コード例 #1
0
ファイル: test_bessel.py プロジェクト: KonstantinTogoi/sympy
def test_airyai():
    z = Symbol('z', real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airyai(z), airyai)

    assert airyai(0) == 3**(S(1)/3)/(3*gamma(S(2)/3))
    assert airyai(oo) == 0
    assert airyai(-oo) == 0

    assert diff(airyai(z), z) == airyaiprime(z)

    assert series(airyai(z), z, 0, 3) == (
        3**(S(5)/6)*gamma(S(1)/3)/(6*pi) - 3**(S(1)/6)*z*gamma(S(2)/3)/(2*pi) + O(z**3))

    assert airyai(z).rewrite(hyper) == (
        -3**(S(2)/3)*z*hyper((), (S(4)/3,), z**S(3)/9)/(3*gamma(S(1)/3)) +
         3**(S(1)/3)*hyper((), (S(2)/3,), z**S(3)/9)/(3*gamma(S(2)/3)))

    assert isinstance(airyai(z).rewrite(besselj), airyai)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t)*(besselj(-S(1)/3, 2*(-t)**(S(3)/2)/3) +
                  besselj(S(1)/3, 2*(-t)**(S(3)/2)/3))/3)
    assert airyai(z).rewrite(besseli) == (
        -z*besseli(S(1)/3, 2*z**(S(3)/2)/3)/(3*(z**(S(3)/2))**(S(1)/3)) +
         (z**(S(3)/2))**(S(1)/3)*besseli(-S(1)/3, 2*z**(S(3)/2)/3)/3)
    assert airyai(p).rewrite(besseli) == (
        sqrt(p)*(besseli(-S(1)/3, 2*p**(S(3)/2)/3) -
                 besseli(S(1)/3, 2*p**(S(3)/2)/3))/3)

    assert expand_func(airyai(2*(3*z**5)**(S(1)/3))) == (
        -sqrt(3)*(-1 + (z**5)**(S(1)/3)/z**(S(5)/3))*airybi(2*3**(S(1)/3)*z**(S(5)/3))/6 +
         (1 + (z**5)**(S(1)/3)/z**(S(5)/3))*airyai(2*3**(S(1)/3)*z**(S(5)/3))/2)
コード例 #2
0
def test_K():
    assert K(0) == pi / 2
    assert K(S(1) / 2) == 8 * pi ** (S(3) / 2) / gamma(-S(1) / 4) ** 2
    assert K(1) == zoo
    assert K(-1) == gamma(S(1) / 4) ** 2 / (4 * sqrt(2 * pi))
    assert K(oo) == 0
    assert K(-oo) == 0
    assert K(I * oo) == 0
    assert K(-I * oo) == 0
    assert K(zoo) == 0

    assert K(z).diff(z) == (E(z) - (1 - z) * K(z)) / (2 * z * (1 - z))
    assert td(K(z), z)

    zi = Symbol("z", real=False)
    assert K(zi).conjugate() == K(zi.conjugate())
    zr = Symbol("z", real=True, negative=True)
    assert K(zr).conjugate() == K(zr)

    assert K(z).rewrite(hyper) == (pi / 2) * hyper((S.Half, S.Half), (S.One,), z)
    assert tn(K(z), (pi / 2) * hyper((S.Half, S.Half), (S.One,), z))
    assert K(z).rewrite(meijerg) == meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z) / 2
    assert tn(K(z), meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z) / 2)

    assert K(z).series(
        z
    ) == pi / 2 + pi * z / 8 + 9 * pi * z ** 2 / 128 + 25 * pi * z ** 3 / 512 + 1225 * pi * z ** 4 / 32768 + 3969 * pi * z ** 5 / 131072 + O(
        z ** 6
    )
コード例 #3
0
ファイル: test_holonomic.py プロジェクト: gorisaka/sympy
def test_to_expr():
    x = symbols('x')
    R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
    p = HolonomicFunction(Dx - 1, x, 0, [1]).to_expr()
    q = exp(x)
    assert p == q
    p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr()
    q = cos(x)
    assert p == q
    p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr()
    q = cosh(x)
    assert p == q
    p = HolonomicFunction(2 + (4*x - 1)*Dx + \
        (x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand()
    q = 1/(x**2 - 2*x + 1)
    assert p == q
    p = expr_to_holonomic(sin(x)**2/x).integrate((x, 0, x)).to_expr()
    q = (sin(x)**2/x).integrate((x, 0, x))
    assert p == q
    C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
    p = expr_to_holonomic(log(1+x**2)).to_expr()
    q = C_2*log(x**2 + 1)
    assert p == q
    p = expr_to_holonomic(log(1+x**2)).diff().to_expr()
    q = C_0*x/(x**2 + 1)
    assert p == q
    p = expr_to_holonomic(erf(x) + x).to_expr()
    q = 3*C_3*x - 3*sqrt(pi)*C_3*erf(x)/2 + x + 2*x/sqrt(pi)
    assert p == q
    p = expr_to_holonomic(sqrt(x), x0=1).to_expr()
    assert p == sqrt(x)
    assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x)
    p = expr_to_holonomic(sqrt(1 + x**2)).to_expr()
    assert p == sqrt(1+x**2)
    p = expr_to_holonomic((2*x**2 + 1)**(S(2)/3)).to_expr()
    assert p == (2*x**2 + 1)**(S(2)/3)
    p = expr_to_holonomic(sqrt(-x**2+2*x)).to_expr()
    assert p == sqrt(x)*sqrt(-x + 2)
    p = expr_to_holonomic((-2*x**3+7*x)**(S(2)/3)).to_expr()
    q = x**(S(2)/3)*(-2*x**2 + 7)**(S(2)/3)
    assert p == q
    p = from_hyper(hyper((-2, -3), (S(1)/2, ), x))
    s = hyperexpand(hyper((-2, -3), (S(1)/2, ), x))
    D_0 = Symbol('D_0')
    C_0 = Symbol('C_0')
    assert (p.to_expr().subs({C_0:1, D_0:0}) - s).simplify() == 0
    p.y0 = {0: [1], S(1)/2: [0]}
    assert p.to_expr() == s
    assert expr_to_holonomic(x**5).to_expr() == x**5
    assert expr_to_holonomic(2*x**3-3*x**2).to_expr().expand() == \
        2*x**3-3*x**2
    a = symbols("a")
    p = (expr_to_holonomic(1.4*x)*expr_to_holonomic(a*x, x)).to_expr()
    q = 1.4*a*x**2
    assert p == q
    p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(a*x, x)).to_expr()
    q = x*(a + 1.4)
    assert p == q
    p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(x)).to_expr()
    assert p == 2.4*x
コード例 #4
0
ファイル: test_bessel.py プロジェクト: KonstantinTogoi/sympy
def test_airybiprime():
    z = Symbol('z', real=False)
    t = Symbol('t', negative=True)
    p = Symbol('p', positive=True)

    assert isinstance(airybiprime(z), airybiprime)

    assert airybiprime(0) == 3**(S(1)/6)/gamma(S(1)/3)
    assert airybiprime(oo) == oo
    assert airybiprime(-oo) == 0

    assert diff(airybiprime(z), z) == z*airybi(z)

    assert series(airybiprime(z), z, 0, 3) == (
        3**(S(1)/6)/gamma(S(1)/3) + 3**(S(5)/6)*z**2/(6*gamma(S(2)/3)) + O(z**3))

    assert airybiprime(z).rewrite(hyper) == (
        3**(S(5)/6)*z**2*hyper((), (S(5)/3,), z**S(3)/9)/(6*gamma(S(2)/3)) +
        3**(S(1)/6)*hyper((), (S(1)/3,), z**S(3)/9)/gamma(S(1)/3))

    assert isinstance(airybiprime(z).rewrite(besselj), airybiprime)
    assert airyai(t).rewrite(besselj) == (
        sqrt(-t)*(besselj(-S(1)/3, 2*(-t)**(S(3)/2)/3) +
                  besselj(S(1)/3, 2*(-t)**(S(3)/2)/3))/3)
    assert airybiprime(z).rewrite(besseli) == (
        sqrt(3)*(z**2*besseli(S(2)/3, 2*z**(S(3)/2)/3)/(z**(S(3)/2))**(S(2)/3) +
                 (z**(S(3)/2))**(S(2)/3)*besseli(-S(2)/3, 2*z**(S(3)/2)/3))/3)
    assert airybiprime(p).rewrite(besseli) == (
        sqrt(3)*p*(besseli(-S(2)/3, 2*p**(S(3)/2)/3) + besseli(S(2)/3, 2*p**(S(3)/2)/3))/3)

    assert expand_func(airybiprime(2*(3*z**5)**(S(1)/3))) == (
        sqrt(3)*(z**(S(5)/3)/(z**5)**(S(1)/3) - 1)*airyaiprime(2*3**(S(1)/3)*z**(S(5)/3))/2 +
        (z**(S(5)/3)/(z**5)**(S(1)/3) + 1)*airybiprime(2*3**(S(1)/3)*z**(S(5)/3))/2)
コード例 #5
0
def test_K():
    assert K(0) == pi/2
    assert K(S(1)/2) == 8*pi**(S(3)/2)/gamma(-S(1)/4)**2
    assert K(1) == zoo
    assert K(-1) == gamma(S(1)/4)**2/(4*sqrt(2*pi))
    assert K(oo) == 0
    assert K(-oo) == 0
    assert K(I*oo) == 0
    assert K(-I*oo) == 0
    assert K(zoo) == 0

    assert K(z).diff(z) == (E(z) - (1 - z)*K(z))/(2*z*(1 - z))
    assert td(K(z), z)

    zi = Symbol('z', real=False)
    assert K(zi).conjugate() == K(zi.conjugate())
    zr = Symbol('z', real=True, negative=True)
    assert K(zr).conjugate() == K(zr)

    assert K(z).rewrite(hyper) == \
        (pi/2)*hyper((S.Half, S.Half), (S.One,), z)
    assert tn(K(z), (pi/2)*hyper((S.Half, S.Half), (S.One,), z))
    assert K(z).rewrite(meijerg) == \
        meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z)/2
    assert tn(K(z), meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z)/2)
コード例 #6
0
def test_E():
    assert E(z, 0) == z
    assert E(0, m) == 0
    assert E(i*pi/2, m) == i*E(m)
    assert E(z, oo) == zoo
    assert E(z, -oo) == zoo
    assert E(0) == pi/2
    assert E(1) == 1
    assert E(oo) == I*oo
    assert E(-oo) == oo
    assert E(zoo) == zoo

    assert E(-z, m) == -E(z, m)

    assert E(z, m).diff(z) == sqrt(1 - m*sin(z)**2)
    assert E(z, m).diff(m) == (E(z, m) - F(z, m))/(2*m)
    assert E(z).diff(z) == (E(z) - K(z))/(2*z)
    r = randcplx()
    assert td(E(r, m), m)
    assert td(E(z, r), z)
    assert td(E(z), z)

    mi = Symbol('m', real=False)
    assert E(z, mi).conjugate() == E(z.conjugate(), mi.conjugate())
    mr = Symbol('m', real=True, negative=True)
    assert E(z, mr).conjugate() == E(z.conjugate(), mr)

    assert E(z).rewrite(hyper) == (pi/2)*hyper((-S.Half, S.Half), (S.One,), z)
    assert tn(E(z), (pi/2)*hyper((-S.Half, S.Half), (S.One,), z))
    assert E(z).rewrite(meijerg) == \
        -meijerg(((S.Half, S(3)/2), []), ((S.Zero,), (S.Zero,)), -z)/4
    assert tn(E(z), -meijerg(((S.Half, S(3)/2), []), ((S.Zero,), (S.Zero,)), -z)/4)
コード例 #7
0
ファイル: test_holonomic.py プロジェクト: ashutoshsaboo/sympy
def test_to_hyper():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = HolonomicFunction(Dx - 2, x, 0, [3]).to_hyper()
    q = 3 * hyper([], [], 2*x)
    assert p == q
    p = hyperexpand(HolonomicFunction((1 + x) * Dx - 3, x, 0, [2]).to_hyper()).expand()
    q = 2*x**3 + 6*x**2 + 6*x + 2
    assert p == q
    p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_hyper()
    q = -x**2*hyper((2, 2, 1), (2, 3), -x)/2 + x
    assert p == q
    p = HolonomicFunction(2*x*Dx + Dx**2, x, 0, [0, 2/sqrt(pi)]).to_hyper()
    q = 2*x*hyper((1/2,), (3/2,), -x**2)/sqrt(pi)
    assert p == q
    p = hyperexpand(HolonomicFunction(2*x*Dx + Dx**2, x, 0, [1, -2/sqrt(pi)]).to_hyper())
    q = erfc(x)
    assert p.rewrite(erfc) == q
    p =  hyperexpand(HolonomicFunction((x**2 - 1) + x*Dx + x**2*Dx**2,
        x, 0, [0, S(1)/2]).to_hyper())
    q = besselj(1, x)
    assert p == q
    p = hyperexpand(HolonomicFunction(x*Dx**2 + Dx + x, x, 0, [1, 0]).to_hyper())
    q = besselj(0, x)
    assert p == q
コード例 #8
0
ファイル: test_hyperexpand.py プロジェクト: vprusso/sympy
def test_plan():
    assert devise_plan(Hyper_Function([0], ()),
            Hyper_Function([0], ()), z) == []
    with raises(ValueError):
        devise_plan(Hyper_Function([1], ()), Hyper_Function((), ()), z)
    with raises(ValueError):
        devise_plan(Hyper_Function([2], [1]), Hyper_Function([2], [2]), z)
    with raises(ValueError):
        devise_plan(Hyper_Function([2], []), Hyper_Function([S("1/2")], []), z)

    # We cannot use pi/(10000 + n) because polys is insanely slow.
    a1, a2, b1 = map(lambda n: randcplx(n), range(3))
    b1 += 2*I
    h = hyper([a1, a2], [b1], z)

    h2 = hyper((a1 + 1, a2), [b1], z)
    assert tn(apply_operators(h,
        devise_plan(Hyper_Function((a1 + 1, a2), [b1]),
            Hyper_Function((a1, a2), [b1]), z), op),
        h2, z)

    h2 = hyper((a1 + 1, a2 - 1), [b1], z)
    assert tn(apply_operators(h,
        devise_plan(Hyper_Function((a1 + 1, a2 - 1), [b1]),
            Hyper_Function((a1, a2), [b1]), z), op),
        h2, z)
コード例 #9
0
def test_polynomial():
    from sympy import oo
    assert hyperexpand(hyper([], [-1], z)) == oo
    assert hyperexpand(hyper([-2], [-1], z)) == oo
    assert hyperexpand(hyper([0, 0], [-1], z)) == 1
    assert can_do([-5, -2, randcplx(), randcplx()], [-10, randcplx()])
    assert hyperexpand(hyper((-1, 1), (-2,), z)) == 1 + z/2
コード例 #10
0
ファイル: test_hyper.py プロジェクト: B-Rich/sympy
def test_hyper_unpolarify():
    from sympy import exp_polar
    a = exp_polar(2*pi*I)*x
    b = x
    assert hyper([], [], a).argument == b
    assert hyper([0], [], a).argument == a
    assert hyper([0], [0], a).argument == b
    assert hyper([0, 1], [0], a).argument == a
コード例 #11
0
ファイル: test_hyperexpand.py プロジェクト: mattpap/sympy
def test_hyperexpand_parametric():
    assert (
        hyperexpand(hyper([a, S(1) / 2 + a], [S(1) / 2], z))
        == (1 + sqrt(z)) ** (-2 * a) / 2 + (1 - sqrt(z)) ** (-2 * a) / 2
    )
    assert hyperexpand(hyper([a, -S(1) / 2 + a], [2 * a], z)) == 2 ** (2 * a - 1) * ((-z + 1) ** (S(1) / 2) + 1) ** (
        -2 * a + 1
    )
コード例 #12
0
ファイル: test_hyper.py プロジェクト: KonstantinTogoi/sympy
def test_limits():
    k, x = symbols('k, x')
    assert hyper((1,), (S(4)/3, S(5)/3), k**2).series(k) == \
           hyper((1,), (S(4)/3, S(5)/3), 0) + \
           9*k**2*hyper((2,), (S(7)/3, S(8)/3), 0)/20 + \
           81*k**4*hyper((3,), (S(10)/3, S(11)/3), 0)/1120 + \
           O(k**6) # issue 6350
    assert limit(meijerg((), (), (1,), (0,), -x), x, 0) == \
            meijerg(((), ()), ((1,), (0,)), 0) # issue 6052
コード例 #13
0
ファイル: test_hyper.py プロジェクト: KonstantinTogoi/sympy
def test_hyper_rewrite_sum():
    from sympy import RisingFactorial, factorial, Dummy, Sum
    _k = Dummy("k")
    assert replace_dummy(hyper((1, 2), (1, 3), x).rewrite(Sum), _k) == \
        Sum(x**_k / factorial(_k) * RisingFactorial(2, _k) /
            RisingFactorial(3, _k), (_k, 0, oo))

    assert hyper((1, 2, 3), (-1, 3), z).rewrite(Sum) == \
        hyper((1, 2, 3), (-1, 3), z)
コード例 #14
0
ファイル: test_hyperexpand.py プロジェクト: mattpap/sympy
def test_hyperexpand():
    # Luke, Y. L. (1969), The Special Functions and Their Approximations,
    # Volume 1, section 6.2

    assert hyperexpand(hyper([], [], z)) == exp(z)
    assert hyperexpand(hyper([1, 1], [2], -z) * z) == log(1 + z)
    assert hyperexpand(hyper([], [S.Half], -z ** 2 / 4)) == cos(z)
    assert hyperexpand(z * hyper([], [S("3/2")], -z ** 2 / 4)) == sin(z)
    assert hyperexpand(hyper([S("1/2"), S("1/2")], [S("3/2")], z ** 2) * z) == asin(z)
コード例 #15
0
ファイル: test_hyperexpand.py プロジェクト: ALGHeArT/sympy
def test_hyperexpand_special():
    assert hyperexpand(hyper([a, b], [c], 1)) == \
           gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b)
    assert hyperexpand(hyper([a, b], [1 + a - b], -1)) == \
           gamma(1 + a/2)*gamma(1 + a - b)/gamma(1 + a)/gamma(1 + a/2 - b)
    assert hyperexpand(hyper([a, b], [1 + b - a], -1)) == \
           gamma(1 + b/2)*gamma(1 + b - a)/gamma(1 + b)/gamma(1 + b/2 - a)
    assert hyperexpand(meijerg([1 - z - a/2], [1 - z + a/2], [b/2], [-b/2], 1)) == \
           gamma(1 - 2*z)*gamma(z + a/2 + b/2)/gamma(1 - z + a/2 - b/2) \
           /gamma(1 - z - a/2 + b/2)/gamma(1 - z + a/2 + b/2)
コード例 #16
0
def test_hyperexpand():
    # Luke, Y. L. (1969), The Special Functions and Their Approximations,
    # Volume 1, section 6.2

