7) == oo

    assert rf(x, 0) == 1
    assert rf(x, 1) == x
    assert rf(x, 2) == x*(x + 1)
    assert rf(x, 3) == x*(x + 1)*(x + 2)
    assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4)

    assert rf(x, -1) == 1/(x - 1)
    assert rf(x, -2) == 1/((x - 1)*(x - 2))
    assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3))

    assert rf(1, 100) == factorial(100)

    assert rf(x**2 + 3*x, 2) == (x**2 + 3*x)*(x**2 + 3*x + 1)
    assert isinstance(rf(x**2 + 3*x, 2), Mul)
    assert rf(x**3 + x, -2) == 1/((x**3 + x - 1)*(x**3 + x - 2))

    assert rf(Poly(x**2 + 3*x, x), 2) == Poly(x**4 + 8*x**3 + 19*x**2 + 12*x, x)
    assert isinstance(rf(Poly(x**2 + 3*x, x), 2), Poly)
    raises(ValueError, lambda: rf(Poly(x**2 + 3*x, x, y), 2))
    assert rf(Poly(x**3 + x, x), -2) == 1/(x**6 - 9*x**5 + 35*x**4 - 75*x**3 + 94*x**2 - 66*x + 20)
    raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2))

    assert rf(x, m).is_integer is None
    assert rf(n, k).is_integer is None
    assert rf(n, m).is_integer is True
    assert rf(n, k + pi).is_integer is False
    assert rf(n, m + pi).is_integer is False
    assert rf(pi, m).is_integer is False

    assert rf(x, k).rewrite(ff) == ff(x + k - 1, k)
    assert rf(x, k).rewrite(binomial) == factorial(k)*binomial(x + k - 1, k)
    assert rf(n, k).rewrite(factorial) == \
        factorial(n + k - 1) / factorial(n - 1)

    import random
    from mpmath import rf as mpmath_rf
    for i in range(100):
        x = -500 + 500 * random.random()
        k = -500 + 500 * random.random()
        assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15))
コード例 #5
0
def test_binomial_rewrite():
    n = Symbol('n', integer=True)
    k = Symbol('k', integer=True)

    assert binomial(n, k).rewrite(
        factorial) == factorial(n)/(factorial(k)*factorial(n - k))
    assert binomial(
        n, k).rewrite(gamma) == gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
    assert binomial(n, k).rewrite(ff) == ff(n, k) / factorial(k)
コード例 #6
0
def test_rf_ff_eval_hiprec():
    maple = Float('6.9109401292234329956525265438452')
    us = ff(18, Rational(2, 3)).evalf(32)
    assert abs(us - maple) / us < 1e-31

    maple = Float('6.8261540131125511557924466355367')
    us = rf(18, Rational(2, 3)).evalf(32)
    assert abs(us - maple) / us < 1e-31

    maple = Float('34.007346127440197150854651814225')
    us = rf(Float('4.4', 32), Float('2.2', 32))
    assert abs(us - maple) / us < 1e-31
コード例 #7
0
def test_rf_ff_eval_hiprec():
    maple = Float('6.9109401292234329956525265438452')
    us = ff(18, S(2)/3).evalf(32)
    assert abs(us - maple)/us < 1e-31

    maple = Float('6.8261540131125511557924466355367')
    us = rf(18, S(2)/3).evalf(32)
    assert abs(us - maple)/us < 1e-31

    maple = Float('34.007346127440197150854651814225')
    us = rf(Float('4.4', 32), Float('2.2', 32));
    assert abs(us - maple)/us < 1e-31
コード例 #8
0
def test_rf_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert rf(nan, y) == nan
    assert rf(x, nan) == nan

    assert rf(x, y) == rf(x, y)

    assert rf(oo, 0) == 1
    assert rf(-oo, 0) == 1

    assert rf(oo, 6) == oo
    assert rf(-oo, 7) == -oo

    assert rf(oo, -6) == oo
    assert rf(-oo, -7) == oo

    assert rf(x, 0) == 1
    assert rf(x, 1) == x
    assert rf(x, 2) == x * (x + 1)
    assert rf(x, 3) == x * (x + 1) * (x + 2)
    assert rf(x, 5) == x * (x + 1) * (x + 2) * (x + 3) * (x + 4)

