def test_Pow(): assert julia_code(x**3) == "x.^3" assert julia_code(x**(y**3)) == "x.^(y.^3)" assert julia_code(x**Rational(2, 3)) == 'x.^(2/3)' g = implemented_function('g', Lambda(x, 2 * x)) assert julia_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "(3.5*2*x).^(-x + y.^x)./(x.^2 + y)"
def test_Pow(): assert julia_code(x**3) == "x.^3" assert julia_code(x**(y**3)) == "x.^(y.^3)" assert julia_code(x**Rational(2, 3)) == 'x.^(2/3)' g = implemented_function('g', Lambda(x, 2*x)) assert julia_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "(3.5*2*x).^(-x + y.^x)./(x.^2 + y)"
def test_julia_matrix_elements(): A = Matrix([[x, 2, x * y]]) assert julia_code(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x.^2 + x.*y + 2" A = MatrixSymbol('AA', 1, 3) assert julia_code(A) == "AA" assert julia_code(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \ "sin(AA[1,2]) + AA[1,1].^2 + AA[1,3]" assert julia_code(sum(A)) == "AA[1,1] + AA[1,2] + AA[1,3]"
def test_julia_matrix_assign_to_more(): # assigning to Symbol or MatrixSymbol requires lhs/rhs match A = Matrix([[1, 2, 3]]) B = MatrixSymbol('B', 1, 3) C = MatrixSymbol('C', 2, 3) assert julia_code(A, assign_to=B) == "B = [1 2 3]" raises(ValueError, lambda: julia_code(A, assign_to=x)) raises(ValueError, lambda: julia_code(A, assign_to=C))
def test_julia_matrix_1x1(): A = Matrix([[3]]) B = MatrixSymbol('B', 1, 1) C = MatrixSymbol('C', 1, 2) assert julia_code(A, assign_to=B) == "B = [3]" # FIXME? #assert julia_code(A, assign_to=x) == "x = [3]" raises(ValueError, lambda: julia_code(A, assign_to=C))
def test_julia_not_supported(): assert julia_code(S.ComplexInfinity) == ("# Not supported in Julia:\n" "# ComplexInfinity\n" "zoo") f = Function('f') assert julia_code(f(x).diff(x)) == ("# Not supported in Julia:\n" "# Derivative\n" "Derivative(f(x), x)")
def test_julia_matrix_elements(): A = Matrix([[x, 2, x*y]]) assert julia_code(A[0, 0]**2 + A[0, 1] + A[0, 2]) == "x.^2 + x.*y + 2" A = MatrixSymbol('AA', 1, 3) assert julia_code(A) == "AA" assert julia_code(A[0, 0]**2 + sin(A[0,1]) + A[0,2]) == \ "sin(AA[1,2]) + AA[1,1].^2 + AA[1,3]" assert julia_code(sum(A)) == "AA[1,1] + AA[1,2] + AA[1,3]"
def test_Pow(): assert julia_code(x**3) == "x.^3" assert julia_code(x**(y**3)) == "x.^(y.^3)" assert julia_code(x**Rational(2, 3)) == 'x.^(2/3)' g = implemented_function('g', Lambda(x, 2*x)) assert julia_code(1/(g(x)*3.5)**(x - y**x)/(x**2 + y)) == \ "(3.5*2*x).^(-x + y.^x)./(x.^2 + y)" # For issue 14160 assert julia_code(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False), evaluate=False)) == '-2*x./(y.*y)'
def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert (julia_code(A[0, 0]) == "A[1,1]") assert (julia_code(3 * A[0, 0]) == "3*A[1,1]") F = C[0, 0].subs(C, A - B) assert (julia_code(F) == "(-B + A)[1,1]")
def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) assert(julia_code(A[0, 0]) == "A[1,1]") assert(julia_code(3 * A[0, 0]) == "3*A[1,1]") F = C[0, 0].subs(C, A - B) assert(julia_code(F) == "(A - B)[1,1]")
def test_haramard(): A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) v = MatrixSymbol('v', 3, 1) h = MatrixSymbol('h', 1, 3) C = HadamardProduct(A, B) assert julia_code(C) == "A.*B" assert julia_code(C * v) == "(A.*B)*v" assert julia_code(h * C * v) == "h*(A.*B)*v" assert julia_code(C * A) == "(A.*B)*A" # mixing Hadamard and scalar strange b/c we vectorize scalars assert julia_code(C * x * y) == "(x.*y)*(A.*B)"
def test_haramard(): A = MatrixSymbol('A', 3, 3) B = MatrixSymbol('B', 3, 3) v = MatrixSymbol('v', 3, 1) h = MatrixSymbol('h', 1, 3) C = HadamardProduct(A, B) assert julia_code(C) == "A.*B" assert julia_code(C*v) == "(A.*B)*v" assert julia_code(h*C*v) == "h*(A.*B)*v" assert julia_code(C*A) == "(A.*B)*A" # mixing Hadamard and scalar strange b/c we vectorize scalars assert julia_code(C*x*y) == "(x.*y)*(A.*B)"
def test_julia_not_supported(): assert julia_code(S.ComplexInfinity) == ( "# Not supported in Julia:\n" "# ComplexInfinity\n" "zoo" ) f = Function('f') assert julia_code(f(x).diff(x)) == ( "# Not supported in Julia:\n" "# Derivative\n" "Derivative(f(x), x)" )
def test_julia_noninline(): source = julia_code((x+y)/Catalan, assign_to='me', inline=False) expected = ( "const Catalan = 0.915965594177219\n" "me = (x + y)/Catalan" ) assert source == expected
def test_julia_noninline(): source = julia_code((x+y)/Catalan, assign_to='me', inline=False) expected = ( "const Catalan = %s\n" "me = (x + y)/Catalan" ) % Catalan.evalf(17) assert source == expected
def test_Matrices_entries_not_hadamard(): # For Matrix with col >= 2, row >= 2, they need to be scalars # FIXME: is it worth worrying about this? Its not wrong, just # leave it user's responsibility to put scalar data for x. A = Matrix([[1, sin(2 / x), 3 * pi / x / 5], [1, 2, x * y]]) expected = "[1 sin(2/x) 3*pi/(5*x);\n" "1 2 x*y]" # <- we give x.*y assert julia_code(A) == expected
def test_Matrices_entries_not_hadamard(): # For Matrix with col >= 2, row >= 2, they need to be scalars # FIXME: is it worth worrying about this? Its not wrong, just # leave it user's responsibility to put scalar data for x. A = Matrix([[1, sin(2/x), 3*pi/x/5], [1, 2, x*y]]) expected = ("[1 sin(2/x) 3*pi/(5*x);\n" "1 2 x*y]") # <- we give x.*y assert julia_code(A) == expected
def test_julia_piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) assert julia_code(expr) == "((x < 1) ? (x) : (x.^2))" assert julia_code(expr, assign_to="r") == ( "r = ((x < 1) ? (x) : (x.^2))") assert julia_code(expr, assign_to="r", inline=False) == ( "if (x < 1)\n" " r = x\n" "else\n" " r = x.^2\n" "end") expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True)) expected = ("((x < 1) ? (x.^2) :\n" "(x < 2) ? (x.^3) :\n" "(x < 3) ? (x.^4) : (x.^5))") assert julia_code(expr) == expected assert julia_code(expr, assign_to="r") == "r = " + expected assert julia_code(expr, assign_to="r", inline=False) == ( "if (x < 1)\n" " r = x.^2\n" "elseif (x < 2)\n" " r = x.^3\n" "elseif (x < 3)\n" " r = x.^4\n" "else\n" " r = x.^5\n" "end") # Check that Piecewise without a True (default) condition error expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) raises(ValueError, lambda: julia_code(expr))