    assert hyperexpand(hyper([], [], z)) == exp(z)
    assert hyperexpand(hyper([1, 1], [2], -z)*z) == log(1 + z)
    assert hyperexpand(hyper([], [S.Half], -z**2/4)) == cos(z)
    assert hyperexpand(z*hyper([], [S('3/2')], -z**2/4)) == sin(z)
    assert hyperexpand(hyper([S('1/2'), S('1/2')], [S('3/2')], z**2)*z) \
        == asin(z)
    assert isinstance(Sum(binomial(2, z)*z**2, (z, 0, a)).doit(), Expr)
コード例 #17
0
def can_do(ap, bq, numerical=True):
    r = hyperexpand(hyper(ap, bq, z))
    if r.has(hyper):
        return False

    if not numerical:
        return True

    repl = {}
    for n, a in enumerate(r.free_symbols - set([z])):
        repl[a] = randcplx(n)
    return tn(hyper(ap, bq, z).subs(repl), r.subs(repl), z)
コード例 #18
0
def test_plan_derivatives():
    a1, a2, a3 = 1, 2, S("1/2")
    b1, b2 = 3, S("5/2")
    h = hyper((a1, a2, a3), (b1, b2), z)
    h2 = hyper((a1 + 1, a2 + 1, a3 + 2), (b1 + 1, b2 + 1), z)
    ops = devise_plan(IndexPair((a1 + 1, a2 + 1, a3 + 2), (b1 + 1, b2 + 1)), IndexPair((a1, a2, a3), (b1, b2)), z)
    f = Formula((a1, a2, a3), (b1, b2), z, h, [])
    deriv = make_derivative_operator(f.M, z)
    assert tn((apply_operators(f.C, ops, deriv) * f.B)[0], h2, z)

    h2 = hyper((a1, a2 - 1, a3 - 2), (b1 - 1, b2 - 1), z)
    ops = devise_plan(IndexPair((a1, a2 - 1, a3 - 2), (b1 - 1, b2 - 1)), IndexPair((a1, a2, a3), (b1, b2)), z)
    assert tn((apply_operators(f.C, ops, deriv) * f.B)[0], h2, z)
コード例 #19
0
ファイル: test_holonomic.py プロジェクト: ashutoshsaboo/sympy
def test_from_hyper():
    x = symbols('x')
    R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
    p = hyper([1, 1], [S(3)/2], x**2/4)
    q = HolonomicFunction((4*x) + (5*x**2 - 8)*Dx + (x**3 - 4*x)*Dx**2, x, 1, [2*sqrt(3)*pi/9, -4*sqrt(3)*pi/27 + 4/3])
    r = from_hyper(p)
    assert r == q
    p = from_hyper(hyper([1], [S(3)/2], x**2/4))
    q = HolonomicFunction(-x + (-x**2/2 + 2)*Dx + x*Dx**2, x)
    x0 = 1
    y0 = '[sqrt(pi)*exp(1/4)*erf(1/2), -sqrt(pi)*exp(1/4)*erf(1/2)/2 + 1]'
    assert sstr(p.y0) == y0
    assert q.annihilator == p.annihilator
コード例 #20
0
ファイル: test_hyperexpand.py プロジェクト: kendhia/sympy
def test_hyperexpand_bases():
    assert (
        hyperexpand(hyper([2], [a], z))
        == a + z ** (-a + 1) * (-a ** 2 + 3 * a + z * (a - 1) - 2) * exp(z) * lowergamma(a - 1, z) - 1
    )
    # TODO [a+1, a-S.Half], [2*a]
    assert hyperexpand(hyper([1, 2], [3], z)) == -2 / z - 2 * log(exp_polar(-I * pi) * z + 1) / z ** 2
    assert hyperexpand(hyper([S.Half, 2], [S(3) / 2], z)) == -1 / (2 * z - 2) + log((sqrt(z) + 1) / (-sqrt(z) + 1)) / (
        4 * sqrt(z)
    )
    assert hyperexpand(hyper([S(1) / 2, S(1) / 2], [S(5) / 2], z)) == (-3 * z + 3) / 4 / (z * sqrt(-z + 1)) + (
        6 * z - 3
    ) * asin(sqrt(z)) / (4 * z ** (S(3) / 2))
    assert hyperexpand(hyper([1, 2], [S(3) / 2], z)) == -1 / (2 * z - 2) - asin(sqrt(z)) / (
        sqrt(z) * (2 * z - 2) * sqrt(-z + 1)
    )
    assert hyperexpand(hyper([-S.Half - 1, 1, 2], [S.Half, 3], z)) == sqrt(z) * (6 * z / 7 - S(6) / 5) * atanh(
        sqrt(z)
    ) + (-30 * z ** 2 + 32 * z - 6) / 35 / z - 6 * log(-z + 1) / (35 * z ** 2)
    assert hyperexpand(hyper([1 + S.Half, 1, 1], [2, 2], z)) == -4 * log(sqrt(-z + 1) / 2 + S(1) / 2) / z
    # TODO hyperexpand(hyper([a], [2*a + 1], z))
    # TODO [S.Half, a], [S(3)/2, a+1]
    assert hyperexpand(hyper([2], [b, 1], z)) == z ** (-b / 2 + S(1) / 2) * besseli(b - 1, 2 * sqrt(z)) * gamma(
        b
    ) + z ** (-b / 2 + 1) * besseli(b, 2 * sqrt(z)) * gamma(b)
コード例 #21
0
ファイル: test_hyper.py プロジェクト: AlexandruFlorescu/sympy
def test_hyper():
    raises(TypeError, 'hyper(1, 2, z)')

    assert hyper((1, 2),(1,), z) == hyper(Tuple(1, 2), Tuple(1), z)

    h = hyper((1, 2), (3, 4, 5), z)
    assert h.ap == Tuple(1, 2)
    assert h.bq == Tuple(3, 4, 5)
    assert h.argument == z
    assert h.is_commutative is True

    # just a few checks to make sure that all arguments go where they should
    assert tn(hyper(Tuple(), Tuple(), z), exp(z), z)
    assert tn(z*hyper((1, 1), Tuple(2), -z), log(1 + z), z)

    # differentiation
    h = hyper((randcplx(), randcplx(), randcplx()), (randcplx(), randcplx()), z)
    assert td(h, z)

    a1, a2, b1, b2, b3 = symbols('a1:3, b1:4')
    assert hyper((a1, a2), (b1, b2, b3), z).diff(z) == \
             a1*a2/(b1*b2*b3) * hyper((a1+1, a2+1), (b1+1, b2+1, b3+1), z)

    # differentiation wrt parameters is not supported
    raises(NotImplementedError, 'hyper((z,), (), z).diff(z)')
コード例 #22
0
ファイル: test_latex.py プロジェクト: 101man/sympy
def test_hyper_printing():
    from sympy import pi, Tuple
    from sympy.abc import x, z

    assert latex(meijerg(Tuple(pi, pi, x), Tuple(1), \
                         (0,1), Tuple(1, 2, 3/pi),z)) == \
             r'{G_{4, 5}^{2, 3}\left.\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, \frac{3}{\pi} \end{matrix} \right| {z} \right)}'
    assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(),z)) == \
             r'{G_{1, 1}^{1, 0}\left.\left(\begin{matrix}  & 1 \\0 &  \end{matrix} \right| {z} \right)}'
    assert latex(hyper((x, 2), (3,), z)) == \
               r'{{}_{2}F_{1}\left.\left(\begin{matrix} x, 2 ' \
               r'\\ 3 \end{matrix}\right| {z} \right)}'
    assert latex(hyper(Tuple(), Tuple(1), z)) == \
               r'{{}_{0}F_{1}\left.\left(\begin{matrix}  ' \
               r'\\ 1 \end{matrix}\right| {z} \right)}'
コード例 #23
0
ファイル: test_hyperexpand.py プロジェクト: mattpap/sympy
def can_do(ap, bq, numerical=True, div=1, lowerplane=False):
    from sympy import exp_polar, exp

    r = hyperexpand(hyper(ap, bq, z))
    if r.has(hyper):
        return False
    if not numerical:
        return True
    repl = {}
    for n, a in enumerate(r.free_symbols - set([z])):
        repl[a] = randcplx(n) / div
    [a, b, c, d] = [2, -1, 3, 1]
    if lowerplane:
        [a, b, c, d] = [2, -2, 3, -1]
    return tn(hyper(ap, bq, z).subs(repl), r.replace(exp_polar, exp).subs(repl), z, a=a, b=b, c=c, d=d)
コード例 #24
0
ファイル: test_hyperexpand.py プロジェクト: mattpap/sympy
def test_shifted_sum():
    from sympy import simplify

    assert (
        simplify(hyperexpand(z ** 4 * hyper([2], [3, S("3/2")], -z ** 2)))
        == z * sin(2 * z) + (-z ** 2 + S.Half) * cos(2 * z) - S.Half
    )
コード例 #25
0
ファイル: test_hyperexpand.py プロジェクト: vprusso/sympy
def test_branch_bug():
    assert hyperexpand(hyper((-S(1)/3, S(1)/2), (S(2)/3, S(3)/2), -z)) == \
        -z**S('1/3')*lowergamma(exp_polar(I*pi)/3, z)/5 \
        + sqrt(pi)*erf(sqrt(z))/(5*sqrt(z))
    assert hyperexpand(meijerg([S(7)/6, 1], [], [S(2)/3], [S(1)/6, 0], z)) == \
        2*z**S('2/3')*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma(
                       S(2)/3, z)/z**S('2/3'))*gamma(S(2)/3)/gamma(S(5)/3)
コード例 #26
0
def test_studentt():
    nu = Symbol("nu", positive=True)

