コード例 #1
0
def train_model(model_class,input_dimensions, hidden_size, batch_size, truncated_len, num_epochs, model_name,
print_period=50, save_period=50, log_period=50, n_files_per_epoch=5, sparsify_epochs = [], sparsity_level=1, wav_fnames=None, align_fnames=None):
    if model_name not in os.listdir(DIRS['MODELS']):
        os.mkdir(DIRS['MODELS']+model_name)
    
    tf.reset_default_graph()
    model = model_class(input_dimensions, hidden_size)
    init_variables = tf.global_variables_initializer()
    saver = tf.train.Saver()
    if wav_fnames is None:
        wav_fnames = Path(DIRS['RAW_DATA']).rglob("*.wav")
    
    epochs_per_files_last = 0
    
    # Initialize the losses
    train_losses = []
    validation_losses = []

    with tf.Session() as sess:
        sess.run(init_variables)
        # Perform all the iterations
        for epoch in tqdm_notebook(range(num_epochs)):
            if epochs_per_files_last==0:
                X = sl.load_data(wav_fnames, n_files_per_epoch)
                if align_fnames is not None:
                    toh = sl.load_text_oh(align_fnames, n_files_per_epoch)
                total_series_length = int(X.shape[1])
                epochs_per_files_last = total_series_length//batch_size//truncated_len
            epochs_per_files_last-=1
            
            if epoch in sparsify_epochs:
                k = model.calc_sparsity_level(epoch, sparsify_epochs, sparsity_level)
                model.sparsify(k, sess)
            
            X_train, Y_train, X_test, Y_test = sl.get_train_test(X, batch_size, truncated_len, sess, text_oh=toh)
            train_loss, validation_loss = model.train(X_train, Y_train, X_test, Y_test, sess)

            # Log the losses
            train_losses.append(train_loss)
            validation_losses.append(validation_loss)
            
            msg = f'Iteration: {epoch}, train loss: {train_loss:.4f}, val loss: {validation_loss:.4f}'
            # Display an update every 50 iterations
            if epoch % print_period == 0 and epoch!=0:
                print(msg)
            if epoch % print_period == 0 and epoch!=0:
                sl.plot_losses(train_losses, validation_losses, title=msg)
                plt.show()
            if epoch % save_period == 0:
                saver.save(sess, DIRS['MODELS']+model_name+'/checkpoint',global_step=epoch,write_meta_graph=True)
        
        sl.plot_losses(train_losses, validation_losses, title=msg)
        plt.show()

        saver.save(sess, DIRS['MODELS']+model_name+'/final')
        
    return train_losses, validation_losses, model
コード例 #2
0
def train_model(input_dimensions, hidden_size, batch_size, truncated_len, num_epochs, model_name,
print_period=50, save_period=50, log_period=50):
    if model_name not in os.listdir(DIRS['MODELS']):
        os.mkdir(DIRS['MODELS']+model_name)
    
    tf.reset_default_graph()
    model = WaveGRU(input_dimensions, hidden_size)
    init_variables = tf.global_variables_initializer()
    saver = tf.train.Saver()
    wav_fnames = Path(DIRS['RAW_DATA']).rglob("*.wav")
    
    epochs_per_files_last = 0
    
    
    # Initialize the losses
    train_losses = []
    validation_losses = []


    with tf.Session() as sess:
        sess.run(init_variables)
        
        # Perform all the iterations
        for epoch in tqdm_notebook(range(num_epochs)):
            if epochs_per_files_last==0:
                X = sl.load_data(wav_fnames, 5)
                total_series_length = int(X.shape[1])
                epochs_per_files_last = total_series_length//batch_size//truncated_len
            epochs_per_files_last-=1
            
            X_train, Y_train, X_test, Y_test = sl.get_train_test(X, batch_size, truncated_len, sess)
            train_loss, validation_loss = model.train(X_train, Y_train, X_test, Y_test, sess)