def test_julia_piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) assert julia_code(expr) == "((x < 1) ? (x) : (x.^2))" assert julia_code(expr, assign_to="r") == ("r = ((x < 1) ? (x) : (x.^2))") assert julia_code(expr, assign_to="r", inline=False) == ("if (x < 1)\n" " r = x\n" "else\n" " r = x.^2\n" "end") expr = Piecewise((x**2, x < 1), (x**3, x < 2), (x**4, x < 3), (x**5, True)) expected = ("((x < 1) ? (x.^2) :\n" "(x < 2) ? (x.^3) :\n" "(x < 3) ? (x.^4) : (x.^5))") assert julia_code(expr) == expected assert julia_code(expr, assign_to="r") == "r = " + expected assert julia_code(expr, assign_to="r", inline=False) == ("if (x < 1)\n" " r = x.^2\n" "elseif (x < 2)\n" " r = x.^3\n" "elseif (x < 3)\n" " r = x.^4\n" "else\n" " r = x.^5\n" "end") # Check that Piecewise without a True (default) condition error expr = Piecewise((x, x < 1), (x**2, x > 1), (sin(x), x > 0)) raises(ValueError, lambda: julia_code(expr))
def test_constants(): assert julia_code(pi) == "pi" assert julia_code(oo) == "Inf" assert julia_code(-oo) == "-Inf" assert julia_code(S.NegativeInfinity) == "-Inf" assert julia_code(S.NaN) == "NaN" assert julia_code(S.Exp1) == "e" assert julia_code(exp(1)) == "e"
def test_boolean(): assert julia_code(x & y) == "x && y" assert julia_code(x | y) == "x || y" assert julia_code(~x) == "!x" assert julia_code(x & y & z) == "x && y && z" assert julia_code(x | y | z) == "x || y || z" assert julia_code((x & y) | z) == "z || x && y" assert julia_code((x | y) & z) == "z && (x || y)"
def test_sparse(): M = SparseMatrix(5, 6, {}) M[2, 2] = 10; M[1, 2] = 20; M[1, 3] = 22; M[0, 3] = 30; M[3, 0] = x*y; assert julia_code(M) == ( "sparse([4, 2, 3, 1, 2], [1, 3, 3, 4, 4], [x.*y, 20, 10, 30, 22], 5, 6)" )
def test_sparse(): M = SparseMatrix(5, 6, {}) M[2, 2] = 10 M[1, 2] = 20 M[1, 3] = 22 M[0, 3] = 30 M[3, 0] = x * y assert julia_code(M) == ( "sparse([4, 2, 3, 1, 2], [1, 3, 3, 4, 4], [x.*y, 20, 10, 30, 22], 5, 6)" )
def test_MatrixSymbol(): n = Symbol('n', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) assert julia_code(A * B) == "A*B" assert julia_code(B * A) == "B*A" assert julia_code(2 * A * B) == "2*A*B" assert julia_code(B * 2 * A) == "2*B*A" assert julia_code(A * (B + 3 * Identity(n))) == "A*(3*eye(n) + B)" assert julia_code(A**(x**2)) == "A^(x.^2)" assert julia_code(A**3) == "A^3" assert julia_code(A**(S.Half)) == "A^(1/2)"
def test_MatrixSymbol(): n = Symbol('n', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) assert julia_code(A*B) == "A*B" assert julia_code(B*A) == "B*A" assert julia_code(2*A*B) == "2*A*B" assert julia_code(B*2*A) == "2*B*A" assert julia_code(A*(B + 3*Identity(n))) == "A*(3*eye(n) + B)" assert julia_code(A**(x**2)) == "A^(x.^2)" assert julia_code(A**3) == "A^3" assert julia_code(A**(S.Half)) == "A^(1/2)"
