コード例 #1
0
def bmc_trace(prog: syntax.Program,
              trace: syntax.TraceDecl,
              s: Solver,
              sat_checker: Callable[[Solver, List[str]],
                                    Optional[logic.Trace]],
              log: bool = False) -> Optional[logic.Trace]:
    n_states = len(list(trace.transitions())) + 1
    if log:
        print('%s states' % (n_states, ))

    keys = ['state%2d' % i for i in range(n_states)]

    for k in keys:
        s.get_translator(
            k)  # initialize all the keys before pushing a solver stack frame

    with s:
        lator = s.get_translator(keys[0])
        if len(trace.components) > 0 and not isinstance(
                trace.components[0], syntax.AssertDecl):
            for init in prog.inits():
                s.add(lator.translate_expr(init.expr))

        i = 0
        for c in trace.components:
            if isinstance(c, syntax.AssertDecl):
                if c.expr is None:
                    if i != 0:
                        utils.print_error_and_exit(
                            c.tok,
                            'assert init is only allowed in the first state')
                    for init in prog.inits():
                        s.add(
                            s.get_translator(keys[i]).translate_expr(
                                init.expr))
                else:
                    s.add(s.get_translator(keys[i]).translate_expr(c.expr))
            else:
                te: syntax.TransitionExpr = c.transition
                if isinstance(te, syntax.AnyTransition):
                    logic.assert_any_transition(s,
                                                str(i),
                                                keys[i + 1],
                                                keys[i],
                                                allow_stutter=True)
                else:
                    l = []
                    for call in te.calls:
                        tid = z3.Bool(
                            logic.get_transition_indicator(
                                str(i), call.target))
                        l.append(tid)
                        s.add(tid == translate_transition_call(
                            s, keys[i + 1], keys[i], call))
                    s.add(z3.Or(*l))

                i += 1

        return sat_checker(s, keys)
コード例 #2
0
def relaxed_program(prog: syntax.Program) -> syntax.Program:
    new_decls: List[syntax.Decl] = [d for d in prog.sorts()]

    actives: Dict[syntax.SortDecl, syntax.RelationDecl] = {}
    for sort in prog.sorts():
        name = prog.scope.fresh('active_' + sort.name)
        r = syntax.RelationDecl(name, arity=[syntax.UninterpretedSort(sort.name)],
                                mutable=True, derived=None, annotations=[])
        actives[sort] = r
        new_decls.append(r)

    # active relations initial conditions: always true
    for sort in prog.sorts():
        name = prog.scope.fresh(sort.name[0].upper())
        expr = syntax.Forall([syntax.SortedVar(name, None)],
                             syntax.Apply(actives[sort].name, [syntax.Id(name)]))
        new_decls.append(syntax.InitDecl(name=None, expr=expr))

    for d in prog.decls:
        if isinstance(d, syntax.SortDecl):
            pass  # already included above
        elif isinstance(d, syntax.RelationDecl):
            if d.derived_axiom is not None:
                expr = syntax.relativize_quantifiers(actives, d.derived_axiom)
                new_decls.append(syntax.RelationDecl(d.name, d.arity, d.mutable, expr,
                                                     d.annotations))
            else:
                new_decls.append(d)
        elif isinstance(d, syntax.ConstantDecl):
            new_decls.append(d)
        elif isinstance(d, syntax.FunctionDecl):
            new_decls.append(d)
        elif isinstance(d, syntax.AxiomDecl):
            new_decls.append(d)
        elif isinstance(d, syntax.InitDecl):
            new_decls.append(d)
        elif isinstance(d, syntax.DefinitionDecl):
            assert not isinstance(d.body, syntax.BlockStatement), \
                "relax does not support transitions written in imperative syntax"
            mods, expr = d.body
            expr = syntax.relativize_quantifiers(actives, expr)
            if d.is_public_transition:
                guard = syntax.relativization_guard_for_binder(actives, d.binder)
                expr = syntax.And(guard, expr)
            new_decls.append(syntax.DefinitionDecl(d.is_public_transition, d.num_states, d.name,
                                                   params=d.binder.vs, body=(mods, expr)))
        elif isinstance(d, syntax.InvariantDecl):
            expr = syntax.relativize_quantifiers(actives, d.expr)
            new_decls.append(syntax.InvariantDecl(d.name, expr=expr,
                                                  is_safety=d.is_safety, is_sketch=d.is_sketch))
        else:
            assert False, d

    new_decls.append(relaxation_action_def(prog, actives=actives, fresh=True))

