コード例 #1
0
def main(variable):
    # RMS errors
    cubes = second_analysis.get_data('rms_error_24_air_pressure', 'full')
    plot_errors(cubes, variable, '-kx')

    cubes = second_analysis.get_data('mean_error_24_air_pressure', 'full')
    plot_errors(cubes, variable, '--kx')
コード例 #2
0
def profile(coord, mappings, domains, title, xlabel, ylabel, xlims, ylims):
    ncols = len(mappings)
    nrows = len(domains)
    # Initialise the plot
    fig = plt.figure(figsize=(18, 25))

    # Loop over mappings
    for m, domain in enumerate(domains):
        cubes = second_analysis.get_data(coord, domain)
        for n, mapping in enumerate(mappings):
            mapping = second_analysis.mappings[mapping]

            ax = plt.subplot2grid((nrows, ncols), (m, n))

            profile_multi(cubes, ax, mapping, coord)

            ax.set_xlim(*xlims[n])
            ax.set_ylim(*ylims)

            if m == 0:
                ax.set_title(title[n])
            else:
                ax.set_title('')

            if m == nrows - 1:
                legend(ax,
                       key=second_analysis.get_idx,
                       loc='upper left',
                       ncol=2,
                       bbox_to_anchor=(0.05, -0.25))
            else:
                ax.get_xaxis().set_ticklabels([])

            if n == 0:
                if m == 1:
                    ax.set_ylabel(ylabel)
                else:
                    ax.set_ylabel('')

            else:
                ax.set_ylabel('')
                ax.get_yaxis().set_ticklabels([])

            if m == nrows - 1 and n == 1:
                ax.set_xlabel(xlabel)
            else:
                ax.set_xlabel('')

            ax.axvline(color='k')
            ax.axhline(color='k')

            if coord == 'air_pressure':
                ax.set_ylim(ax.get_ylim()[::-1])

            multilabel(ax, n + m * ncols)

    fig.subplots_adjust(bottom=0.4)

    return
コード例 #3
0
def _single_fit(coord, subdomain, dz, function, **kwargs):
    cubes = second_analysis.get_data(coord, subdomain)
    pv = convert.calc(variable, cubes)
    x, y, dy = function(pv, coord, dz)
    popt, pcov, rmse = fit_curve(x, y, dy)
    print(popt, rmse)
    plot_fit(x, y, dy, popt, **kwargs)

    return popt, rmse
コード例 #4
0
ファイル: mean_profile2.py プロジェクト: cycle13/scripts-1
def tropopause_profile():

    # Initialise the plot
    fig = plt.figure(figsize=(18, 15))

    # Loop over mappings
    for n, mapping in enumerate(mappings):
        mapping = second_analysis.mappings[mapping]
        for m, domain in enumerate(['ridges', 'troughs']):
            cubes = second_analysis.get_data(coord, domain)
            ax = plt.subplot2grid((2, ncols), (m, n))

            if n == 0:
                profile_error(cubes, ax, mapping, coord)
            else:
                profile_multi(cubes, ax, mapping, coord)

            plt.title(title[n])
            ax.set_xlim(*xlims[n])
            ax.set_ylim(*ylim)
            legend(ax,
                   key=second_analysis.get_idx,
                   loc='best',
                   ncol=2,
                   bbox_to_anchor=(0.9, -0.2))

            if n == 0:
                ax.set_ylabel(ylabel)

            else:
                ax.set_ylabel('')
                ax.get_yaxis().set_ticklabels([])

            if n == 1:
                ax.set_xlabel(xlabel)
            else:
                ax.set_xlabel('')

            plt.title('')
            plt.axvline(color='k')
            plt.axhline(color='k')

        # if coord == 'air_pressure':
        #    ax.set_ylim(ax.get_ylim()[::-1])

    for n, ax in enumerate(fig.axes):
        multilabel(ax, n)

    fig.subplots_adjust(bottom=0.4)

    #plt.savefig(plotdir + 'ch7_low/height_profile.pdf')

    plt.show()

    return
コード例 #5
0
def pv_gradients(coord, alpha, fig):
    # Rows are Ridges and troughs
    for n, subdomain in enumerate(['ridges', 'troughs']):
        cubes = second_analysis.get_data(coord, subdomain)

        # Columns are for different mappings
        for m, mapping in enumerate(['pv_full', 'pv_main', 'pv_phys']):
            mapping = second_analysis.mappings[mapping]
            ax = fig.axes[n * 3 + m]
            pv_gradients_multi(cubes, coord, ax, mapping, alpha)

    return
コード例 #6
0
def make_table():
    for coord in ([
            'distance_from_dynamical_tropopause',
            'distance_from_advection_only_tropopause'
    ]):
        for subdomain in (['ridges', 'troughs']):
            cubes = second_analysis.get_data(coord, subdomain)
            pv = convert.calc(variable, cubes)[:, 1:]
            x, y, dy = pv_contrast(pv, coord, 1000)
            popt, pcov, rmse = fit_curve(x, y, dy)
            print(subdomain.capitalize() + ' & ' + str(round(popt[0], 1)) +
                  ' & ' + str(round(popt[1], 3)) + ' & ' +
                  str(round(popt[2], 3)) + ' & ' + str(round(rmse, 3)))
    return
コード例 #7
0
def main(**kwargs):
    # Initialise the plot
    fig = plt.figure(figsize=(18, 15))

    for n, coord in enumerate(coords):
        for m, subdomain in enumerate(['ridges', 'troughs']):
            cubes = second_analysis.get_data(coord, subdomain)
            cube = convert.calc(name, cubes)
            cube.coord(coord).convert_units('km')
            mean, std_err = second_analysis.extract_statistics(
                cube, 'forecast_index')

            ax = plt.subplot2grid((2, 2), (n, m))
            im = iplt.contourf(mean, even_cscale(0.18), cmap='coolwarm')

            # X-axis - Same for both columns
            ax.set_xticks([0, 12, 24, 36, 48, 60])
            if n == 0:
                ax.get_xaxis().set_ticklabels([])
                ax.set_title(subdomain.capitalize())

            # Y-axis - Same for both rows
            ax.set_ylim(-2, 2)
            ax.set_yticks([-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2])
            ax.axhline(color='k')
            if m > 0:
                ax.get_yaxis().set_ticklabels([])

    add_labels(fig)

    fig.text(0.5, 0.2, 'Forecast Lead Time (hours)', ha='center')

    for n, axis in enumerate(fig.axes):
        multilabel(axis, n)

    cbar = plt.colorbar(im,
                        ax=fig.axes,
                        orientation='horizontal',
                        fraction=0.05,
                        spacing='proportional')
    cbar.set_ticks([-0.18, -0.09, 0, 0.09, 0.18])
    cbar.set_label('PVU')
    plt.savefig(plotdir + 'inconsistency.pdf')
    plt.show()

    return
コード例 #8
0
def tropopause_profile(coord, alpha, fig):
    # Columns are Ridges and troughs
    for n, subdomain in enumerate(['ridges', 'troughs']):
        cubes = second_analysis.get_data(coord, subdomain)

        # Rows are for different mappings
        for m, mapping in enumerate(['pv_full', 'pv_main', 'pv_phys']):
            mapping = second_analysis.mappings[mapping]
            ax = fig.axes[n * 3 + m]

            if m == 0:
                # First column is forecast error
                profile_error(cubes, coord, ax, mapping, alpha)
            else:
                # Columns 2 and 3 show full accumulation
                profile_multi(cubes, coord, ax, mapping, alpha)

    return
コード例 #9
0
def varying_depth(widths, function):
    fig = plt.figure(figsize=(18, 8))
    axes = []
    for n in range(1):
        for m in range(2):
            axes.append(plt.subplot2grid((1, 2), (n, m)))
    for coord, color in coords:
        for subdomain, linestyle in subdomains:
            cubes = second_analysis.get_data(coord, subdomain)
            pv = convert.calc(variable, cubes)

            if subdomain == 'ridges':
                x, y, dy = pv_contrast(pv, coord, 1000)
                popt, pcov, rmse = fit_curve(x, y, dy)
                axes[0].errorbar(x,
                                 y,
                                 yerr=dy,
                                 linestyle=linestyle,
                                 color=color)

            pv = pv[:, 1:]
            if subdomain == 'ridges':
                x2, y, dy = pv_contrast(pv, coord, 1000)
                popt, pcov, rmse = fit_curve(x2, y, dy)
                axes[0].plot(x,
                             func(x, *popt),
                             color=color,
                             linestyle='',
                             marker='o')

            timescale = []
            grad_0 = []
            grad_inf = []
            errors = []
            for dz in widths:
                if dz == 200:
                    x, y, dy = pv_gradient(pv, coord, dz)
                else:
                    x, y, dy = function(pv, coord, dz)
                popt, pcov, rmse = fit_curve(x, y, dy)
                timescale.append(popt[0])
                grad_0.append(popt[1])
                grad_inf.append(popt[2])
                errors.append(rmse)

            grad_0 = np.array(grad_0)
            grad_inf = np.array(grad_inf)
            # axes[2].plot(widths * 1e-3, grad_0,
            #             color=color, linestyle=linestyle, marker='x')
            # axes[3].plot(widths * 1e-3, grad_0 - grad_inf,
            #             color=color, linestyle=linestyle, marker='x')
            axes[1].plot(widths * 1e-3,
                         timescale,
                         color=color,
                         linestyle=linestyle,
                         marker='x')
            # axes[5].plot(widths * 1e-3, errors,
            #             color=color, linestyle=linestyle, marker='x')

    # Set figure labels
    axes[0].set_title(r'$\Delta q_{adv}(t)$ in ridges')
    axes[0].set_xlabel('Forecast Lead Time (hours)')
    axes[0].set_ylabel('PVU')

    axes[1].set_title('Timescale')
    axes[1].set_xlabel(r'$\pm \tilde{z}$ (km)', fontsize=20)
    axes[1].set_ylabel(r'$\tau$ (Hours)')
    """
    axes[2].set_title(r'$\Delta q_{adv}(0)$')
    axes[2].set_xlabel(r'$\pm \tilde{z}$ (km)', fontsize=20)
    axes[2].set_ylabel('PVU')
    #axes[2].set_ylim(0, 5)

    axes[3].set_title(r'$\Delta q_{adv}(0) - \Delta q_{adv}(\infty)$')
    axes[3].set_xlabel(r'$\pm \tilde{z}$ (km)', fontsize=20)
    axes[3].set_ylabel('PVU')
    #axes[3].set_ylim(0, 5)
    """

    for n, axis in enumerate(axes):
        multilabel(axis, n)

    # Create legend table
    fig2 = plt.figure()
    ax = fig2.add_subplot(111)

    lines = []
    for subdomain, linestyle in subdomains:
        for coord, color in coords:
            lines.append(
                ax.plot([0, 1], [0, 1], linestyle=linestyle, color=color)[0])

    # create blank rectangle
    extra = Rectangle((0, 0),
                      1,
                      1,
                      fc="w",
                      fill=False,
                      edgecolor='none',
                      linewidth=0)

    # Create organized list containing all handles for table. Extra represent
    # empty space
    legend_handle = [
        extra, extra, extra, extra, lines[0], lines[1], extra, lines[2],
        lines[3]
    ]
    # Define the labels
    label_column_1 = ["", r"$z(q{=}2)$", r"$z(q_{adv}{=}2)$"]
    label_column_2 = ["Ridges", "", ""]
    label_column_3 = ["Troughs", "", ""]

    # organize labels for table construction
    legend_labels = np.concatenate(
        [label_column_1, label_column_2, label_column_3])

    # Create legend
    axes[1].legend(legend_handle,
                   legend_labels,
                   loc='best',
                   ncol=3,
                   shadow=True,
                   handletextpad=-2)

    fig.savefig(plotdir + 'q_adv_decay_parameters.pdf')
    # plt.show()

    return
コード例 #10
0
def humidity_gradients():
    # Initialise the plot
    fig = plt.figure(figsize=(18, 15))

    # Columns are Ridges and troughs
    for n, variable in enumerate(variables):
        row = n / ncols
        col = n - row * ncols
        print(row, col)
        ax = plt.subplot2grid((nrows, ncols), (row, col))
        for subdomain, linestyle in [('ridges', '-'), ('troughs', '--')]:
            cubes = second_analysis.get_data(coord, subdomain)

            cube = convert.calc(variable, cubes)
            cube.coord(coord).convert_units('km')
            mean, std_err = second_analysis.extract_statistics(
                cube, 'forecast_index')

            if variable == 'vertical_vorticity':
                mean.data = mean.data + 1e-4
            else:
                mean.data = mean.data * 1e3
                std_err.data = std_err.data * 1e3

            iplt.plot(
                mean[0],
                mean.coord(coord),  # xerr=std_err[0],
                linestyle=linestyle,
                label=subdomain.capitalize(),
                color='k',
                marker='x',
                ms=5)

            ax.set_ylabel('')
            ax.set_ylim(-2, 2)
            if col > 0:
                ax.get_yaxis().set_ticklabels([])

        if variable == 'specific_humidity':
            ax.set_title('Specific Humidity')
            ax.set_xlabel(r'Mass Fraction (g kg$^{-1}$)')
        elif variable == 'vertical_vorticity':
            ax.set_title('Vertical Vorticity')
            ax.set_xlabel(r'Vorticity (s$^{-1}$)')
        elif variable == 'mass_fraction_of_cloud_liquid_water_in_air':
            ax.set_title('Cloud Liquid')
            ax.set_xlabel(r'Mass Fraction (g kg$^{-1}$)')
        elif variable == 'mass_fraction_of_cloud_ice_in_air':
            ax.set_title('Cloud Ice')
            ax.set_xlabel(r'Mass Fraction (g kg$^{-1}$)')

        plt.axhline(color='k')
        multilabel(ax, n)

    legend(ax=fig.axes[0], loc='best')
    fig.text(0.075,
             0.5,
             'Vertical distance from tropopause (km)',
             va='center',
             rotation='vertical')

    plt.savefig(plotdir + 'analysis_profiles.pdf')
    plt.show()
コード例 #11
0
def main():
    # Initialise the plot
    fig = plt.figure(figsize=(18, 12))
    # Add subfigures
    for n in range(2):
        for m in range(3):
            plt.subplot2grid((2, 3), (n, m))

    # Plot composites
    pv_gradients('distance_from_dynamical_tropopause', 1, fig)

    # Add faint lines for q_adv
    #pv_gradients('distance_from_advection_only_tropopause', 0.25, fig)
    for n, subdomain in enumerate(['ridges', 'troughs']):
        coord = 'distance_from_advection_only_tropopause'
        alpha = 0.3
        cubes = second_analysis.get_data(coord, subdomain)
        m = 1
        mapping = second_analysis.mappings['pv_main']
        mapping = {
            k: mapping[k]
            for k in ('dynamics_tracer_inconsistency',
                      'sum_of_physics_pv_tracers')
        }
        ax = fig.axes[n * 3 + m]
        pv_gradients_multi(cubes, coord, ax, mapping, alpha)
    fig.subplots_adjust(bottom=0.2)

    # Set labels and limits on plots
    for n, subdomain in enumerate(['ridges', 'troughs']):
        for m in range(3):
            ax = fig.axes[n * 3 + m]

            # X-axis - Same for both rows
            ax.set_xticks([0, 12, 24, 36, 48, 60])
            if n == 0:
                ax.get_xaxis().set_ticklabels([])