    X = StudentT('x', nu)
    assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S(1)/2)/(sqrt(nu)*beta(S(1)/2, nu/2))
    assert cdf(X)(x) == S(1)/2 + x*gamma(nu/2 + S(1)/2)*hyper((S(1)/2, nu/2 + S(1)/2),
                                (S(3)/2,), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2))
コード例 #27
0
ファイル: test_hyperexpand.py プロジェクト: BDGLunde/sympy
def test_formulae():
    from sympy.simplify.hyperexpand import FormulaCollection
    formulae = FormulaCollection().formulae
    for formula in formulae:
        h = hyper(formula.indices.ap, formula.indices.bq, formula.z)
        rep = {}
        for n, sym in enumerate(formula.symbols):
            rep[sym] = randcplx(n)

        # NOTE hyperexpand returns truly branched functions. We know we are
        #      on the main sheet, but numerical evaluation can still go wrong
        #      (e.g. if exp_polar cannot be evalf'd).
        #      Just replace all exp_polar by exp, this usually works.

        # first test if the closed-form is actually correct
        h = h.subs(rep)
        closed_form = formula.closed_form.subs(rep).rewrite('nonrepsmall')
        z = formula.z
        assert tn(h, closed_form.replace(exp_polar, exp), z)

        # now test the computed matrix
        cl = (formula.C * formula.B)[0].subs(rep).rewrite('nonrepsmall')
        assert tn(closed_form.replace(exp_polar, exp), cl.replace(exp_polar, exp), z)
        deriv1 = z*formula.B.applyfunc(lambda t: t.rewrite('nonrepsmall')).diff(z)
        deriv2 = formula.M * formula.B
        for d1, d2 in zip(deriv1, deriv2):
            assert tn(d1.subs(rep).replace(exp_polar, exp),
                      d2.subs(rep).rewrite('nonrepsmall').replace(exp_polar, exp), z)
コード例 #28
0
ファイル: test_meijerint.py プロジェクト: chaffra/sympy
def test_issue_10681():
    from sympy import RR
    from sympy.abc import R, r
    f = integrate(r**2*(R**2-r**2)**0.5, r, meijerg=True)
    g = (1.0/3)*R**1.0*r**3*hyper((-0.5, S(3)/2), (S(5)/2,),
                                  r**2*exp_polar(2*I*pi)/R**2)
    assert RR.almosteq((f/g).n(), 1.0, 1e-12)
コード例 #29
0
def test_jacobi():
    n = Symbol("n")
    a = Symbol("a")
    b = Symbol("b")

    assert jacobi(0, a, b, x) == 1
    assert jacobi(1, a, b, x) == a/2 - b/2 + x*(a/2 + b/2 + 1)

    assert jacobi(n, a, a, x) == RisingFactorial(a + 1, n)*gegenbauer(n, a + S(1)/2, x)/RisingFactorial(2*a + 1, n)
    assert jacobi(n, a, -a, x) == ((-1)**a*(-x + 1)**(-a/2)*(x + 1)**(a/2)*assoc_legendre(n, a, x)*
                                   factorial(-a + n)*gamma(a + n + 1)/(factorial(a + n)*gamma(n + 1)))
    assert jacobi(n, -b, b, x) == ((-x + 1)**(b/2)*(x + 1)**(-b/2)*assoc_legendre(n, b, x)*
                                   gamma(-b + n + 1)/gamma(n + 1))
    assert jacobi(n, 0, 0, x) == legendre(n, x)
    assert jacobi(n, S.Half, S.Half, x) == RisingFactorial(S(3)/2, n)*chebyshevu(n, x)/factorial(n + 1)
    assert jacobi(n, -S.Half, -S.Half, x) == RisingFactorial(S(1)/2, n)*chebyshevt(n, x)/factorial(n)

    X = jacobi(n, a, b, x)
    assert isinstance(X, jacobi)

    assert jacobi(n, a, b, -x) == (-1)**n*jacobi(n, b, a, x)
    assert jacobi(n, a, b, 0) == 2**(-n)*gamma(a + n + 1)*hyper((-b - n, -n), (a + 1,), -1)/(factorial(n)*gamma(a + 1))
    assert jacobi(n, a, b, 1) == RisingFactorial(a + 1, n)/factorial(n)

    m = Symbol("m", positive=True)
    assert jacobi(m, a, b, oo) == oo*RisingFactorial(a + b + m + 1, m)

    assert conjugate(jacobi(m, a, b, x)) == jacobi(m, conjugate(a), conjugate(b), conjugate(x))

    assert diff(jacobi(n,a,b,x), n) == Derivative(jacobi(n, a, b, x), n)
    assert diff(jacobi(n,a,b,x), x) == (a/2 + b/2 + n/2 + S(1)/2)*jacobi(n - 1, a + 1, b + 1, x)
コード例 #30
0
ファイル: test_hyperexpand.py プロジェクト: chaffra/sympy
def test_meijerg_with_Floats():
    # see issue #10681
    from sympy import RR
    f = meijerg(((3.0, 1), ()), ((S(3)/2,), (0,)), z)
    a = -2.3632718012073
    g = a*z**(S(3)/2)*hyper((-0.5, S(3)/2), (S(5)/2,), z*exp_polar(I*pi))
    assert RR.almosteq((hyperexpand(f)/g).n(), 1.0, 1e-12)
コード例 #31
0
def test_hyperrep():
    from sympy.functions.special.hyper import (HyperRep, HyperRep_atanh,
        HyperRep_power1, HyperRep_power2, HyperRep_log1, HyperRep_asin1,
        HyperRep_asin2, HyperRep_sqrts1, HyperRep_sqrts2, HyperRep_log2,
        HyperRep_cosasin, HyperRep_sinasin)
    # First test the base class works.
    from sympy import Piecewise, exp_polar
    a, b, c, d, z = symbols('a b c d z')

    class myrep(HyperRep):
        @classmethod
        def _expr_small(cls, x):
            return a

        @classmethod
        def _expr_small_minus(cls, x):
            return b

        @classmethod
        def _expr_big(cls, x, n):
            return c*n

        @classmethod
        def _expr_big_minus(cls, x, n):
            return d*n
    assert myrep(z).rewrite('nonrep') == Piecewise((0, abs(z) > 1), (a, True))
    assert myrep(exp_polar(I*pi)*z).rewrite('nonrep') == \
        Piecewise((0, abs(z) > 1), (b, True))
    assert myrep(exp_polar(2*I*pi)*z).rewrite('nonrep') == \
        Piecewise((c, abs(z) > 1), (a, True))
    assert myrep(exp_polar(3*I*pi)*z).rewrite('nonrep') == \
        Piecewise((d, abs(z) > 1), (b, True))
    assert myrep(exp_polar(4*I*pi)*z).rewrite('nonrep') == \
        Piecewise((2*c, abs(z) > 1), (a, True))
    assert myrep(exp_polar(5*I*pi)*z).rewrite('nonrep') == \
        Piecewise((2*d, abs(z) > 1), (b, True))
    assert myrep(z).rewrite('nonrepsmall') == a
    assert myrep(exp_polar(I*pi)*z).rewrite('nonrepsmall') == b

    def t(func, hyp, z):
        """ Test that func is a valid representation of hyp. """
        # First test that func agrees with hyp for small z
        if not tn(func.rewrite('nonrepsmall'), hyp, z,
                  a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half):
            return False
        # Next check that the two small representations agree.
        if not tn(
            func.rewrite('nonrepsmall').subs(
                z, exp_polar(I*pi)*z).replace(exp_polar, exp),
            func.subs(z, exp_polar(I*pi)*z).rewrite('nonrepsmall'),
                z, a=Rational(-1, 2), b=Rational(-1, 2), c=S.Half, d=S.Half):
            return False
        # Next check continuity along exp_polar(I*pi)*t
        expr = func.subs(z, exp_polar(I*pi)*z).rewrite('nonrep')
        if abs(expr.subs(z, 1 + 1e-15).n() - expr.subs(z, 1 - 1e-15).n()) > 1e-10:
            return False
        # Finally check continuity of the big reps.