    res = syntax.Program(new_decls)
    res.resolve()  # #sorrynotsorry
    return res
コード例 #3
0
ファイル: typechecker.py プロジェクト: wilcoxjay/mypyvy
def typecheck_program(prog: syntax.Program) -> None:
    typecheck_program_vocab(prog)

    for d in prog.decls_containing_exprs():
        typecheck_declcontainingexpr(prog.scope, d)

    for tr in prog.traces():
        typecheck_tracedecl(prog.scope, tr)

    assert len(prog.scope.stack) == 0
コード例 #4
0
ファイル: typechecker.py プロジェクト: wilcoxjay/mypyvy
def typecheck_program_vocab(prog: syntax.Program) -> None:
    prog.scope = scope = syntax.Scope[InferenceSort]()

    for s in prog.sorts():
        typecheck_sortdecl(scope, s)

    for rcf in prog.relations_constants_and_functions():
        typecheck_statedecl(scope, rcf)

    for d in prog.definitions():
        scope.add_definition(d)
コード例 #5
0
def bmc_trace(prog: syntax.Program,
              trace: syntax.TraceDecl,
              s: Solver,
              sat_checker: Callable[[Solver, int], Optional[logic.Trace]],
              log: bool = False) -> Optional[logic.Trace]:
    n_states = len(list(trace.transitions())) + 1
    if log:
        print('%s states' % (n_states, ))

    lator = s.get_translator(n_states)

    with s.new_frame():
        if len(trace.components) > 0 and not isinstance(
                trace.components[0], syntax.AssertDecl):
            for init in prog.inits():
                s.add(lator.translate_expr(init.expr))

        i = 0
        for c in trace.components:
            if isinstance(c, syntax.AssertDecl):
                if c.expr is None:
                    if i != 0:
                        utils.print_error_and_exit(
                            c.span,
                            'assert init is only allowed in the first state')
                    for init in prog.inits():
                        assert i == 0
                        s.add(lator.translate_expr(init.expr))
                else:
                    s.add(lator.translate_expr(New(c.expr, i)))
            else:
                te: syntax.TransitionExpr = c.transition
                if isinstance(te, syntax.AnyTransition):
                    logic.assert_any_transition(s,
                                                lator,
                                                i,
                                                allow_stutter=True)
                else:
                    l = []
                    for call in te.calls:
                        tid = z3.Bool(
                            logic.get_transition_indicator(
                                str(i), call.target))
                        l.append(tid)
                        s.add(
                            z3.Implies(
                                tid,
                                translate_transition_call(s, lator, i, call)))
                    s.add(z3.Or(*l))

                i += 1

        return sat_checker(s, n_states)
コード例 #6
0
def decls_quantifier_alternation_graph(prog: Program,
                                       additional: List[Expr]) -> DiGraph:
    res = quantifier_alternation_graph(
        prog, [axiom.expr for axiom in prog.axioms()] +
        [cast(Expr, rel.derived_axiom)
         for rel in prog.derived_relations()] + additional)
    for f in prog.functions():
        for asort in f.arity:
            esort = f.sort
            res.add_edge(
                prog.scope.get_sort_checked(str(asort)).name,
                prog.scope.get_sort_checked(str(esort)).name)

    return res
コード例 #7
0
def functions_total_axioms(prog: syntax.Program) -> List[Expr]:
    res = []

    for func in prog.functions():
        # TODO: generation of part of the formula duplicated from relaxation_action_def.
        # TODO: would be best to beef up the expression-generation library
        names: List[str] = []
        params = []
        for arg_sort in func.arity:
            arg_sort_decl = syntax.get_decl_from_sort(arg_sort)
            name = prog.scope.fresh(arg_sort_decl.name[0].upper(),
                                    also_avoid=names)
            names.append(name)
            params.append(syntax.SortedVar(name, arg_sort))
        ap_func = syntax.Apply(func.name,
                               tuple(syntax.Id(v.name) for v in params))

        name = prog.scope.fresh('y', also_avoid=names)

        ax = syntax.Forall(
            tuple(params),
            syntax.Exists((syntax.SortedVar(name, func.sort), ),
                          syntax.Eq(syntax.Id(name), ap_func)))
        with prog.scope.n_states(1):
            typechecker.typecheck_expr(prog.scope, ax, syntax.BoolSort)

        res.append(ax)

    return res
コード例 #8
0
ファイル: relaxed_traces.py プロジェクト: jrkoenig/mypyvy
def closing_qa_cycle(prog: syntax.Program, free_vars_sorts: List[syntax.SortDecl],
                                           existentially_quantified_sorts: List[syntax.SortDecl]) -> bool:
    qa_graph = prog.decls_quantifier_alternation_graph([])
    assert networkx.is_directed_acyclic_graph(qa_graph)