    assert rf(x, -1) == 1 / (x - 1)
    assert rf(x, -2) == 1 / ((x - 1) * (x - 2))
    assert rf(x, -3) == 1 / ((x - 1) * (x - 2) * (x - 3))

    assert rf(1, 100) == factorial(100)

    assert rf(x**2 + 3 * x, 2) == x**4 + 8 * x**3 + 19 * x**2 + 12 * x
    assert rf(x**3 + x, -2) == 1 / (x**6 - 9 * x**5 + 35 * x**4 - 75 * x**3 +
                                    94 * x**2 - 66 * x + 20)

    assert rf(x, m).is_integer is None
    assert rf(n, k).is_integer is None
    assert rf(n, m).is_integer is True
    assert rf(n, k + pi).is_integer is False
    assert rf(n, m + pi).is_integer is False
    assert rf(pi, m).is_integer is False

    assert rf(x, k).rewrite(ff) == ff(x + k - 1, k)
    assert rf(x, k).rewrite(binomial) == factorial(k) * binomial(x + k - 1, k)
    assert rf(n, k).rewrite(factorial) == \
        factorial(n + k - 1) / factorial(n - 1)
コード例 #9
0
def test_rf_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert rf(nan, y) == nan
    assert rf(x, nan) == nan

    assert rf(x, y) == rf(x, y)

    assert rf(oo, 0) == 1
    assert rf(-oo, 0) == 1

    assert rf(oo, 6) == oo
    assert rf(-oo, 7) == -oo

    assert rf(oo, -6) == oo
    assert rf(-oo, -7) == oo

    assert rf(x, 0) == 1
    assert rf(x, 1) == x
    assert rf(x, 2) == x*(x + 1)
    assert rf(x, 3) == x*(x + 1)*(x + 2)
    assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4)

    assert rf(x, -1) == 1/(x - 1)
    assert rf(x, -2) == 1/((x - 1)*(x - 2))
    assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3))

    assert rf(1, 100) == factorial(100)

    assert rf(x**2 + 3*x, 2) == x**4 + 8*x**3 + 19*x**2 + 12*x
    assert rf(x**3 + x, -2) == 1/(x**6 - 9*x**5 + 35*x**4 - 75*x**3 + 94*x**2 - 66*x + 20)

    assert rf(x, m).is_integer is None
    assert rf(n, k).is_integer is None
    assert rf(n, m).is_integer is True
    assert rf(n, k + pi).is_integer is False
    assert rf(n, m + pi).is_integer is False
    assert rf(pi, m).is_integer is False

    assert rf(x, k).rewrite(ff) == ff(x + k - 1, k)
    assert rf(x, k).rewrite(binomial) == factorial(k)*binomial(x + k - 1, k)
    assert rf(n, k).rewrite(factorial) == \
        factorial(n + k - 1) / factorial(n - 1)
コード例 #10
0
ファイル: compartments.py プロジェクト: zechnerlab/Compartor
def _getWnXc(reactants):
    """
    Get w(n;Xc).
    (This is used for displaying propensities only)

    :param dict reactants: reactant compartments Xc as a dictionary that maps Compartment to number of occurrences
    :return: w(n;Xc)
    """
    def _n(content):
        """
        Expression for number of compartments with given content
        """
        if content.func == Compartment:
            return _n(content.args[0])
        return Function('n', integer=True)(content)

    def _kronecker(content1, content2):
        if content1.func == Compartment:
            return _kronecker(content1.args[0], content2)
        if content2.func == Compartment:
            return _kronecker(content1, content2.args[0])
        return KroneckerDelta(content1, content2)

