コード例 #1
0
def main():

    if not os.path.exists(config.SYNT_PATH):
        os.makedirs(config.SYNT_PATH)

        #copy user config for first time run
        if not os.path.exists(config.USER_CONFIG_PATH):
            user_config = os.path.join(config.PROJECT_PATH, 'user_config.py')
            target_config = config.USER_CONFIG_PATH
            shutil.copy(user_config, target_config)

            print("First time run created a config in ~/.synt that Synt will use. Please make sure everything is ok then re-run your previous commands.")
            return

    parser = argparse.ArgumentParser(description='Tool to interface with synt, provides a way to train, collect and guess from the command line.')
    subparsers = parser.add_subparsers(dest='parser')

    #Train Parser
    train_parser = subparsers.add_parser(
        'train',
        help='Train a classifier.'
    )
    train_parser.add_argument(
        'db_name',
        help="The name of the training database to use. They are stored/retreived from ~/.synt/"
    )
    train_parser.add_argument(
        'samples',
        type=int,
        help="The amount of samples to train on. Uses the samples.db",
    )
    train_parser.add_argument(
        '--classifier_type',
        default='naivebayes',
        choices=('naivebayes',),
        help="The classifier to use. See help for currently supported classifier.",
    )
    train_parser.add_argument(
        '--extractor_type',
        default='stopwords',
        choices=('words', 'stopwords', 'bestwords'),
        help="The feature extractor to use. By default this uses stopwords filtering.",
    )
    train_parser.add_argument(
        '--best_features',
        type=int,
        default=0,
        help="The amount of best words to use, or best features. This should be used in conjunction with bestwords extractor.",
    )
    train_parser.add_argument(
        '--purge',
        default='no',
        choices=('yes', 'no'),
        help="Yes to purge the redis database. By default no."
    )
    train_parser.add_argument(
        '--processes',
        default=4,
        help="Will utilize multiprocessing if available with this number of processes. By default 4."
    )

    #Collect parser
    d = datetime.datetime.now()
    db_name = "samples-%s-%s-%s.db" % (d.year, d.month, d.day)

    collect_parser = subparsers.add_parser(
        'collect',
        help='Collect samples.'
    )
    collect_parser.add_argument(
        '--db_name',
        default=db_name,
        help="Optional database name to store as.",
    )
    collect_parser.add_argument(
        '--commit_every',
        default=200,
        type=int,
        help="Write to sqlite database after every 'this number'. Default is 200",
    )
    collect_parser.add_argument(
        '--max_collect',
        default=2000000,
        type=int,
        help="The amount to stop collecting at. Default is 2 million",
    )
    collect_parser.add_argument(
        '--query_file',
        default='',
        type=str,
        help="Absolute path to query file to use.",
    )

    #Fetch parser
    fetch_parser = subparsers.add_parser(
        'fetch',
        help='Fetches premade sample database.'
    )
    fetch_parser.add_argument(
        '--db_name',
        help="Fetches the default samples database from github and stores it as 'db' in ~/.synt/. Default db name is 'samples.db'.",
        default='samples.db',
    )

    #Guess parser
    guess_parser = subparsers.add_parser(
        'guess',
        help='Guess sentiment'
    )
    guess_parser.add_argument(
        'guess',
        nargs='?',
        default=True,
        help="Starts the guess prompt.",
    )
    guess_parser.add_argument(
        '--text',
        default='',
        help="Given text, will guess the sentiment on it.",
    )

    #Accuracy parser
    accuracy_parser = subparsers.add_parser(
        'accuracy',
        help="Test accuracy of classifier.",
    )
    accuracy_parser.add_argument(
        '--db_name',
        default='',
        help="""The samples database to use, if left empty the same database that was used for training is used for testing (with fresh samples). Specify db with with a database name located in ~/.synt.""",
    )
    accuracy_parser.add_argument(
        '--test_samples',
        type=int,
        help="""The amount of samples to test on. By default this is figured out internally and amounts to 25%
        of the training sample count. You can override this.""",
        default=0,
    )
    accuracy_parser.add_argument(
        '--neutral_range',
        default=0.2,
        type=float,
        help="Neutral range to use. By default this is 0.2.",
    )
    accuracy_parser.add_argument(
        '--offset',
        default=0,
        type=int,
        help="""By default the test samples are taken from the offset of the trained samples. i.e if 100 samples are trained and we
        are testing on 25 it will start from 100-125 to ensure the testing samples are new. You can override what offset to use
        with this argument.""",
    )

    args = parser.parse_args()

    if args.parser == 'train':
        print("Beginning train on {} database with {} samples.".format(args.db_name, args.samples))

        start = time.time()

        purge = False
        if args.purge == 'yes':
            purge = True

        train(
            db_name         = args.db_name,
            samples         = args.samples,
            classifier_type = args.classifier_type,
            extractor_type  = args.extractor_type,
            best_features   = args.best_features,
            processes       = args.processes,
            purge           = purge,
        )

        print("Finished training in {}.".format(time.time() - start))

    elif args.parser == 'collect':
        print("Beginning collecting {} samples to {}.".format(args.max_collect, args.db_name))

        start = time.time()

        collect(
            db_name      = args.db_name,
            commit_every = args.commit_every,
            max_collect  = args.max_collect,
            query_file   = args.query_file,
        )

        print("Finished collecting samples in {} seconds.".format(time.time() - start))

    elif args.parser == 'fetch':
        print("Beginning fetch to '{}' database.".format(args.db_name))
        fetch(args.db_name)
        print("Finished fetch.")