    for asort in free_vars_sorts:
        for esort in existentially_quantified_sorts:
            qa_graph.add_edge(asort.name, esort.name)

    return not networkx.is_directed_acyclic_graph(qa_graph)
コード例 #9
0
def consts_exist_axioms(prog: syntax.Program) -> List[Expr]:
    res = []

    for c in prog.constants():
        name = prog.scope.fresh('e_%s' % c.name)
        ax = syntax.Exists((syntax.SortedVar(name, c.sort), ),
                           syntax.Eq(syntax.Id(c.name), syntax.Id(name)))
        with prog.scope.n_states(1):
            typechecker.typecheck_expr(prog.scope, ax, syntax.BoolSort)
        res.append(ax)

    return res
コード例 #10
0
    def _init_axioms(self, prog: syntax.Program, include_program: bool,
                     reassert_axioms: bool,
                     additional_mutable_axioms: List[Expr]) -> None:
        axioms = []
        mutable_axioms = []
        if include_program:
            if not reassert_axioms:
                axioms += [a.expr for a in prog.axioms()]
            else:
                mutable_axioms += [a.expr for a in prog.axioms()]

            mutable_axioms += [
                r.derived_axiom for r in prog.derived_relations()
                if r.derived_axiom is not None
            ]

        mutable_axioms += additional_mutable_axioms

        t = self.get_translator(0)
        for aexpr in axioms:
            self.add(t.translate_expr(aexpr))

        self.register_mutable_axioms(mutable_axioms)
コード例 #11
0
def load_relaxed_trace_from_updr_cex(prog: Program, s: Solver) -> logic.Trace:
    import xml.dom.minidom  # type: ignore
    collection = xml.dom.minidom.parse(
        "paxos_derived_trace.xml").documentElement

    components: List[syntax.TraceComponent] = []

    xml_decls = reversed(collection.childNodes)
    seen_first = False

    for elm in xml_decls:
        if isinstance(elm, xml.dom.minidom.Text):  # type: ignore
            continue
        if elm.tagName == 'state':
            diagram = parser.parse_expr(elm.childNodes[0].data)
            typechecker.typecheck_expr(prog.scope, diagram, syntax.BoolSort)
            assert isinstance(
                diagram, syntax.QuantifierExpr) and diagram.quant == 'EXISTS'
            active_clauses = [
                relaxed_traces.active_var(v.name, str(v.sort))
                for v in diagram.get_vs()
            ]

            if not seen_first:
                # restrict the domain to be subdomain of the diagram's existentials
                seen_first = True
                import itertools  # type: ignore
                for sort, vars in itertools.groupby(
                        diagram.get_vs(),
                        lambda v: v.sort):  # TODO; need to sort first
                    free_var = syntax.SortedVar(
                        syntax.the_program.scope.fresh("v_%s" % str(sort)),
                        None)

                    # TODO: diagram simplification omits them from the exists somewhere
                    consts = list(
                        filter(lambda c: c.sort == sort, prog.constants()))
                    els: Sequence[Union[syntax.SortedVar, syntax.ConstantDecl]]
                    els = list(vars)
                    els += consts
                    restrict_domain = syntax.Forall(
                        (free_var, ),
                        syntax.Or(*(syntax.Eq(syntax.Id(free_var.name),
                                              syntax.Id(v.name))
                                    for v in els)))
                    active_clauses += [restrict_domain]

            diagram_active = syntax.Exists(
                diagram.get_vs(), syntax.And(diagram.body, *active_clauses))
            typechecker.typecheck_expr(prog.scope, diagram_active,
                                       syntax.BoolSort)

            components.append(syntax.AssertDecl(expr=diagram_active))
        elif elm.tagName == 'action':
            action_name = elm.childNodes[0].data.split()[0]
            tcall = syntax.TransitionCalls(
                calls=[syntax.TransitionCall(target=action_name, args=None)])
            components.append(syntax.TraceTransitionDecl(transition=tcall))
        else:
            assert False, "unknown xml tagName"

    trace_decl = syntax.TraceDecl(components=components, sat=True)
    migrated_trace = bmc_trace(
        prog,
        trace_decl,
        s,
        lambda s, ks: logic.check_solver(s, ks, minimize=True),
        log=False)