    if len(reactants) == 0:
        return 1
    elif len(reactants) == 1:
        (compartment, count) = next(iter(reactants.items()))
        __checkSimpleCompartment(compartment)
        return 1 / factorial(count) * ff(_n(compartment), count)
    elif len(reactants) == 2:
        i = iter(reactants.items())
        (compartment1, count1) = next(i)
        (compartment2, count2) = next(i)
        __checkSimpleCompartment(compartment1)
        __checkSimpleCompartment(compartment2)
        if count1 != 1 or count2 != 1:
            raise RuntimeError(
                "Higher than 2nd order transitions are not implemented yet")
        return _n(compartment1) * (_n(compartment2) - _kronecker(compartment1, compartment2)) \
               / (1 + _kronecker(compartment1, compartment2))
    else:
        raise RuntimeError(
            "Higher than 2nd order transitions are not implemented yet")
コード例 #11
0
ファイル: AtomicWaveFunctions.py プロジェクト: snljty/HLikeWF
def P(l: int, m: int, w=sym.Symbol('w')):
    r'''
Same as associated Legendre functions, but expanded the derivative
expression.
sym.ff is the permutation number.
sym.binomial is the combination number.

$$
\frac{\mathrm d^{l+\left\vert m\right\vert}}
{\mathrm dw^{l+\left\vert m\right\vert}}
=\sum\limits_{j=\frac{l+\left\vert m\right\vert
+\mathrm{Mod}\left(l+\left\vert m\right\vert,2\right)}2}
^l\mathrm C_l^jP_{2j}^{l+\left\vert m\right\vert}
w^{2j-\left(l+\left\vert m\right\vert\right)}
$$
'''
    ans = 0.
    tmp = l + sym.functions.elementary.complexes.Abs(m)
    for j in range((tmp + tmp % 2) // 2, l + 1):
        ans += (sym.binomial(l, j) * sym.ff(2 * j, tmp) * w**(2 * j - tmp))
    ans *= (1 - w**2)**(sym.functions.elementary.complexes.Abs(m) / 2)
    ans /= 2**l * sym.factorial(l)
    return ans
コード例 #12
0
def test_ff_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert ff(nan, y) is nan
    assert ff(x, nan) is nan

    assert unchanged(ff, x, y)

    assert ff(oo, 0) == 1
    assert ff(-oo, 0) == 1

    assert ff(oo, 6) is oo
    assert ff(-oo, 7) is -oo
    assert ff(-oo, 6) is oo

    assert ff(oo, -6) is oo
    assert ff(-oo, -7) is oo

    assert ff(x, 0) == 1
    assert ff(x, 1) == x
    assert ff(x, 2) == x*(x - 1)
    assert ff(x, 3) == x*(x - 1)*(x - 2)
    assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)

    assert ff(x, -1) == 1/(x + 1)
    assert ff(x, -2) == 1/((x + 1)*(x + 2))
    assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3))

    assert ff(100, 100) == factorial(100)

    assert ff(2*x**2 - 5*x, 2) == (2*x**2  - 5*x)*(2*x**2 - 5*x - 1)
    assert isinstance(ff(2*x**2 - 5*x, 2), Mul)
    assert ff(x**2 + 3*x, -2) == 1/((x**2 + 3*x + 1)*(x**2 + 3*x + 2))

    assert ff(Poly(2*x**2 - 5*x, x), 2) == Poly(4*x**4 - 28*x**3 + 59*x**2 - 35*x, x)
    assert isinstance(ff(Poly(2*x**2 - 5*x, x), 2), Poly)
    raises(ValueError, lambda: ff(Poly(2*x**2 - 5*x, x, y), 2))
    assert ff(Poly(x**2 + 3*x, x), -2) == 1/(x**4 + 12*x**3 + 49*x**2 + 78*x + 40)
    raises(ValueError, lambda: ff(Poly(x**2 + 3*x, x, y), -2))


    assert ff(x, m).is_integer is None
    assert ff(n, k).is_integer is None
    assert ff(n, m).is_integer is True
    assert ff(n, k + pi).is_integer is False
    assert ff(n, m + pi).is_integer is False
    assert ff(pi, m).is_integer is False

    assert isinstance(ff(x, x), ff)
    assert ff(n, n) == factorial(n)