        def dosubs(func, a, b):
            rv = func.subs(z, exp_polar(a)*z).rewrite('nonrep')
            return rv.subs(z, exp_polar(b)*z).replace(exp_polar, exp)
        for n in [0, 1, 2, 3, 4, -1, -2, -3, -4]:
            expr1 = dosubs(func, 2*I*pi*n, I*pi/2)
            expr2 = dosubs(func, 2*I*pi*n + I*pi, -I*pi/2)
            if not tn(expr1, expr2, z):
                return False
            expr1 = dosubs(func, 2*I*pi*(n + 1), -I*pi/2)
            expr2 = dosubs(func, 2*I*pi*n + I*pi, I*pi/2)
            if not tn(expr1, expr2, z):
                return False
        return True

    # Now test the various representatives.
    a = Rational(1, 3)
    assert t(HyperRep_atanh(z), hyper([S.Half, 1], [Rational(3, 2)], z), z)
    assert t(HyperRep_power1(a, z), hyper([-a], [], z), z)
    assert t(HyperRep_power2(a, z), hyper([a, a - S.Half], [2*a], z), z)
    assert t(HyperRep_log1(z), -z*hyper([1, 1], [2], z), z)
    assert t(HyperRep_asin1(z), hyper([S.Half, S.Half], [Rational(3, 2)], z), z)
    assert t(HyperRep_asin2(z), hyper([1, 1], [Rational(3, 2)], z), z)
    assert t(HyperRep_sqrts1(a, z), hyper([-a, S.Half - a], [S.Half], z), z)
    assert t(HyperRep_sqrts2(a, z),
             -2*z/(2*a + 1)*hyper([-a - S.Half, -a], [S.Half], z).diff(z), z)
    assert t(HyperRep_log2(z), -z/4*hyper([Rational(3, 2), 1, 1], [2, 2], z), z)
    assert t(HyperRep_cosasin(a, z), hyper([-a, a], [S.Half], z), z)
    assert t(HyperRep_sinasin(a, z), 2*a*z*hyper([1 - a, 1 + a], [Rational(3, 2)], z), z)
コード例 #32
0
def test_radius_of_convergence():
    assert hyper((1, 2), [3], z).radius_of_convergence == 1
    assert hyper((1, 2), [3, 4], z).radius_of_convergence is oo
    assert hyper((1, 2, 3), [4], z).radius_of_convergence == 0
    assert hyper((0, 1, 2), [4], z).radius_of_convergence is oo
    assert hyper((-1, 1, 2), [-4], z).radius_of_convergence == 0
    assert hyper((-1, -2, 2), [-1], z).radius_of_convergence is oo
    assert hyper((-1, 2), [-1, -2], z).radius_of_convergence == 0
    assert hyper([-1, 1, 3], [-2, 2], z).radius_of_convergence == 1
    assert hyper([-1, 1], [-2, 2], z).radius_of_convergence is oo
    assert hyper([-1, 1, 3], [-2], z).radius_of_convergence == 0
    assert hyper((-1, 2, 3, 4), [], z).radius_of_convergence is oo

    assert hyper([1, 1], [3], 1).convergence_statement == True
    assert hyper([1, 1], [2], 1).convergence_statement == False
    assert hyper([1, 1], [2], -1).convergence_statement == True
    assert hyper([1, 1], [1], -1).convergence_statement == False
コード例 #33
0
def test_fresnel():
    assert fresnels(0) == 0
    assert fresnels(oo) == S.Half
    assert fresnels(-oo) == -S.Half

    assert fresnels(z) == fresnels(z)
    assert fresnels(-z) == -fresnels(z)
    assert fresnels(I * z) == -I * fresnels(z)
    assert fresnels(-I * z) == I * fresnels(z)

    assert conjugate(fresnels(z)) == fresnels(conjugate(z))

    assert fresnels(z).diff(z) == sin(pi * z**2 / 2)

    assert fresnels(z).rewrite(erf) == (S.One + I) / 4 * (erf(
        (S.One + I) / 2 * sqrt(pi) * z) - I * erf(
            (S.One - I) / 2 * sqrt(pi) * z))

    assert fresnels(z).rewrite(hyper) == \
        pi*z**3/6 * hyper([S(3)/4], [S(3)/2, S(7)/4], -pi**2*z**4/16)

    assert fresnels(z).series(z, n=15) == \
        pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15)

    assert fresnels(w).is_real is True

    assert fresnels(z).as_real_imag() == \
        ((fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 +
          fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2,
          I*(fresnels(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) -
          fresnels(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) *
          re(z)*Abs(im(z))/(2*im(z)*Abs(re(z)))))

    assert fresnels(2 + 3 * I).as_real_imag() == (
        fresnels(2 + 3 * I) / 2 + fresnels(2 - 3 * I) / 2,
        I * (fresnels(2 - 3 * I) - fresnels(2 + 3 * I)) / 2)

    assert expand_func(integrate(fresnels(z), z)) == \
        z*fresnels(z) + cos(pi*z**2/2)/pi

    assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(9)/4) * \
        meijerg(((), (1,)), ((S(3)/4,),
        (S(1)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(3)/4)*(z**2)**(S(3)/4))

    assert fresnelc(0) == 0
    assert fresnelc(oo) == S.Half
    assert fresnelc(-oo) == -S.Half

    assert fresnelc(z) == fresnelc(z)
    assert fresnelc(-z) == -fresnelc(z)
    assert fresnelc(I * z) == I * fresnelc(z)
    assert fresnelc(-I * z) == -I * fresnelc(z)

    assert conjugate(fresnelc(z)) == fresnelc(conjugate(z))

    assert fresnelc(z).diff(z) == cos(pi * z**2 / 2)

    assert fresnelc(z).rewrite(erf) == (S.One - I) / 4 * (erf(
        (S.One + I) / 2 * sqrt(pi) * z) + I * erf(
            (S.One - I) / 2 * sqrt(pi) * z))

    assert fresnelc(z).rewrite(hyper) == \
        z * hyper([S.One/4], [S.One/2, S(5)/4], -pi**2*z**4/16)

    assert fresnelc(z).series(z, n=15) == \
        z - pi**2*z**5/40 + pi**4*z**9/3456 - pi**6*z**13/599040 + O(z**15)

    # issue 6510
    assert fresnels(z).series(z, S.Infinity) == \
        (-1/(pi**2*z**3) + O(z**(-6), (z, oo)))*sin(pi*z**2/2) + \
        (3/(pi**3*z**5) - 1/(pi*z) + O(z**(-6), (z, oo)))*cos(pi*z**2/2) + S.Half
    assert fresnelc(z).series(z, S.Infinity) == \
        (-1/(pi**2*z**3) + O(z**(-6), (z, oo)))*cos(pi*z**2/2) + \
        (-3/(pi**3*z**5) + 1/(pi*z) + O(z**(-6), (z, oo)))*sin(pi*z**2/2) + S.Half
    assert fresnels(1/z).series(z) == \
        (-z**3/pi**2 + O(z**6))*sin(pi/(2*z**2)) + (-z/pi + 3*z**5/pi**3 + \
        O(z**6))*cos(pi/(2*z**2)) + S.Half
    assert fresnelc(1/z).series(z) == \
        (-z**3/pi**2 + O(z**6))*cos(pi/(2*z**2)) + (z/pi - 3*z**5/pi**3 + \
        O(z**6))*sin(pi/(2*z**2)) + S.Half

    assert fresnelc(w).is_real is True

    assert fresnelc(z).as_real_imag() == \
        ((fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z)))/2 +
          fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))/2,
          I*(fresnelc(re(z) - I*re(z)*Abs(im(z))/Abs(re(z))) -
          fresnelc(re(z) + I*re(z)*Abs(im(z))/Abs(re(z)))) *
          re(z)*Abs(im(z))/(2*im(z)*Abs(re(z)))))

    assert fresnelc(2 + 3 * I).as_real_imag() == (
        fresnelc(2 - 3 * I) / 2 + fresnelc(2 + 3 * I) / 2,
        I * (fresnelc(2 - 3 * I) - fresnelc(2 + 3 * I)) / 2)

    assert expand_func(integrate(fresnelc(z), z)) == \
        z*fresnelc(z) - sin(pi*z**2/2)/pi

    assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**(S(3)/4) * \
        meijerg(((), (1,)), ((S(1)/4,),
        (S(3)/4, 0)), -pi**2*z**4/16)/(2*(-z)**(S(1)/4)*(z**2)**(S(1)/4))

    from sympy.utilities.randtest import test_numerically

    test_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z)
    test_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z)
    test_numerically(fresnels(z), fresnels(z).rewrite(hyper), z)
    test_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z)

    test_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z)
    test_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z)
    test_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z)
    test_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z)
コード例 #34
0
def test_erf():
    assert erf(nan) is nan

    assert erf(oo) == 1
    assert erf(-oo) == -1

    assert erf(0) == 0

    assert erf(I * oo) == oo * I
    assert erf(-I * oo) == -oo * I

    assert erf(-2) == -erf(2)
    assert erf(-x * y) == -erf(x * y)
    assert erf(-x - y) == -erf(x + y)