    assert migrated_trace is not None
    import pickle
    pickle.dump(migrated_trace, open("migrated_trace.p", "wb"))
    return migrated_trace
コード例 #12
0
ファイル: relaxed_traces.py プロジェクト: jrkoenig/mypyvy
def active_rel_by_sort(prog: syntax.Program) -> Dict[syntax.SortDecl, syntax.RelationDecl]:
    return dict((sort, active_rel(sort)) for sort in prog.sorts())
コード例 #13
0
ファイル: relaxed_traces.py プロジェクト: jrkoenig/mypyvy
def relaxation_action_def(prog: syntax.Program,
                          actives: Optional[Dict[syntax.SortDecl, syntax.RelationDecl]]=None,
                          fresh: bool=True)  \
                            -> syntax.DefinitionDecl:
    decrease_name = (prog.scope.fresh('decrease_domain') if fresh else 'decrease_domain')
    mods = []
    conjs: List[Expr] = []
    if actives is None:
        actives = active_rel_by_sort(prog)

    # a conjunct allowing each domain to decrease
    for sort in prog.sorts():
        name = prog.scope.fresh(sort.name[0].upper())
        ap = syntax.Apply(actives[sort].name, [syntax.Id(None, name)])
        expr = syntax.Forall([syntax.SortedVar(None, name, None)],
                             syntax.Implies(ap, syntax.Old(ap)))
        conjs.append(expr)
        mods.append(syntax.ModifiesClause(None, actives[sort].name))

    # constants are active
    for const in prog.constants():
        conjs.append(syntax.Apply(actives[syntax.get_decl_from_sort(const.sort)].name,
                                  [syntax.Id(None, const.name)]))

    # functions map active to active
    for func in prog.functions():
        names: List[str] = []
        func_conjs = []
        for arg_sort in func.arity:
            arg_sort_decl = syntax.get_decl_from_sort(arg_sort)
            name = prog.scope.fresh(arg_sort_decl.name[0].upper(),
                                    also_avoid=names)
            names.append(name)
            func_conjs.append(syntax.Apply(actives[arg_sort_decl].name, [syntax.Id(None, name)]))
        ap_func = syntax.Old(syntax.Apply(func.name, [syntax.Id(None, name) for name in names]))
        active_func = syntax.Apply(actives[syntax.get_decl_from_sort(func.sort)].name, [ap_func])
        conjs.append(syntax.Forall([syntax.SortedVar(None, name, None) for name in names],
                                   syntax.Implies(syntax.And(*func_conjs), active_func)))

    # (relativized) axioms hold after relaxation
    for axiom in prog.axioms():
        if not syntax.is_universal(axiom.expr):
            conjs.append(syntax.relativize_quantifiers(actives, axiom.expr))

    # derived relations have the same interpretation on the active domain
    for rel in prog.derived_relations():
        names = []
        rel_conjs = []
        for arg_sort in rel.arity:
            arg_sort_decl = syntax.get_decl_from_sort(arg_sort)
            name = prog.scope.fresh(arg_sort_decl.name[0].upper(),
                                    also_avoid=names)
            names.append(name)
            rel_conjs.append(syntax.Apply(actives[arg_sort_decl].name, [syntax.Id(None, name)]))
        ap_rel = syntax.Apply(rel.name, [syntax.Id(None, name) for name in names])
        conjs.append(syntax.Forall([syntax.SortedVar(None, name, None) for name in names],
                                   syntax.Implies(syntax.And(*rel_conjs),
                                                  syntax.Iff(ap_rel, syntax.Old(ap_rel)))))

    return syntax.DefinitionDecl(None, public=True, twostate=True, name=decrease_name,
                                           params=[], body=(mods, syntax.And(*conjs)))
コード例 #14
0
def relaxed_program(prog: syntax.Program) -> syntax.Program:
    new_decls: List[syntax.Decl] = [d for d in prog.sorts()]

    actives: Dict[syntax.SortDecl, syntax.RelationDecl] = {}
    for sort in prog.sorts():
        name = prog.scope.fresh('active_' + sort.name)
        r = syntax.RelationDecl(name,
                                arity=(syntax.UninterpretedSort(sort.name), ),
                                mutable=True)
        actives[sort] = r
        new_decls.append(r)