    def check(x, k, o, n):
        a, b = Dummy(), Dummy()
        r = lambda x, k: o(a, b).rewrite(n).subs({a:x,b:k})
        for i in range(-5,5):
          for j in range(-5,5):
              assert o(i, j) == r(i, j), (o, n)
    check(x, k, ff, rf)
    check(x, k, ff, gamma)
    check(n, k, ff, factorial)
    check(x, k, ff, binomial)
    check(x, y, ff, factorial)
    check(x, y, ff, binomial)

    assert ff(x, k).rewrite(rf) == rf(x - k + 1, k)
    assert ff(x, k).rewrite(gamma) == Piecewise(
        (gamma(x + 1)/gamma(-k + x + 1), x >= 0),
        ((-1)**k*gamma(k - x)/gamma(-x), True))
    assert ff(5, k).rewrite(gamma) == 120/gamma(6 - k)
    assert ff(n, k).rewrite(factorial) == Piecewise(
        (factorial(n)/factorial(-k + n), n >= 0),
        ((-1)**k*factorial(k - n - 1)/factorial(-n - 1), True))
    assert ff(5, k).rewrite(factorial) == 120/factorial(5 - k)
    assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k)
    assert ff(x, y).rewrite(factorial) == ff(x, y)
    assert ff(x, y).rewrite(binomial) == ff(x, y)

    import random
    from mpmath import ff as mpmath_ff
    for i in range(100):
        x = -500 + 500 * random.random()
        k = -500 + 500 * random.random()
        a = mpmath_ff(x, k)
        b = ff(x, k)
        assert (abs(a - b) < abs(a) * 10**(-15))
コード例 #13
0
def test_ff_eval_apply():
    x, y = symbols('x,y')

    assert ff(nan, y) == nan

    assert ff(x, y) == ff(x, y)

    assert ff(oo, 0) == 1
    assert ff(-oo, 0) == 1

    assert ff(oo, 6) == oo
    assert ff(-oo, 7) == -oo

    assert ff(oo, -6) == oo
    assert ff(-oo, -7) == oo

    assert ff(x, 0) == 1
    assert ff(x, 1) == x
    assert ff(x, 2) == x*(x - 1)
    assert ff(x, 3) == x*(x - 1)*(x - 2)
    assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)

    assert ff(x, -1) == 1/(x + 1)
    assert ff(x, -2) == 1/((x + 1)*(x + 2))
    assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3))

    assert ff(100, 100) == factorial(100)
コード例 #14
0
def test_ff_eval_apply():
    x, y = symbols('x,y')

    assert ff(nan, y) == nan

    assert ff(x, y) == ff(x, y)

    assert ff(oo, 0) == 1
    assert ff(-oo, 0) == 1

    assert ff(oo, 6) == oo
    assert ff(-oo, 7) == -oo

    assert ff(oo, -6) == oo
    assert ff(-oo, -7) == oo

    assert ff(x, 0) == 1
    assert ff(x, 1) == x
    assert ff(x, 2) == x * (x - 1)
    assert ff(x, 3) == x * (x - 1) * (x - 2)
    assert ff(x, 5) == x * (x - 1) * (x - 2) * (x - 3) * (x - 4)

    assert ff(x, -1) == 1 / (x + 1)
    assert ff(x, -2) == 1 / ((x + 1) * (x + 2))
    assert ff(x, -3) == 1 / ((x + 1) * (x + 2) * (x + 3))

    assert ff(100, 100) == factorial(100)

    assert ff(2 * x**2 - 5 * x, 2) == 4 * x**4 - 28 * x**3 + 59 * x**2 - 35 * x
    assert ff(x**2 + 3 * x,
              -2) == 1 / (x**4 + 12 * x**3 + 49 * x**2 + 78 * x + 40)

    n = Symbol('n', integer=True)
    k = Symbol('k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)
    assert ff(x, m).is_integer is None
    assert ff(n, k).is_integer is None
    assert ff(n, m).is_integer is True
    assert ff(n, k + pi).is_integer is False
    assert ff(n, m + pi).is_integer is False
    assert ff(pi, m).is_integer is False
コード例 #15
0
def test_ff_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert ff(nan, y) == nan
    assert ff(x, nan) == nan

    assert ff(x, y) == ff(x, y)

    assert ff(oo, 0) == 1
    assert ff(-oo, 0) == 1

    assert ff(oo, 6) == oo
    assert ff(-oo, 7) == -oo

    assert ff(oo, -6) == oo
    assert ff(-oo, -7) == oo

    assert ff(x, 0) == 1
    assert ff(x, 1) == x
    assert ff(x, 2) == x*(x - 1)
    assert ff(x, 3) == x*(x - 1)*(x - 2)
    assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)

    assert ff(x, -1) == 1/(x + 1)
    assert ff(x, -2) == 1/((x + 1)*(x + 2))
    assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3))

    assert ff(100, 100) == factorial(100)

    assert ff(2*x**2 - 5*x, 2) == 4*x**4 - 28*x**3 + 59*x**2 - 35*x
    assert ff(x**2 + 3*x, -2) == 1/(x**4 + 12*x**3 + 49*x**2 + 78*x + 40)

    assert ff(x, m).is_integer is None
    assert ff(n, k).is_integer is None
    assert ff(n, m).is_integer is True
    assert ff(n, k + pi).is_integer is False
    assert ff(n, m + pi).is_integer is False
    assert ff(pi, m).is_integer is False

    assert isinstance(ff(x, x), ff)
    assert ff(n, n) == factorial(n)

    assert ff(x, k).rewrite(rf) == rf(x - k + 1, k)
    assert ff(x, k).rewrite(gamma) == (-1)**k*gamma(k - x) / gamma(-x)
    assert ff(n, k).rewrite(factorial) == factorial(n) / factorial(n - k)
    assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k)
コード例 #16
0
def Stirling_polynomial(n, z):
    'Stirling_polynomial(n, z) = Stirling[z, z-n]/fall(z, n+1), for [int n>0]'

    assert n > 0
    r = Stirling_circle_tail(n, z) / ff(z, n + 1)
    return gcd_terms(factor(r.simplify()))
コード例 #17
0
ファイル: test_comb_factorials.py プロジェクト: rahvar/sympy
def test_ff_eval_apply():
    x, y = symbols('x,y')

    assert ff(nan, y) == nan

    assert ff(x, y) == ff(x, y)

    assert ff(oo, 0) == 1
    assert ff(-oo, 0) == 1

    assert ff(oo, 6) == oo
    assert ff(-oo, 7) == -oo

    assert ff(oo, -6) == oo
    assert ff(-oo, -7) == oo

    assert ff(x, 0) == 1
    assert ff(x, 1) == x
    assert ff(x, 2) == x*(x - 1)
    assert ff(x, 3) == x*(x - 1)*(x - 2)
    assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)

    assert ff(x, -1) == 1/(x + 1)
    assert ff(x, -2) == 1/((x + 1)*(x + 2))
    assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3))

    assert ff(100, 100) == factorial(100)

    n = Symbol('n', integer=True)
    k = Symbol('k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)
    assert ff(x, m).is_integer is None
    assert ff(n, k).is_integer is None
    assert ff(n, m).is_integer is True
    assert ff(n, k + pi).is_integer is False
    assert ff(n, m + pi).is_integer is False
    assert ff(pi, m).is_integer is False
コード例 #18
0
def test_ff_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert ff(nan, y) is nan
    assert ff(x, nan) is nan

    assert unchanged(ff, x, y)

    assert ff(oo, 0) == 1
    assert ff(-oo, 0) == 1

    assert ff(oo, 6) is oo
    assert ff(-oo, 7) is -oo
    assert ff(-oo, 6) is oo

    assert ff(oo, -6) is oo
    assert ff(-oo, -7) is oo

    assert ff(x, 0) == 1
    assert ff(x, 1) == x
    assert ff(x, 2) == x * (x - 1)
    assert ff(x, 3) == x * (x - 1) * (x - 2)
    assert ff(x, 5) == x * (x - 1) * (x - 2) * (x - 3) * (x - 4)