def test_trick_indent_with_end_else_words(): # words starting with "end" or "else" do not confuse the indenter t1 = S('endless') t2 = S('elsewhere') pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True)) assert julia_code(pw, inline=False) == ("if (x < 0)\n" " endless\n" "elseif (x <= 1)\n" " elsewhere\n" "else\n" " 1\n" "end")
def test_containers(): assert julia_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \ "Any[1, 2, 3, Any[4, 5, Any[6, 7]], 8, Any[9, 10], 11]" assert julia_code((1, 2, (3, 4))) == "(1, 2, (3, 4))" assert julia_code([1]) == "Any[1]" assert julia_code((1,)) == "(1,)" assert julia_code(Tuple(*[1, 2, 3])) == "(1, 2, 3)" assert julia_code((1, x*y, (3, x**2))) == "(1, x.*y, (3, x.^2))" # scalar, matrix, empty matrix and empty list assert julia_code((1, eye(3), Matrix(0, 0, []), [])) == "(1, [1 0 0;\n0 1 0;\n0 0 1], zeros(0, 0), Any[])"
def test_mix_number_pow_symbols(): assert julia_code(pi**3) == 'pi^3' assert julia_code(x**2) == 'x.^2' assert julia_code(x**(pi**3)) == 'x.^(pi^3)' assert julia_code(x**y) == 'x.^y' assert julia_code(x**(y**z)) == 'x.^(y.^z)' assert julia_code((x**y)**z) == '(x.^y).^z'
def test_Rational(): assert julia_code(Rational(3, 7)) == "3/7" assert julia_code(Rational(18, 9)) == "2" assert julia_code(Rational(3, -7)) == "-3/7" assert julia_code(Rational(-3, -7)) == "3/7" assert julia_code(x + Rational(3, 7)) == "x + 3/7" assert julia_code(Rational(3, 7) * x) == "3*x/7"
def test_Rational(): assert julia_code(Rational(3, 7)) == "3/7" assert julia_code(Rational(18, 9)) == "2" assert julia_code(Rational(3, -7)) == "-3/7" assert julia_code(Rational(-3, -7)) == "3/7" assert julia_code(x + Rational(3, 7)) == "x + 3/7" assert julia_code(Rational(3, 7)*x) == "3*x/7"
def test_mix_number_pow_symbols(): assert julia_code(pi**3) == "pi^3" assert julia_code(x**2) == "x.^2" assert julia_code(x**(pi**3)) == "x.^(pi^3)" assert julia_code(x**y) == "x.^y" assert julia_code(x**(y**z)) == "x.^(y.^z)" assert julia_code((x**y)**z) == "(x.^y).^z"
def test_Relational(): assert julia_code(Eq(x, y)) == "x == y" assert julia_code(Ne(x, y)) == "x != y" assert julia_code(Le(x, y)) == "x <= y" assert julia_code(Lt(x, y)) == "x < y" assert julia_code(Gt(x, y)) == "x > y" assert julia_code(Ge(x, y)) == "x >= y"
def test_trick_indent_with_end_else_words(): # words starting with "end" or "else" do not confuse the indenter t1 = S('endless'); t2 = S('elsewhere'); pw = Piecewise((t1, x < 0), (t2, x <= 1), (1, True)) assert julia_code(pw, inline=False) == ( "if (x < 0)\n" " endless\n" "elseif (x <= 1)\n" " elsewhere\n" "else\n" " 1\n" "end")
def test_Matrices(): assert julia_code(Matrix(1, 1, [10])) == "[10]" A = Matrix([[1, sin(x / 2), abs(x)], [0, 1, pi], [0, exp(1), ceiling(x)]]) expected = "[1 sin(x/2) abs(x);\n" "0 1 pi;\n" "0 e ceil(x)]" assert julia_code(A) == expected # row and columns assert julia_code(A[:, 0]) == "[1, 0, 0]" assert julia_code(A[0, :]) == "[1 sin(x/2) abs(x)]" # empty matrices assert julia_code(Matrix(0, 0, [])) == "zeros(0, 0)" assert julia_code(Matrix(0, 3, [])) == "zeros(0, 3)" # annoying to read but correct assert julia_code(Matrix([[x, x - y, -y]])) == "[x x - y -y]"