    assert erf(erfinv(x)) == x
    assert erf(erfcinv(x)) == 1 - x
    assert erf(erf2inv(0, x)) == x
    assert erf(erf2inv(0, x, evaluate=False)) == x  # To cover code in erf
    assert erf(erf2inv(0, erf(erfcinv(1 - erf(erfinv(x)))))) == x

    assert erf(I).is_real is False
    assert erf(0).is_real is True

    assert conjugate(erf(z)) == erf(conjugate(z))

    assert erf(x).as_leading_term(x) == 2 * x / sqrt(pi)
    assert erf(x * y).as_leading_term(y) == 2 * x * y / sqrt(pi)
    assert (erf(x * y) / erf(y)).as_leading_term(y) == x
    assert erf(1 / x).as_leading_term(x) == S.One

    assert erf(z).rewrite('uppergamma') == sqrt(z**
                                                2) * (1 - erfc(sqrt(z**2))) / z
    assert erf(z).rewrite('erfc') == S.One - erfc(z)
    assert erf(z).rewrite('erfi') == -I * erfi(I * z)
    assert erf(z).rewrite('fresnels') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('fresnelc') == (1 + I) * (
        fresnelc(z * (1 - I) / sqrt(pi)) - I * fresnels(z *
                                                        (1 - I) / sqrt(pi)))
    assert erf(z).rewrite('hyper') == 2 * z * hyper([S.Half], [3 * S.Half],
                                                    -z**2) / sqrt(pi)
    assert erf(z).rewrite('meijerg') == z * meijerg(
        [S.Half], [], [0], [Rational(-1, 2)], z**2) / sqrt(pi)
    assert erf(z).rewrite(
        'expint') == sqrt(z**2) / z - z * expint(S.Half, z**2) / sqrt(S.Pi)

    assert limit(exp(x)*exp(x**2)*(erf(x + 1/exp(x)) - erf(x)), x, oo) == \
        2/sqrt(pi)
    assert limit((1 - erf(z)) * exp(z**2) * z, z, oo) == 1 / sqrt(pi)
    assert limit((1 - erf(x)) * exp(x**2) * sqrt(pi) * x, x, oo) == 1
    assert limit(((1 - erf(x)) * exp(x**2) * sqrt(pi) * x - 1) * 2 * x**2, x,
                 oo) == -1
    assert limit(erf(x) / x, x, 0) == 2 / sqrt(pi)
    assert limit(x**(-4) - sqrt(pi) * erf(x**2) / (2 * x**6), x, 0) == S(1) / 3

    assert erf(x).as_real_imag() == \
        (erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2,
         -I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2)

    assert erf(x).as_real_imag(deep=False) == \
        (erf(re(x) - I*im(x))/2 + erf(re(x) + I*im(x))/2,
         -I*(-erf(re(x) - I*im(x)) + erf(re(x) + I*im(x)))/2)

    assert erf(w).as_real_imag() == (erf(w), 0)
    assert erf(w).as_real_imag(deep=False) == (erf(w), 0)
    # issue 13575
    assert erf(I).as_real_imag() == (0, -I * erf(I))

    raises(ArgumentIndexError, lambda: erf(x).fdiff(2))

    assert erf(x).inverse() == erfinv
コード例 #35
0
def test_fresnel():
    assert fresnels(0) == 0
    assert fresnels(oo) == S.Half
    assert fresnels(-oo) == Rational(-1, 2)
    assert fresnels(I * oo) == -I * S.Half

    assert unchanged(fresnels, z)
    assert fresnels(-z) == -fresnels(z)
    assert fresnels(I * z) == -I * fresnels(z)
    assert fresnels(-I * z) == I * fresnels(z)

    assert conjugate(fresnels(z)) == fresnels(conjugate(z))

    assert fresnels(z).diff(z) == sin(pi * z**2 / 2)

    assert fresnels(z).rewrite(erf) == (S.One + I) / 4 * (erf(
        (S.One + I) / 2 * sqrt(pi) * z) - I * erf(
            (S.One - I) / 2 * sqrt(pi) * z))

    assert fresnels(z).rewrite(hyper) == \
        pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16)

    assert fresnels(z).series(z, n=15) == \
        pi*z**3/6 - pi**3*z**7/336 + pi**5*z**11/42240 + O(z**15)

    assert fresnels(w).is_extended_real is True
    assert fresnels(w).is_finite is True

    assert fresnels(z).is_extended_real is None
    assert fresnels(z).is_finite is None

    assert fresnels(z).as_real_imag() == (
        fresnels(re(z) - I * im(z)) / 2 + fresnels(re(z) + I * im(z)) / 2,
        -I * (-fresnels(re(z) - I * im(z)) + fresnels(re(z) + I * im(z))) / 2)

    assert fresnels(z).as_real_imag(deep=False) == (
        fresnels(re(z) - I * im(z)) / 2 + fresnels(re(z) + I * im(z)) / 2,
        -I * (-fresnels(re(z) - I * im(z)) + fresnels(re(z) + I * im(z))) / 2)

    assert fresnels(w).as_real_imag() == (fresnels(w), 0)
    assert fresnels(w).as_real_imag(deep=True) == (fresnels(w), 0)

    assert fresnels(2 + 3 * I).as_real_imag() == (
        fresnels(2 + 3 * I) / 2 + fresnels(2 - 3 * I) / 2,
        -I * (fresnels(2 + 3 * I) - fresnels(2 - 3 * I)) / 2)

    assert expand_func(integrate(fresnels(z), z)) == \
        z*fresnels(z) + cos(pi*z**2/2)/pi

    assert fresnels(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(9, 4) * \
        meijerg(((), (1,)), ((Rational(3, 4),),
        (Rational(1, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(3, 4)*(z**2)**Rational(3, 4))

    assert fresnelc(0) == 0
    assert fresnelc(oo) == S.Half
    assert fresnelc(-oo) == Rational(-1, 2)
    assert fresnelc(I * oo) == I * S.Half

    assert unchanged(fresnelc, z)
    assert fresnelc(-z) == -fresnelc(z)
    assert fresnelc(I * z) == I * fresnelc(z)
    assert fresnelc(-I * z) == -I * fresnelc(z)

    assert conjugate(fresnelc(z)) == fresnelc(conjugate(z))

    assert fresnelc(z).diff(z) == cos(pi * z**2 / 2)

    assert fresnelc(z).rewrite(erf) == (S.One - I) / 4 * (erf(
        (S.One + I) / 2 * sqrt(pi) * z) + I * erf(
            (S.One - I) / 2 * sqrt(pi) * z))

    assert fresnelc(z).rewrite(hyper) == \
        z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16)

    assert fresnelc(w).is_extended_real is True

    assert fresnelc(z).as_real_imag() == \
        (fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2,
         -I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2)

    assert fresnelc(z).as_real_imag(deep=False) == \
        (fresnelc(re(z) - I*im(z))/2 + fresnelc(re(z) + I*im(z))/2,
         -I*(-fresnelc(re(z) - I*im(z)) + fresnelc(re(z) + I*im(z)))/2)

    assert fresnelc(2 + 3 * I).as_real_imag() == (
        fresnelc(2 - 3 * I) / 2 + fresnelc(2 + 3 * I) / 2,
        -I * (fresnelc(2 + 3 * I) - fresnelc(2 - 3 * I)) / 2)

    assert expand_func(integrate(fresnelc(z), z)) == \
        z*fresnelc(z) - sin(pi*z**2/2)/pi

    assert fresnelc(z).rewrite(meijerg) == sqrt(2)*pi*z**Rational(3, 4) * \
        meijerg(((), (1,)), ((Rational(1, 4),),
        (Rational(3, 4), 0)), -pi**2*z**4/16)/(2*(-z)**Rational(1, 4)*(z**2)**Rational(1, 4))

    from sympy.testing.randtest import verify_numerically

    verify_numerically(re(fresnels(z)), fresnels(z).as_real_imag()[0], z)
    verify_numerically(im(fresnels(z)), fresnels(z).as_real_imag()[1], z)
    verify_numerically(fresnels(z), fresnels(z).rewrite(hyper), z)
    verify_numerically(fresnels(z), fresnels(z).rewrite(meijerg), z)

    verify_numerically(re(fresnelc(z)), fresnelc(z).as_real_imag()[0], z)
    verify_numerically(im(fresnelc(z)), fresnelc(z).as_real_imag()[1], z)
    verify_numerically(fresnelc(z), fresnelc(z).rewrite(hyper), z)
    verify_numerically(fresnelc(z), fresnelc(z).rewrite(meijerg), z)

    raises(ArgumentIndexError, lambda: fresnels(z).fdiff(2))
    raises(ArgumentIndexError, lambda: fresnelc(z).fdiff(2))

    assert fresnels(x).taylor_term(-1, x) is S.Zero
    assert fresnelc(x).taylor_term(-1, x) is S.Zero
    assert fresnelc(x).taylor_term(1, x) == -pi**2 * x**5 / 40
コード例 #36
0
def test_TupleParametersBase():
    # test that our implementation of the chain rule works
    p = hyper((), (), z**2)
    assert p.diff(z) == p*2*z
コード例 #37
0
ファイル: test_simplify.py プロジェクト: zsolt-beringer/sympy
def test_simplify_expr():
    x, y, z, k, n, m, w, s, A = symbols('x,y,z,k,n,m,w,s,A')
    f = Function('f')