    assert ff(x, -1) == 1 / (x + 1)
    assert ff(x, -2) == 1 / ((x + 1) * (x + 2))
    assert ff(x, -3) == 1 / ((x + 1) * (x + 2) * (x + 3))

    assert ff(100, 100) == factorial(100)

    assert ff(2 * x**2 - 5 * x,
              2) == (2 * x**2 - 5 * x) * (2 * x**2 - 5 * x - 1)
    assert isinstance(ff(2 * x**2 - 5 * x, 2), Mul)
    assert ff(x**2 + 3 * x,
              -2) == 1 / ((x**2 + 3 * x + 1) * (x**2 + 3 * x + 2))

    assert ff(Poly(2 * x**2 - 5 * x, x),
              2) == Poly(4 * x**4 - 28 * x**3 + 59 * x**2 - 35 * x, x)
    assert isinstance(ff(Poly(2 * x**2 - 5 * x, x), 2), Poly)
    raises(ValueError, lambda: ff(Poly(2 * x**2 - 5 * x, x, y), 2))
    assert ff(Poly(x**2 + 3 * x, x),
              -2) == 1 / (x**4 + 12 * x**3 + 49 * x**2 + 78 * x + 40)
    raises(ValueError, lambda: ff(Poly(x**2 + 3 * x, x, y), -2))

    assert ff(x, m).is_integer is None
    assert ff(n, k).is_integer is None
    assert ff(n, m).is_integer is True
    assert ff(n, k + pi).is_integer is False
    assert ff(n, m + pi).is_integer is False
    assert ff(pi, m).is_integer is False

    assert isinstance(ff(x, x), ff)
    assert ff(n, n) == factorial(n)

    assert ff(x, k).rewrite(rf) == rf(x - k + 1, k)
    assert ff(x, k).rewrite(gamma) == (-1)**k * gamma(k - x) / gamma(-x)
    assert ff(n, k).rewrite(factorial) == factorial(n) / factorial(n - k)
    assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k)
    assert ff(x, y).rewrite(factorial) == ff(x, y)
    assert ff(x, y).rewrite(binomial) == ff(x, y)

    import random
    from mpmath import ff as mpmath_ff
    for i in range(100):
        x = -500 + 500 * random.random()
        k = -500 + 500 * random.random()
        assert (abs(mpmath_ff(x, k) - ff(x, k)) < 10**(-15))
コード例 #19
0
def Stirling_subset_polynomial(n, z):
    'Stirling_polynomial(n, z) = Stirling{z, z-n}/fall(z, n+1), for [int n>0]'

    assert n > 0
    r = Stirling_subset_tail(n, z) / ff(z, n + 1)
    return gcd_terms(factor(r.simplify()))
コード例 #20
0
    t = lambda _k = 0: ans.subs(k, _k).doit()
    print(ans)
    for i in range(5):
        print('S(k={k}, z, n) = {s}'.format(k=i, s=t(i)))
elif 0:
    t = lambda _k = 0: q.subs(k, _k).doit()
    print(q)
    for i in range(5):
        print('S(k={k}, 1-z, n) = {s}'.format(k=i, s=t(i)))
elif 0:
    #T d z = sum z**i C(i,d) {~i}
##    test = k
##    ans = test.subs(k,k-1)
##    print(ans)
##    assert ans == k-1
    T = Sum(ff(i,k) * z**i, (i,0,n))
    K = T - ff(n,k)*z**n + k*z* T.subs(k,k-1)
    #ans = K.doit() fail
    for i in range(1,5):
        a = K.subs(n,i).doit().expand(force=True)
        print(a)
elif 0:
    print(Sum(1,(i,0,n-1)).doit())
    T = Sum((-1)**(n-j) * C(j,k), (j,0,n-1))
    T2 = T.subs(n, 2*n)
    T3 = T.subs(n,2*n+1)
    print(T2)
    print(T3)
    for i in range(0,5):
        D = -2*factorial(i)
        a2 = T2.subs(k,i).doit().simplify() #.expand(force=True)
コード例 #21
0
def test_ff_eval_apply():
    x, y = symbols('x,y')