                # Set Titles
                if m == 0:
                    ax.set_title('Forecast')
                elif m == 1:
                    ax.set_title('PV budget')
                elif m == 2:
                    ax.set_title('Physics PV tracers')

            else:
                legend(ax,
                       key=second_analysis.get_idx,
                       loc='best',
                       ncol=2,
                       bbox_to_anchor=(1.0, -0.2),
                       fontsize=25)
                if m == 1:
                    ax.set_xlabel('Forecast lead time (hours)')

            # Y-Axis
            if m == 0:
                # First column custom
                if n == 0:
                    ax.set_ylim(3.0, 3.6)
                else:
                    ax.set_ylim(2.4, 3.0)

            elif m == 1:
                # Columns 2
                ax.set_ylim(-0.1, 0.5)

            else:
                ax.set_ylim(-0.05, 0.25)

            multilabel(ax, n * 3 + m)

    fig.text(0.075,
             0.55,
             'PV (PVU)',
             va='center',
             rotation='vertical',
             fontsize=20)
    fig.text(0.05,
             0.75,
             'Ridges',
             va='center',
             rotation='vertical',
             fontsize=20)
    fig.text(0.05,
             0.35,
             'Troughs',
             va='center',
             rotation='vertical',
             fontsize=20)

    plt.savefig(plotdir + 'pv_gradients_new.pdf')
    plt.show()

    return
コード例 #12
0
def main():
    # Initialise the plot
    fig = plt.figure(figsize=(18, 12))
    # Add subfigures
    for n in range(2):
        for m in range(3):
            plt.subplot2grid((2, 3), (n, m))

    # Plot composites
    tropopause_profile('distance_from_dynamical_tropopause', 1, fig)

    # Add faint lines for q_adv
    #tropopause_profile('distance_from_advection_only_tropopause', 0.25, fig)
    for n, subdomain in enumerate(['ridges', 'troughs']):
        coord = 'distance_from_advection_only_tropopause'
        alpha = 0.3
        cubes = second_analysis.get_data(coord, subdomain)
        m = 1
        mapping = second_analysis.mappings['pv_main']
        mapping = {
            k: mapping[k]
            for k in ('dynamics_tracer_inconsistency',
                      'sum_of_physics_pv_tracers')
        }
        ax = fig.axes[n * 3 + m]
        profile_multi(cubes, coord, ax, mapping, alpha)

    fig.subplots_adjust(bottom=0.2)

    # Set labels and limits on plots
    for n, subdomain in enumerate(['ridges', 'troughs']):
        for m in range(3):
            ax = fig.axes[n * 3 + m]
            # X-axis - Same for all plots

            if m == 0:
                ax.set_xlim(-0.5, 0.2)
                ax.set_xticks([-0.4, -0.2, 0, 0.2])
            else:
                ax.set_xlim(-0.2, 0.3)
                ax.set_xticks([-0.2, -0.1, 0, 0.1, 0.2, 0.3])

            if n == 0:

                ax.get_xaxis().set_ticklabels([])

                # Set Titles
                if m == 0:
                    ax.set_title('Forecast minus analysis')
                elif m == 1:
                    ax.set_title('PV budget')
                elif m == 2:
                    ax.set_title('Physics PV tracers')

            else:
                legend(ax,
                       key=second_analysis.get_idx,
                       loc='best',
                       ncol=2,
                       bbox_to_anchor=(1.0, -0.2),
                       fontsize=25)
                if m == 1:
                    ax.set_xlabel('PV (PVU)')
            # Y-axis - Same for all plots
            ax.set_ylim(-2, 2)
            ax.set_yticks([-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2])
            if m != 0:
                ax.get_yaxis().set_ticklabels([])

            multilabel(ax, n * 3 + m)

    fig.text(0.075,
             0.55,
             'Vertical distance from tropopause (km)',
             va='center',
             rotation='vertical',
             fontsize=20)
    fig.text(0.05,
             0.75,
             'Ridges',
             va='center',
             rotation='vertical',
             fontsize=20)
    fig.text(0.05,
             0.35,
             'Troughs',
             va='center',
             rotation='vertical',
             fontsize=20)

    plt.savefig(plotdir + 'tropopause_profile_new.pdf')
    # plt.show()

    return