            # Log the losses
            train_losses.append(train_loss)
            validation_losses.append(validation_loss)

            # Display an update every 50 iterations
            if epoch % print_period == 0 and epoch!=0:
                print(f'Iteration: {epoch}, train loss: {train_loss:.4f}, val loss: {validation_loss:.4f}')
            if epoch % print_period == 0 and epoch!=0:
                sl.plot_losses(train_losses, validation_losses,
                            title=f'Iteration: {epoch}, train loss: {train_loss:.4f}, val loss: {validation_loss:.4f}')
                plt.show()
            if epoch % save_period == 0:
                saver.save(sess, DIRS['MODELS']+model_name+'/checkpoint',global_step=epoch,write_meta_graph=True)
        
        sl.plot_losses(train_losses, validation_losses,
                     title='Iteration: %d, train loss: %.4f, test loss: %.4f' % (epoch, train_loss, validation_loss))
        plt.show()

        saver.save(sess, DIRS['MODELS']+model_name+'/final')
        
    return train_losses, validation_losses, model
コード例 #3
0
for idx, m in enumerate([Ru, Rr, Re]):
    plt.subplot(1,3,idx+1)
    plt.imshow(m)
    plt.title(['Ru','Rr','Re'][idx])
plt.tight_layout()
plt.show()

for idx, m in enumerate([Iu, Ir, Ie]):
    plt.subplot(1,3,idx+1)
    sns.heatmap(m)
    plt.title(['Iu','Ir','Ie'][idx])
plt.tight_layout()
plt.show()audio = sl.load_audio_not_one_hot(DIRS['RAW_DATA']+'cv_corpus_v1/cv-other-train/sample-052026.wav')X = sl.load_data([DIRS['RAW_DATA']+'cv_corpus_v1/cv-other-train/sample-052026.wav'])with tf.Session() as sess:
    init_variables = tf.global_variables_initializer()
    sess.run(init_variables)
    O1, O2, O3, O4 = sess.run([gru.O1, gru.O2, gru.O3, gru.O4])
    Iu, Ir, Ie = sess.run([gru.Iu, gru.Ir, gru.Ie])
    Ru, Rr, Re = sess.run([gru.Ru, gru.Rr, gru.Re])
    audio_eval = sess.run(audio)
    X_eval = sess.run(X)
    X_train, Y_train, X_test, Y_test = sl.get_train_test(X, 10, 5000)
    Y_train_audio = ((Y_train*128+128)[:,:,0])*256+(Y_train*128+128)[:,:,1]
    Y_train_audio_eval = sess.run(Y_train_audio)
    os.listdir(DIRS['RAW_DATA']+'cv_corpus_v1/cv-other-train')plt.plot(audio_eval, color='blue', label='audio')
for i in Y_train_audio_eval[:1]:
    plt.plot(i)
plt.legend()
plt.show()with tf.Session() as sess:
    sess.run(init_variables)
    sl.write_audio_not_one_hot(audio=gen_to_wav[0], filename='output_0.wav', session=sess, quantization_channels=quant)
コード例 #4
0
epoch_start = 0

# In[15]:

# Initialize the losses
train_losses = []
validation_losses = []

with tf.Session() as sess:
    sess.run(init_variables)
    O1_before = gru.O1.eval(session=sess)

    # Perform all the iterations
    for epoch in tqdm_notebook(range(epoch_start, epoch_start + num_epochs)):
        X_train, Y_train, X_test, Y_test = sl.get_train_test(
            X, batch_size, truncated_len, sess)
        train_loss, validation_loss = gru.train(X_train, Y_train, X_test,
                                                Y_test, sess)

        # Log the losses
        train_losses.append(train_loss)
        validation_losses.append(validation_loss)

        if validation_loss > max(validation_losses[-n_early_stopping:]):
            print(f'Early stopped at {epoch} epoch')
            break

        # Display an update every 50 iterations
        if epoch % 50 == 0:
            sl.plot_losses(
                train_losses,
コード例 #5
0
# In[71]:


data = sl.load_data([fname_wav])


# In[72]:


oh = sl.load_text_oh([fname_align])


# In[73]:


sl.get_train_test(data, batch_size=10, truncated_len=100, text_oh=oh)


# In[65]:


data


# In[66]:


oh


# In[57]: