コード例 #1
0
    def test_coh_solution(self, **kwargs):

        res = ca(data=self.data,
                 method='coh',
                 foilim=[5, 60],
                 output='pow',
                 taper='dpss',
                 tapsmofrq=1.5,
                 **kwargs)

        # coherence at the harmonic frequencies
        idx_f1 = np.argmin(res.freq < self.f1)
        peak_f1 = res.data[0, idx_f1, 0, 1]
        idx_f2 = np.argmin(res.freq < self.f2)
        peak_f2 = res.data[0, idx_f2, 0, 1]

        # check low phase diffusion has high coherence
        assert peak_f2 > 0.5
        # check that with higher phase diffusion the
        # coherence is lower
        assert peak_f1 < peak_f2

        # check that 5Hz away from the harmonics there
        # is low coherence
        null_idx = (res.freq < self.f1 - 5) | (res.freq > self.f1 + 5)
        null_idx *= (res.freq < self.f2 - 5) | (res.freq > self.f2 + 5)
        assert np.all(res.data[0, null_idx, 0, 1] < 0.1)
コード例 #2
0
    def test_gr_solution(self, **kwargs):

        Gcaus = ca(self.data,
                   method='granger',
                   taper='dpss',
                   tapsmofrq=3,
                   foi=self.foi,
                   **kwargs)

        # check all channel combinations with coupling
        for i, j in zip(*self.cpl_idx):
            peak = Gcaus.data[0, :, i, j].max()
            peak_frq = Gcaus.freq[Gcaus.data[0, :, i, j].argmax()]
            cval = self.AdjMat[i, j]

            dbg_str = f"{peak:.2f}\t{self.AdjMat[i,j]:.2f}\t {peak_frq:.2f}\t"
            print(dbg_str, f'\t {i}', f' {j}')

            # test for directional coupling
            # at the right frequency range
            assert peak >= cval
            assert 35 < peak_frq < 45

            # only plot with defaults
            if len(kwargs) == 0:
                plot_Granger(Gcaus, i, j)
                ppl.legend()
コード例 #3
0
    def test_corr_selections(self):

        selections = mk_selection_dicts(self.nTrials, self.nChannels,
                                        *self.time_span)

        for sel_dct in selections:

            result = ca(self.data, method='corr', select=sel_dct)

            # check here just for finiteness and positivity
            assert np.all(np.isfinite(result.data))
コード例 #4
0
    def test_gr_selections(self):

        # trial, channel and toi selections
        selections = mk_selection_dicts(self.nTrials, self.nChannels,
                                        *self.time_span)

        for sel_dct in selections:

            Gcaus = ca(self.data, method='granger', select=sel_dct)

            # check here just for finiteness and positivity
            assert np.all(np.isfinite(Gcaus.data))
            assert np.all(Gcaus.data[0, ...] >= -1e-10)
コード例 #5
0
    def test_corr_solution(self, **kwargs):

        corr = ca(data=self.data, method='corr', **kwargs)

        # test 0-lag autocorr is 1 for all channels
        assert np.all(corr.data[0, 0].diagonal() > .99)

        # test that at exactly the period-lag
        # correlations remain high w/o phase diffusion
        period_idx = int(1 / self.f1 * self.fs)
        # 100 samples is one period
        assert np.allclose(100, period_idx)
        auto_00 = corr.data[:, 0, 0, 0]
        assert np.all(auto_00[::period_idx] > .99)

        # test for auto-corr minima at half the period
        assert auto_00[period_idx // 2] < -.99
        assert auto_00[period_idx // 2 + period_idx] < -.99

        # test signal with phase diffusion (2nd channel) has
        # decaying correlations (diffusion may lead to later
        # increases of auto-correlation again, hence we check
        # only the first 5 periods)
        auto_11 = corr.data[:, 0, 1, 1]
        assert np.all(np.diff(auto_11[::period_idx])[:5] < 0)

        # test that a pi/2 phase shift moves the 1st
        # crosscorr maximum to 1/4 of the period
        cross_02 = corr.data[:, 0, 0, 2]
        lag_idx = int(1 / self.f1 * self.fs * 0.25)
        # 25 samples is 1/4th period
        assert np.allclose(25, lag_idx)
        assert cross_02[lag_idx] > 0.99
        # same for a period multiple
        assert cross_02[lag_idx + period_idx] > .99
        # plus half the period a minimum occurs
        assert cross_02[lag_idx + period_idx // 2] < -.99

        # test for (anti-)symmetry
        cross_20 = corr.data[:, 0, 2, 0]
        assert cross_20[-lag_idx] > 0.99
        assert cross_20[-lag_idx - period_idx] > 0.99

        # only plot for simple solution test
        if len(kwargs) == 0:
            plot_corr(corr, 0, 0, label='corr 0-0')
            plot_corr(corr, 1, 1, label='corr 1-1')
            plot_corr(corr, 0, 2, label='corr 0-2')
            ppl.xlim((-.01, 0.5))
            ppl.ylim((-1.1, 1.3))
            ppl.legend(ncol=3)
コード例 #6
0
    def test_corr_cfg(self):

        call = lambda cfg: ca(self.data, cfg)
        run_cfg_test(call, method='corr', positivity=False)
コード例 #7
0
    def test_coh_cfg(self):

        call = lambda cfg: ca(self.data, cfg)
        run_cfg_test(call, method='coh')
コード例 #8
0
    def test_coh_foi(self):

        call = lambda foi, foilim: ca(
            self.data, method='coh', foi=foi, foilim=foilim)

        run_foi_test(call, foilim=[0, 70])
コード例 #9
0
    def test_gr_cfg(self):

        call = lambda cfg: ca(self.data, cfg)
        run_cfg_test(call, method='granger')
コード例 #10
0
    def test_gr_foi(self):

        call = lambda foi, foilim: ca(
            self.data, method='granger', foi=foi, foilim=foilim)

        run_foi_test(call, foilim=[0, 70])