def test_specfun(): n = Symbol('n') for f in [besselj, bessely, besseli, besselk]: assert julia_code(f(n, x)) == f.__name__ + '(n, x)' for f in [airyai, airyaiprime, airybi, airybiprime]: assert julia_code(f(x)) == f.__name__ + '(x)' assert julia_code(hankel1(n, x)) == 'hankelh1(n, x)' assert julia_code(hankel2(n, x)) == 'hankelh2(n, x)' assert julia_code(jn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2' assert julia_code(yn(n, x)) == 'sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2'
def test_specfun(): n = Symbol("n") for f in [besselj, bessely, besseli, besselk]: assert julia_code(f(n, x)) == f.__name__ + "(n, x)" for f in [airyai, airyaiprime, airybi, airybiprime]: assert julia_code(f(x)) == f.__name__ + "(x)" assert julia_code(hankel1(n, x)) == "hankelh1(n, x)" assert julia_code(hankel2(n, x)) == "hankelh2(n, x)" assert julia_code(jn( n, x)) == "sqrt(2)*sqrt(pi)*sqrt(1./x).*besselj(n + 1/2, x)/2" assert julia_code(yn( n, x)) == "sqrt(2)*sqrt(pi)*sqrt(1./x).*bessely(n + 1/2, x)/2"
def test_Matrices(): assert julia_code(Matrix(1, 1, [10])) == "[10]" A = Matrix([[1, sin(x/2), abs(x)], [0, 1, pi], [0, exp(1), ceiling(x)]]); expected = ("[1 sin(x/2) abs(x);\n" "0 1 pi;\n" "0 e ceil(x)]") assert julia_code(A) == expected # row and columns assert julia_code(A[:,0]) == "[1, 0, 0]" assert julia_code(A[0,:]) == "[1 sin(x/2) abs(x)]" # empty matrices assert julia_code(Matrix(0, 0, [])) == 'zeros(0, 0)' assert julia_code(Matrix(0, 3, [])) == 'zeros(0, 3)' # annoying to read but correct assert julia_code(Matrix([[x, x - y, -y]])) == "[x x - y -y]"
def test_1_over_x_and_sqrt(): # 1.0 and 0.5 would do something different in regular StrPrinter, # but these are exact in IEEE floating point so no different here. assert julia_code(1 / x) == '1./x' assert julia_code(x**-1) == julia_code(x**-1.0) == '1./x' assert julia_code(1 / sqrt(x)) == '1./sqrt(x)' assert julia_code(x**-S.Half) == julia_code(x**-0.5) == '1./sqrt(x)' assert julia_code(sqrt(x)) == 'sqrt(x)' assert julia_code(x**S.Half) == julia_code(x**0.5) == 'sqrt(x)' assert julia_code(1 / pi) == '1/pi' assert julia_code(pi**-1) == julia_code(pi**-1.0) == '1/pi' assert julia_code(pi**-0.5) == '1/sqrt(pi)'
def test_basic_ops(): assert julia_code(x * y) == "x.*y" assert julia_code(x + y) == "x + y" assert julia_code(x - y) == "x - y" assert julia_code(-x) == "-x"
def test_Function(): assert julia_code(sin(x) ** cos(x)) == "sin(x).^cos(x)" assert julia_code(abs(x)) == "abs(x)" assert julia_code(ceiling(x)) == "ceil(x)"