    assert ff(nan, y) == nan

    assert ff(x, y) == ff(x, y)

    assert ff(oo, 0) == 1
    assert ff(-oo, 0) == 1

    assert ff(oo, 6) == oo
    assert ff(-oo, 7) == -oo

    assert ff(oo, -6) == oo
    assert ff(-oo, -7) == oo

    assert ff(x, 0) == 1
    assert ff(x, 1) == x
    assert ff(x, 2) == x * (x - 1)
    assert ff(x, 3) == x * (x - 1) * (x - 2)
    assert ff(x, 5) == x * (x - 1) * (x - 2) * (x - 3) * (x - 4)

    assert ff(x, -1) == 1 / (x + 1)
    assert ff(x, -2) == 1 / ((x + 1) * (x + 2))
    assert ff(x, -3) == 1 / ((x + 1) * (x + 2) * (x + 3))

    assert ff(100, 100) == factorial(100)
コード例 #22
0
def test_rf_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert rf(nan, y) is nan
    assert rf(x, nan) is nan

    assert unchanged(rf, x, y)

    assert rf(oo, 0) == 1
    assert rf(-oo, 0) == 1

    assert rf(oo, 6) is oo
    assert rf(-oo, 7) is -oo
    assert rf(-oo, 6) is oo

    assert rf(oo, -6) is oo
    assert rf(-oo, -7) is oo

    assert rf(-1, pi) == 0
    assert rf(-5, 1 + I) == 0

    assert unchanged(rf, -3, k)
    assert unchanged(rf, x, Symbol('k', integer=False))
    assert rf(-3, Symbol('k', integer=False)) == 0
    assert rf(Symbol('x', negative=True, integer=True), Symbol('k', integer=False)) == 0

    assert rf(x, 0) == 1
    assert rf(x, 1) == x
    assert rf(x, 2) == x*(x + 1)
    assert rf(x, 3) == x*(x + 1)*(x + 2)
    assert rf(x, 5) == x*(x + 1)*(x + 2)*(x + 3)*(x + 4)

    assert rf(x, -1) == 1/(x - 1)
    assert rf(x, -2) == 1/((x - 1)*(x - 2))
    assert rf(x, -3) == 1/((x - 1)*(x - 2)*(x - 3))

    assert rf(1, 100) == factorial(100)

    assert rf(x**2 + 3*x, 2) == (x**2 + 3*x)*(x**2 + 3*x + 1)
    assert isinstance(rf(x**2 + 3*x, 2), Mul)
    assert rf(x**3 + x, -2) == 1/((x**3 + x - 1)*(x**3 + x - 2))

    assert rf(Poly(x**2 + 3*x, x), 2) == Poly(x**4 + 8*x**3 + 19*x**2 + 12*x, x)
    assert isinstance(rf(Poly(x**2 + 3*x, x), 2), Poly)
    raises(ValueError, lambda: rf(Poly(x**2 + 3*x, x, y), 2))
    assert rf(Poly(x**3 + x, x), -2) == 1/(x**6 - 9*x**5 + 35*x**4 - 75*x**3 + 94*x**2 - 66*x + 20)
    raises(ValueError, lambda: rf(Poly(x**3 + x, x, y), -2))

    assert rf(x, m).is_integer is None
    assert rf(n, k).is_integer is None
    assert rf(n, m).is_integer is True
    assert rf(n, k + pi).is_integer is False
    assert rf(n, m + pi).is_integer is False
    assert rf(pi, m).is_integer is False

    def check(x, k, o, n):
        a, b = Dummy(), Dummy()
        r = lambda x, k: o(a, b).rewrite(n).subs({a:x,b:k})
        for i in range(-5,5):
          for j in range(-5,5):
              assert o(i, j) == r(i, j), (o, n, i, j)
    check(x, k, rf, ff)
    check(x, k, rf, binomial)
    check(n, k, rf, factorial)
    check(x, y, rf, factorial)
    check(x, y, rf, binomial)