    assert all(simplify(tmp) == tmp for tmp in [I, E, oo, x, -x, -oo, -E, -I])

    e = 1 / x + 1 / y
    assert e != (x + y) / (x * y)
    assert simplify(e) == (x + y) / (x * y)

    e = A**2 * s**4 / (4 * pi * k * m**3)
    assert simplify(e) == e

    e = (4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)
    assert simplify(e) == 0

    e = (-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2
    assert simplify(e) == -2 * y

    e = -x - y - (x + y)**(-1) * y**2 + (x + y)**(-1) * x**2
    assert simplify(e) == -2 * y

    e = (x + x * y) / x
    assert simplify(e) == 1 + y

    e = (f(x) + y * f(x)) / f(x)
    assert simplify(e) == 1 + y

    e = (2 * (1 / n - cos(n * pi) / n)) / pi
    assert simplify(e) == (-cos(pi * n) + 1) / (pi * n) * 2

    e = integrate(1 / (x**3 + 1), x).diff(x)
    assert simplify(e) == 1 / (x**3 + 1)

    e = integrate(x / (x**2 + 3 * x + 1), x).diff(x)
    assert simplify(e) == x / (x**2 + 3 * x + 1)

    f = Symbol('f')
    A = Matrix([[2 * k - m * w**2, -k], [-k, k - m * w**2]]).inv()
    assert simplify((A * Matrix([0, f]))[1] - (-f * (2 * k - m * w**2) /
                                               (k**2 - (k - m * w**2) *
                                                (2 * k - m * w**2)))) == 0

    f = -x + y / (z + t) + z * x / (z + t) + z * a / (z + t) + t * x / (z + t)
    assert simplify(f) == (y + a * z) / (z + t)

    # issue 10347
    expr = -x * (y**2 - 1) * (
        2 * y**2 * (x**2 - 1) / (a * (x**2 - y**2)**2) + (x**2 - 1) /
        (a * (x**2 - y**2))) / (a * (x**2 - y**2)) + x * (
            -2 * x**2 * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * sin(z) /
            (a * (x**2 - y**2)**2) -
            x**2 * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * sin(z) /
            (a * (x**2 - 1) * (x**2 - y**2)) +
            (x**2 * sqrt((-x**2 + 1) * (y**2 - 1)) *
             sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * sin(z) / (x**2 - 1) + sqrt(
                 (-x**2 + 1) * (y**2 - 1)) *
             (x * (-x * y**2 + x) / sqrt(-x**2 * y**2 + x**2 + y**2 - 1) +
              sqrt(-x**2 * y**2 + x**2 + y**2 - 1)) * sin(z)) / (a * sqrt(
                  (-x**2 + 1) * (y**2 - 1)) * (x**2 - y**2))
        ) * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * sin(z) / (
            a * (x**2 - y**2)) + x * (
                -2 * x**2 * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * cos(z) /
                (a * (x**2 - y**2)**2) -
                x**2 * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * cos(z) /
                (a * (x**2 - 1) * (x**2 - y**2)) +
                (x**2 * sqrt((-x**2 + 1) *
                             (y**2 - 1)) * sqrt(-x**2 * y**2 + x**2 + y**2 - 1)
                 * cos(z) / (x**2 - 1) + x * sqrt(
                     (-x**2 + 1) * (y**2 - 1)) * (-x * y**2 + x) * cos(z) /
                 sqrt(-x**2 * y**2 + x**2 + y**2 - 1) + sqrt(
                     (-x**2 + 1) *
                     (y**2 - 1)) * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) *
                 cos(z)) / (a * sqrt((-x**2 + 1) * (y**2 - 1)) * (x**2 - y**2))
            ) * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * cos(z) / (
                a *
                (x**2 - y**2)) - y * sqrt((-x**2 + 1) * (y**2 - 1)) * (
                    -x * y * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * sin(z) /
                    (a * (x**2 - y**2) *
                     (y**2 - 1)) +
                    2 * x * y * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * sin(z) /
                    (a * (x**2 - y**2)**2) +
                    (x * y * sqrt((-x**2 + 1) * (y**2 - 1)) *
                     sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * sin(z) /
                     (y**2 - 1) + x * sqrt(
                         (-x**2 + 1) * (y**2 - 1)) * (-x**2 * y + y) * sin(z) /
                     sqrt(-x**2 * y**2 + x**2 + y**2 - 1)) / (a * sqrt(
                         (-x**2 + 1) * (y**2 - 1)) * (x**2 - y**2))
                ) * sin(z) / (a * (x**2 - y**2)) + y * (x**2 - 1) * (
                    -2 * x * y *
                    (x**2 - 1) /
                    (a * (x**2 - y**2)**2) + 2 * x * y / (a * (x**2 - y**2))
                ) / (a *
                     (x**2 - y**2)) + y * (x**2 - 1) * (y**2 - 1) * (
                         -x * y * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) *
                         cos(z) / (a * (x**2 - y**2) *
                                   (y**2 - 1)) + 2 * x * y *
                         sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * cos(z) /
                         (a *
                          (x**2 - y**2)**2) +
                         (x * y * sqrt((-x**2 + 1) * (y**2 - 1)) *
                          sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * cos(z) /
                          (y**2 - 1) + x * sqrt(
                              (-x**2 + 1) * (y**2 - 1)) * (-x**2 * y + y) *
                          cos(z) / sqrt(-x**2 * y**2 + x**2 + y**2 - 1)) /
                         (a * sqrt((-x**2 + 1) * (y**2 - 1)) *
                          (x**2 - y**2))) * cos(z) / (a * sqrt(
                              (-x**2 + 1) *
                              (y**2 - 1)) * (x**2 - y**2)) - x * sqrt(
                                  (-x**2 + 1) * (y**2 - 1)
                              ) * sqrt(-x**2 * y**2 + x**2 + y**2 - 1) * sin(
                                  z)**2 / (a**2 * (x**2 - 1) * (x**2 - y**2) *
                                           (y**2 - 1)) - x * sqrt(
                                               (-x**2 + 1) *
                                               (y**2 - 1)) * sqrt(
                                                   -x**2 * y**2 + x**2 + y**2 -
                                                   1) * cos(z)**2 / (
                                                       a**2 * (x**2 - 1) *
                                                       (x**2 - y**2) *
                                                       (y**2 - 1))
    assert simplify(expr) == 2 * x / (a**2 * (x**2 - y**2))

    #issue 17631
    assert simplify('((-1/2)*Boole(True)*Boole(False)-1)*Boole(True)') == \
            Mul(sympify('(2 + Boole(True)*Boole(False))'), sympify('-Boole(True)/2'))

    A, B = symbols('A,B', commutative=False)

    assert simplify(A * B - B * A) == A * B - B * A
    assert simplify(A / (1 + y / x)) == x * A / (x + y)
    assert simplify(A * (1 / x + 1 / y)) == A / x + A / y  #(x + y)*A/(x*y)

    assert simplify(log(2) + log(3)) == log(6)
    assert simplify(log(2 * x) - log(2)) == log(x)

    assert simplify(hyper([], [], x)) == exp(x)
コード例 #38
0
ファイル: test_simplify.py プロジェクト: zsolt-beringer/sympy
def test_separatevars():
    x, y, z, n = symbols('x,y,z,n')
    assert separatevars(2 * n * x * z + 2 * x * y * z) == 2 * x * z * (n + y)
    assert separatevars(x * z + x * y * z) == x * z * (1 + y)
    assert separatevars(pi * x * z + pi * x * y * z) == pi * x * z * (1 + y)
    assert separatevars(x*y**2*sin(x) + x*sin(x)*sin(y)) == \
        x*(sin(y) + y**2)*sin(x)
    assert separatevars(x * exp(x + y) +
                        x * exp(x)) == x * (1 + exp(y)) * exp(x)
    assert separatevars((x * (y + 1))**z).is_Pow  # != x**z*(1 + y)**z
    assert separatevars(1 + x + y + x * y) == (x + 1) * (y + 1)
    assert separatevars(y/pi*exp(-(z - x)/cos(n))) == \
        y*exp(x/cos(n))*exp(-z/cos(n))/pi
    assert separatevars((x + y) * (x - y) + y**2 + 2 * x + 1) == (x + 1)**2
    # issue 4858
    p = Symbol('p', positive=True)
    assert separatevars(sqrt(p**2 + x * p**2)) == p * sqrt(1 + x)
    assert separatevars(sqrt(y * (p**2 + x * p**2))) == p * sqrt(y * (1 + x))
    assert separatevars(sqrt(y*(p**2 + x*p**2)), force=True) == \
        p*sqrt(y)*sqrt(1 + x)
    # issue 4865
    assert separatevars(sqrt(x * y)).is_Pow
    assert separatevars(sqrt(x * y), force=True) == sqrt(x) * sqrt(y)
    # issue 4957
    # any type sequence for symbols is fine
    assert separatevars(((2*x + 2)*y), dict=True, symbols=()) == \
        {'coeff': 1, x: 2*x + 2, y: y}
    # separable
    assert separatevars(((2*x + 2)*y), dict=True, symbols=[x]) == \
        {'coeff': y, x: 2*x + 2}
    assert separatevars(((2*x + 2)*y), dict=True, symbols=[]) == \
        {'coeff': 1, x: 2*x + 2, y: y}
    assert separatevars(((2*x + 2)*y), dict=True) == \
        {'coeff': 1, x: 2*x + 2, y: y}
    assert separatevars(((2*x + 2)*y), dict=True, symbols=None) == \
        {'coeff': y*(2*x + 2)}
    # not separable
    assert separatevars(3, dict=True) is None
    assert separatevars(2 * x + y, dict=True, symbols=()) is None
    assert separatevars(2 * x + y, dict=True) is None
    assert separatevars(2 * x + y, dict=True, symbols=None) == {
        'coeff': 2 * x + y
    }
    # issue 4808
    n, m = symbols('n,m', commutative=False)
    assert separatevars(m + n * m) == (1 + n) * m
    assert separatevars(x + x * n) == x * (1 + n)
    # issue 4910
    f = Function('f')
    assert separatevars(f(x) + x * f(x)) == f(x) + x * f(x)
    # a noncommutable object present
    eq = x * (1 + hyper((), (), y * z))
    assert separatevars(eq) == eq