def test_mix_number_mult_symbols(): assert julia_code(3 * x) == "3*x" assert julia_code(pi * x) == "pi*x" assert julia_code(3 / x) == "3./x" assert julia_code(pi / x) == "pi./x" assert julia_code(x / 3) == "x/3" assert julia_code(x / pi) == "x/pi" assert julia_code(x * y) == "x.*y" assert julia_code(3 * x * y) == "3*x.*y" assert julia_code(3 * pi * x * y) == "3*pi*x.*y" assert julia_code(x / y) == "x./y" assert julia_code(3 * x / y) == "3*x./y" assert julia_code(x * y / z) == "x.*y./z" assert julia_code(x / y * z) == "x.*z./y" assert julia_code(1 / x / y) == "1./(x.*y)" assert julia_code(2 * pi * x / y / z) == "2*pi*x./(y.*z)" assert julia_code(3 * pi / x) == "3*pi./x" assert julia_code(S(3) / 5) == "3/5" assert julia_code(S(3) / 5 * x) == "3*x/5" assert julia_code(x / y / z) == "x./(y.*z)" assert julia_code((x + y) / z) == "(x + y)./z" assert julia_code((x + y) / (z + x)) == "(x + y)./(x + z)" assert julia_code((x + y) / EulerGamma) == "(x + y)/eulergamma" assert julia_code(x / 3 / pi) == "x/(3*pi)" assert julia_code(S(3) / 5 * x * y / pi) == "3*x.*y/(5*pi)"
def test_julia_piecewise_times_const(): pw = Piecewise((x, x < 1), (x**2, True)) assert julia_code(2*pw) == "2*((x < 1) ? (x) : (x.^2))" assert julia_code(pw/x) == "((x < 1) ? (x) : (x.^2))./x" assert julia_code(pw/(x*y)) == "((x < 1) ? (x) : (x.^2))./(x.*y)" assert julia_code(pw/3) == "((x < 1) ? (x) : (x.^2))/3"
def test_mix_number_mult_symbols(): assert julia_code(3*x) == "3*x" assert julia_code(pi*x) == "pi*x" assert julia_code(3/x) == "3./x" assert julia_code(pi/x) == "pi./x" assert julia_code(x/3) == "x/3" assert julia_code(x/pi) == "x/pi" assert julia_code(x*y) == "x.*y" assert julia_code(3*x*y) == "3*x.*y" assert julia_code(3*pi*x*y) == "3*pi*x.*y" assert julia_code(x/y) == "x./y" assert julia_code(3*x/y) == "3*x./y" assert julia_code(x*y/z) == "x.*y./z" assert julia_code(x/y*z) == "x.*z./y" assert julia_code(1/x/y) == "1./(x.*y)" assert julia_code(2*pi*x/y/z) == "2*pi*x./(y.*z)" assert julia_code(3*pi/x) == "3*pi./x" assert julia_code(S(3)/5) == "3/5" assert julia_code(S(3)/5*x) == "3*x/5" assert julia_code(x/y/z) == "x./(y.*z)" assert julia_code((x+y)/z) == "(x + y)./z" assert julia_code((x+y)/(z+x)) == "(x + y)./(x + z)" assert julia_code((x+y)/EulerGamma) == "(x + y)/eulergamma" assert julia_code(x/3/pi) == "x/(3*pi)" assert julia_code(S(3)/5*x*y/pi) == "3*x.*y/(5*pi)"
def test_basic_ops(): assert julia_code(x*y) == "x.*y" assert julia_code(x + y) == "x + y" assert julia_code(x - y) == "x - y" assert julia_code(-x) == "-x"
def test_julia_boolean(): assert julia_code(True) == "true" assert julia_code(S.true) == "true" assert julia_code(False) == "false" assert julia_code(S.false) == "false"
def test_Function(): assert julia_code(sin(x)**cos(x)) == "sin(x).^cos(x)" assert julia_code(abs(x)) == "abs(x)" assert julia_code(ceiling(x)) == "ceil(x)"
def test_julia_matrix_assign_to(): A = Matrix([[1, 2, 3]]) assert julia_code(A, assign_to='a') == "a = [1 2 3]" A = Matrix([[1, 2], [3, 4]]) assert julia_code(A, assign_to='A') == "A = [1 2;\n3 4]"