    elif args.parser == 'guess':
        g = Guesser()

        if args.text:
            print("Guessed: ",  g.guess(args.text))
            sys.exit()

        print("Enter something to calculate the synt of it!")
        print("Press enter to quit.")

        while True:
            text = raw_input("synt> ")
            if not text:
                break
            print('Guessed: {}'.format(g.guess(text)))

    elif args.parser == 'accuracy':
        print("Beginning accuracy test with neutral range {}.".format(args.neutral_range))

        start = time.time()

        n_accur, m_accur, classifier = test_accuracy(
            db_name       = args.db_name,
            test_samples  = args.test_samples,
            neutral_range = args.neutral_range,
            offset        = args.offset,
        )

        print("NLTK Accuracy: {}".format(n_accur))
        print("Manual Accuracy: {}".format(m_accur))

        classifier.show_most_informative_features(50)

        print("Finished testing in {} seconds.".format(time.time() - start))
コード例 #2
0
ファイル: __init__.py プロジェクト: daniel-cloudspace/synt
def main():

    parser = argparse.ArgumentParser(description='Tool to interface with synt, provides a way to train, collect and guess from the command line.')

    subparsers = parser.add_subparsers(help='sub-command help', dest='parser')

    #train command
    parser_train = subparsers.add_parser('train', help='Train a classifer')
    parser_train.add_argument(
            '--train_samples',
            action='store',
            type=int,
            default=2000,
            help="""The amount of samples to train on."""
    )

    parser_train.add_argument(
            '--wc_samples',
            action='store',
            type=int,
            default=2000,
            help="""We store a word:count mapping to determine a list of useful and popular words to use.
            This is the the number of samples to generate our words from. Generally you want this number to
            be pretty high as it will gradually reduce variations and produce a consistent set of useful words."""
    )

    parser_train.add_argument(
            '--wc_range',
            action='store',
            type=int,
            default=2000,
            help="""This is the actual amount of words to use to build freqDists. By this point (depending on how many word samples used) you will have a lot of tokens. Most of these tokens are uninformative and produce nothing but noise. This is the first layer of cutting down that batch to something reasonable. The number provided will use words
            from 0 .. wc_range. Words are already sorted by most frequent to least."""

    )
    parser_train.add_argument(
        '--fresh',
        action='store',
        type=int,
        default=False,
        help="""If True this will force a new train, useful to test various sample, wordcount combinations. 1 = True 0 = False"""
    )

    parser_train.add_argument(
        '--verbose',
        action='store',
        type=int,
        default=True,
        help="""Displays log info to stdout by default. 1 = True 0 = False"""
    )

    #collect command
    parser_collect = subparsers.add_parser('collect', help='Collect sample data.')
    parser_collect.add_argument('fetch', help='Grab the sample_database')
    parser_collect.add_argument('--time', action='store', type=int, default=500)

    #guess command
    parser_guess = subparsers.add_parser(
        'guess',
        description="Guess' sentiment. This relies on a trained classifier to exist in the database which means you should run 'train' before attempting to guess. The output is a float between -1 and 1 detailing how negative or positive the sentiment is. Anything close to 0 should be treated as relativley neutral.",
    )
    parser_guess.add_argument(
            'text',
            action='store',
            help = 'Text to guess on.'
    )

    #tester commmand
    parser_tester = subparsers.add_parser(
        'test',
        description = """Runs the tester test function to test accuracy. You can provide a number of samples by --samples [num]""" 
    )
    
    parser_tester.add_argument(
        '--samples',
        action='store',
        type=int,
        help='Tests the accuracy with number of samples as test samples.',
    )

    args = parser.parse_args()

    if args.parser == 'train':
        train(
            train_samples=args.train_samples,
            wordcount_samples=args.wc_samples,
            wordcount_range=args.wc_range,
            verbose=args.verbose,
            force_update=args.fresh,
    )

    if args.parser == 'collect':
        if args.fetch:
            fetch()
        else:
            collect()
        pass

    if args.parser == 'guess':
        text = args.text.strip()
        print(guess(text=text))

    if args.parser == 'test':
        if args.samples:
            test(test_samples=args.samples)
        else: #runs with default test_samples
            test()