    s = separatevars(abs(x * y))
    assert s == abs(x) * abs(y) and s.is_Mul
    z = cos(1)**2 + sin(1)**2 - 1
    a = abs(x * z)
    s = separatevars(a)
    assert not a.is_Mul and s.is_Mul and s == abs(x) * abs(z)
    s = separatevars(abs(x * y * z))
    assert s == abs(x) * abs(y) * abs(z)

    # abs(x+y)/abs(z) would be better but we test this here to
    # see that it doesn't raise
    assert separatevars(abs((x + y) / z)) == abs((x + y) / z)
コード例 #39
0
def test_bug():
    h = hyper([-1, 1], [z], -1)
    assert hyperexpand(h) == (z + 1) / z
コード例 #40
0
def test_omgissue_203():
    h = hyper((-5, -3, -4), (-6, -6), 1)
    assert hyperexpand(h) == Rational(1, 30)
    h = hyper((-6, -7, -5), (-6, -6), 1)
    assert hyperexpand(h) == -Rational(1, 6)
コード例 #41
0
def test_hyperexpand_parametric():
    assert hyperexpand(hyper([a, S(1)/2 + a], [S(1)/2], z)) \
        == (1 + sqrt(z))**(-2*a)/2 + (1 - sqrt(z))**(-2*a)/2
    assert hyperexpand(hyper([a, -S(1)/2 + a], [2*a], z)) \
        == 2**(2*a - 1)*((-z + 1)**(S(1)/2) + 1)**(-2*a + 1)
コード例 #42
0
def test_hyper():
    raises(TypeError, lambda: hyper(1, 2, z))

    assert hyper((1, 2), (1,), z) == hyper(Tuple(1, 2), Tuple(1), z)

    h = hyper((1, 2), (3, 4, 5), z)
    assert h.ap == Tuple(1, 2)
    assert h.bq == Tuple(3, 4, 5)
    assert h.argument == z
    assert h.is_commutative is True

    # just a few checks to make sure that all arguments go where they should
    assert tn(hyper(Tuple(), Tuple(), z), exp(z), z)
    assert tn(z*hyper((1, 1), Tuple(2), -z), log(1 + z), z)

    # differentiation
    h = hyper(
        (randcplx(), randcplx(), randcplx()), (randcplx(), randcplx()), z)
    assert td(h, z)

    a1, a2, b1, b2, b3 = symbols('a1:3, b1:4')
    assert hyper((a1, a2), (b1, b2, b3), z).diff(z) == \
        a1*a2/(b1*b2*b3) * hyper((a1 + 1, a2 + 1), (b1 + 1, b2 + 1, b3 + 1), z)

    # differentiation wrt parameters is not supported
    assert hyper([z], [], z).diff(z) == Derivative(hyper([z], [], z), z)

    # hyper is unbranched wrt parameters
    from sympy import polar_lift
    assert hyper([polar_lift(z)], [polar_lift(k)], polar_lift(x)) == \
        hyper([z], [k], polar_lift(x))

    # hyper does not automatically evaluate anyway, but the test is to make
    # sure that the evaluate keyword is accepted
    assert hyper((1, 2), (1,), z, evaluate=False).func is hyper
コード例 #43
0
def test_meijerg_expand():
    from sympy import gammasimp, simplify
    # from mpmath docs
    assert hyperexpand(meijerg([[], []], [[0], []], -z)) == exp(z)

    assert hyperexpand(meijerg([[1, 1], []], [[1], [0]], z)) == \
        log(z + 1)
    assert hyperexpand(meijerg([[1, 1], []], [[1], [1]], z)) == \
        z/(z + 1)
    assert hyperexpand(meijerg([[], []], [[S(1)/2], [0]], (z/2)**2)) \
        == sin(z)/sqrt(pi)
    assert hyperexpand(meijerg([[], []], [[0], [S(1)/2]], (z/2)**2)) \
        == cos(z)/sqrt(pi)
    assert can_do_meijer([], [a], [a - 1, a - S.Half], [])
    assert can_do_meijer([], [], [a / 2], [-a / 2], False)  # branches...
    assert can_do_meijer([a], [b], [a], [b, a - 1])

    # wikipedia
    assert hyperexpand(meijerg([1], [], [], [0], z)) == \
        Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1),
                 (meijerg([1], [], [], [0], z), True))
    assert hyperexpand(meijerg([], [1], [0], [], z)) == \
        Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1),
                 (meijerg([], [1], [0], [], z), True))

    # The Special Functions and their Approximations
    assert can_do_meijer([], [], [a + b / 2], [a, a - b / 2, a + S.Half])
    assert can_do_meijer([], [], [a], [b],
                         False)  # branches only agree for small z
    assert can_do_meijer([], [S.Half], [a], [-a])
    assert can_do_meijer([], [], [a, b], [])
    assert can_do_meijer([], [], [a, b], [])
    assert can_do_meijer([], [], [a, a + S.Half], [b, b + S.Half])
    assert can_do_meijer([], [], [a, -a], [0, S.Half], False)  # dito
    assert can_do_meijer([], [], [a, a + S.Half, b, b + S.Half], [])
    assert can_do_meijer([S.Half], [], [0], [a, -a])
    assert can_do_meijer([S.Half], [], [a], [0, -a], False)  # dito
    assert can_do_meijer([], [a - S.Half], [a, b], [a - S.Half], False)
    assert can_do_meijer([], [a + S.Half], [a + b, a - b, a], [], False)
    assert can_do_meijer([a + S.Half], [], [b, 2 * a - b, a], [], False)

    # This for example is actually zero.
    assert can_do_meijer([], [], [], [a, b])

    # Testing a bug:
    assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \
        Piecewise((0, abs(z) < 1),
                  (z/2 - 1/(2*z), abs(1/z) < 1),
                  (meijerg([0, 2], [], [], [-1, 1], z), True))

    # Test that the simplest possible answer is returned:
    assert gammasimp(simplify(hyperexpand(
        meijerg([1], [1 - a], [-a/2, -a/2 + S(1)/2], [], 1/z)))) == \
        -2*sqrt(pi)*(sqrt(z + 1) + 1)**a/a

    # Test that hyper is returned
    assert hyperexpand(meijerg([1], [], [a], [0, 0], z)) == hyper(
        (a, ), (a + 1, a + 1),
        z * exp_polar(I * pi)) * z**a * gamma(a) / gamma(a + 1)**2

    # Test place option
    f = meijerg(((0, 1), ()), ((S(1) / 2, ), (0, )), z**2)
    assert hyperexpand(f) == sqrt(pi) / sqrt(1 + z**(-2))
    assert hyperexpand(f, place=0) == sqrt(pi) * z / sqrt(z**2 + 1)
コード例 #44
0
#import pythonista
""" This module cooks up a docstring when imported. Its only purpose is to
    be displayed in the sphinx documentation. """

from __future__ import print_function, division

from sympy.simplify.hyperexpand import FormulaCollection
from sympy import latex, Eq, hyper

c = FormulaCollection()

doc = ""

for f in c.formulae:
    obj = Eq(hyper(f.func.ap, f.func.bq, f.z),
             f.closed_form.rewrite('nonrepsmall'))
    doc += ".. math::\n  %s\n" % latex(obj)

__doc__ = doc
コード例 #45
0
def test_shifted_sum():
    from sympy import simplify
    assert simplify(hyperexpand(z**4*hyper([2], [3, S('3/2')], -z**2))) \
        == z*sin(2*z) + (-z**2 + S.Half)*cos(2*z) - S.Half
コード例 #46
0
ファイル: drv_types.py プロジェクト: xushiwei/sympy
 def _characteristic_function(self, t):
     rho = self.rho
     return rho * hyper((1, 1),
                        (rho + 2, ), exp(I * t)) * exp(I * t) / (rho + 1)
コード例 #47
0
ファイル: drv_types.py プロジェクト: xushiwei/sympy
 def _moment_generating_function(self, t):
     rho = self.rho
     return rho * hyper((1, 1), (rho + 2, ), exp(t)) * exp(t) / (rho + 1)