    # active relations initial conditions: always true
    for sort in prog.sorts():
        name = prog.scope.fresh(sort.name[0].upper())
        expr = syntax.Forall((syntax.SortedVar(name, None), ),
                             syntax.Apply(actives[sort].name,
                                          (syntax.Id(name), )))
        new_decls.append(syntax.InitDecl(name=None, expr=expr))

    for d in prog.decls:
        if isinstance(d, syntax.SortDecl):
            pass  # already included above
        elif isinstance(d, syntax.RelationDecl):
            if d.derived_axiom is not None:
                expr = syntax.relativize_quantifiers(actives, d.derived_axiom)
                new_decls.append(
                    syntax.RelationDecl(d.name,
                                        d.arity,
                                        d.mutable,
                                        expr,
                                        annotations=d.annotations))
            else:
                new_decls.append(d)
        elif isinstance(d, syntax.ConstantDecl):
            new_decls.append(d)
        elif isinstance(d, syntax.FunctionDecl):
            new_decls.append(d)
        elif isinstance(d, syntax.AxiomDecl):
            new_decls.append(d)
        elif isinstance(d, syntax.InitDecl):
            new_decls.append(d)
        elif isinstance(d, syntax.DefinitionDecl):
            relativized_def = relativize_decl(d,
                                              actives,
                                              prog.scope,
                                              inline_relax_actives=False)
            new_decls.append(relativized_def)
        elif isinstance(d, syntax.InvariantDecl):
            expr = syntax.relativize_quantifiers(actives, d.expr)
            new_decls.append(
                syntax.InvariantDecl(d.name,
                                     expr=expr,
                                     is_safety=d.is_safety,
                                     is_sketch=d.is_sketch))
        else:
            assert False, d

    new_decls.append(relaxation_action_def(prog, actives=actives, fresh=True))

    res = syntax.Program(new_decls)
    typechecker.typecheck_program(res)  # #sorrynotsorry
    return res
コード例 #15
0
def relaxation_action_def(prog: syntax.Program,
                          actives: Optional[Dict[syntax.SortDecl,
                                                 syntax.RelationDecl]] = None,
                          fresh: bool = True) -> syntax.DefinitionDecl:
    decrease_name = (prog.scope.fresh('decrease_domain')
                     if fresh else 'decrease_domain')
    mods: Tuple[syntax.ModifiesClause, ...] = ()
    conjs: List[Expr] = []
    if actives is None:
        actives = active_rel_by_sort(prog)

    # a conjunct allowing each domain to decrease
    new_mods, new_conjs = relax_actives_action_chunk(prog.scope, actives)
    mods += new_mods
    conjs += new_conjs

    # constants are active
    for const in prog.constants():
        conjs.append(
            syntax.New(
                syntax.Apply(
                    actives[syntax.get_decl_from_sort(const.sort)].name,
                    (syntax.Id(const.name), ))))

    # functions map active to active
    for func in prog.functions():
        names: List[str] = []
        func_conjs = []
        for arg_sort in func.arity:
            arg_sort_decl = syntax.get_decl_from_sort(arg_sort)
            name = prog.scope.fresh(arg_sort_decl.name[0].upper(),
                                    also_avoid=names)
            names.append(name)
            func_conjs.append(
                syntax.New(
                    syntax.Apply(actives[arg_sort_decl].name,
                                 (syntax.Id(name), ))))
        ap_func = syntax.Apply(func.name,
                               tuple(syntax.Id(name) for name in names))
        name = prog.scope.fresh('y', also_avoid=names)
        active_func = syntax.Let(
            syntax.SortedVar(name, func.sort), ap_func,
            syntax.New(
                syntax.Apply(
                    actives[syntax.get_decl_from_sort(func.sort)].name,
                    (syntax.Id(name), ))))
        conjs.append(
            syntax.Forall(
                tuple(syntax.SortedVar(name, None) for name in names),
                syntax.Implies(syntax.And(*func_conjs), active_func)))

    # (relativized) axioms hold after relaxation
    for axiom in prog.axioms():
        if not syntax.is_universal(axiom.expr):
            conjs.append(syntax.relativize_quantifiers(actives, axiom.expr))

    # derived relations have the same interpretation on the active domain
    for rel in prog.derived_relations():
        names = []
        rel_conjs = []
        for arg_sort in rel.arity:
            arg_sort_decl = syntax.get_decl_from_sort(arg_sort)
            name = prog.scope.fresh(arg_sort_decl.name[0].upper(),
                                    also_avoid=names)
            names.append(name)
            rel_conjs.append(
                syntax.Apply(actives[arg_sort_decl].name, (syntax.Id(name), )))
        ap_rel = syntax.Apply(rel.name,
                              tuple(syntax.Id(name) for name in names))
        conjs.append(
            syntax.Forall(
                tuple(syntax.SortedVar(name, None) for name in names),
                syntax.Implies(syntax.And(*rel_conjs),
                               syntax.Iff(syntax.New(ap_rel), ap_rel))))

    return syntax.DefinitionDecl(is_public_transition=True,
                                 num_states=2,
                                 name=decrease_name,
                                 params=(),
                                 mods=mods,
                                 expr=syntax.And(*conjs))