    assert rf(x, k).rewrite(ff) == ff(x + k - 1, k)
    assert rf(x, k).rewrite(gamma) == Piecewise(
        (gamma(k + x)/gamma(x), x > 0),
        ((-1)**k*gamma(1 - x)/gamma(-k - x + 1), True))
    assert rf(5, k).rewrite(gamma) == gamma(k + 5)/24
    assert rf(x, k).rewrite(binomial) == factorial(k)*binomial(x + k - 1, k)
    assert rf(n, k).rewrite(factorial) == Piecewise(
        (factorial(k + n - 1)/factorial(n - 1), n > 0),
        ((-1)**k*factorial(-n)/factorial(-k - n), True))
    assert rf(5, k).rewrite(factorial) == factorial(k + 4)/24
    assert rf(x, y).rewrite(factorial) == rf(x, y)
    assert rf(x, y).rewrite(binomial) == rf(x, y)

    import random
    from mpmath import rf as mpmath_rf
    for i in range(100):
        x = -500 + 500 * random.random()
        k = -500 + 500 * random.random()
        assert (abs(mpmath_rf(x, k) - rf(x, k)) < 10**(-15))
コード例 #23
0
def test_ff_eval_apply():
    x, y = symbols('x,y')
    n, k = symbols('n k', integer=True)
    m = Symbol('m', integer=True, nonnegative=True)

    assert ff(nan, y) == nan
    assert ff(x, nan) == nan

    assert ff(x, y) == ff(x, y)

    assert ff(oo, 0) == 1
    assert ff(-oo, 0) == 1

    assert ff(oo, 6) == oo
    assert ff(-oo, 7) == -oo

    assert ff(oo, -6) == oo
    assert ff(-oo, -7) == oo

    assert ff(x, 0) == 1
    assert ff(x, 1) == x
    assert ff(x, 2) == x*(x - 1)
    assert ff(x, 3) == x*(x - 1)*(x - 2)
    assert ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)

    assert ff(x, -1) == 1/(x + 1)
    assert ff(x, -2) == 1/((x + 1)*(x + 2))
    assert ff(x, -3) == 1/((x + 1)*(x + 2)*(x + 3))

    assert ff(100, 100) == factorial(100)

    assert ff(2*x**2 - 5*x, 2) == (2*x**2  - 5*x)*(2*x**2 - 5*x - 1)
    assert isinstance(ff(2*x**2 - 5*x, 2), Mul)
    assert ff(x**2 + 3*x, -2) == 1/((x**2 + 3*x + 1)*(x**2 + 3*x + 2))

    assert ff(Poly(2*x**2 - 5*x, x), 2) == Poly(4*x**4 - 28*x**3 + 59*x**2 - 35*x, x)
    assert isinstance(ff(Poly(2*x**2 - 5*x, x), 2), Poly)
    raises(ValueError, lambda: ff(Poly(2*x**2 - 5*x, x, y), 2))
    assert ff(Poly(x**2 + 3*x, x), -2) == 1/(x**4 + 12*x**3 + 49*x**2 + 78*x + 40)
    raises(ValueError, lambda: ff(Poly(x**2 + 3*x, x, y), -2))


    assert ff(x, m).is_integer is None
    assert ff(n, k).is_integer is None
    assert ff(n, m).is_integer is True
    assert ff(n, k + pi).is_integer is False
    assert ff(n, m + pi).is_integer is False
    assert ff(pi, m).is_integer is False

    assert isinstance(ff(x, x), ff)
    assert ff(n, n) == factorial(n)

    assert ff(x, k).rewrite(rf) == rf(x - k + 1, k)
    assert ff(x, k).rewrite(gamma) == (-1)**k*gamma(k - x) / gamma(-x)
    assert ff(n, k).rewrite(factorial) == factorial(n) / factorial(n - k)
    assert ff(x, k).rewrite(binomial) == factorial(k) * binomial(x, k)
コード例 #24
0
def ffx(degree, step, z):
    return step**degree * ff(z / step, degree)