def test_1_over_x_and_sqrt(): # 1.0 and 0.5 would do something different in regular StrPrinter, # but these are exact in IEEE floating point so no different here. assert julia_code(1/x) == '1./x' assert julia_code(x**-1) == julia_code(x**-1.0) == '1./x' assert julia_code(1/sqrt(x)) == '1./sqrt(x)' assert julia_code(x**-S.Half) == julia_code(x**-0.5) == '1./sqrt(x)' assert julia_code(sqrt(x)) == 'sqrt(x)' assert julia_code(x**S.Half) == julia_code(x**0.5) == 'sqrt(x)' assert julia_code(1/pi) == '1/pi' assert julia_code(pi**-1) == julia_code(pi**-1.0) == '1/pi' assert julia_code(pi**-0.5) == '1/sqrt(pi)'
def main(): print() print("Calculates the Coupled-Cluster energy- and amplitude equations") print("See 'An Introduction to Coupled Cluster Theory' by") print("T. Daniel Crawford and Henry F. Schaefer III") print( "Reference to a Lecture Series: http://vergil.chemistry.gatech.edu/notes/sahan-cc-2010.pdf" ) print() # setup hamiltonian p, q, r, s = symbols('p,q,r,s', cls=Dummy) f = AntiSymmetricTensor('f', (p, ), (q, )) pr = NO(Fd(p) * F(q)) v = AntiSymmetricTensor('v', (p, q), (r, s)) pqsr = NO(Fd(p) * Fd(q) * F(s) * F(r)) H = f * pr + Rational(1, 4) * v * pqsr print("Using the hamiltonian:", latex(H)) print("Calculating 4 nested commutators") C = Commutator T1, T2 = get_CC_operators() T = T1 + T2 print("commutator 1...") comm1 = wicks(C(H, T)) comm1 = evaluate_deltas(comm1) comm1 = substitute_dummies(comm1) T1, T2 = get_CC_operators() T = T1 + T2 print("commutator 2...") comm2 = wicks(C(comm1, T)) comm2 = evaluate_deltas(comm2) comm2 = substitute_dummies(comm2) T1, T2 = get_CC_operators() T = T1 + T2 print("commutator 3...") comm3 = wicks(C(comm2, T)) comm3 = evaluate_deltas(comm3) comm3 = substitute_dummies(comm3) T1, T2 = get_CC_operators() T = T1 + T2 print("commutator 4...") comm4 = wicks(C(comm3, T)) comm4 = evaluate_deltas(comm4) comm4 = substitute_dummies(comm4) print("construct Hausdorff expansion...") eq = H + comm1 + comm2 / 2 + comm3 / 6 + comm4 / 24 eq = eq.expand() eq = evaluate_deltas(eq) eq = substitute_dummies(eq, new_indices=True, pretty_indices=pretty_dummies_dict) print("*********************") print() print("extracting CC equations from full Hbar") i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) print() print("CC Energy:") print( latex(wicks(eq, simplify_dummies=True, keep_only_fully_contracted=True))) # print("HERE") # print("HERE") # print("HERE") # print(pycode(wicks(eq, simplify_dummies=True, # keep_only_fully_contracted=True))) # with open("cc_energy.py", "w") as f: # f. with open("ccsd.jl", "w") as f: eq_energy = wicks(eq, simplify_dummies=True, keep_only_fully_contracted=True) f.write(julia_code(eq_energy)) print() print("CC T1:") eqT1 = wicks(NO(Fd(i) * F(a)) * eq, simplify_kronecker_deltas=True, keep_only_fully_contracted=True) eqT1 = substitute_dummies(eqT1) print(latex(eqT1)) print() print("CC T2:") eqT2 = wicks(NO(Fd(i) * Fd(j) * F(b) * F(a)) * eq, simplify_dummies=True, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) # P = PermutationOperator # eqT2 = simplify_index_permutations(eqT2, [P(a, b), P(i, j)]) print(latex(eqT2)) print(latex(simplify(eqT2)))
def test_special_matrices(): assert julia_code(6*Identity(3)) == "6*eye(3)"