コード例 #1
0
ファイル: kronecker_test.py プロジェクト: Dean-Go-kr/QTTNet
    def testSlogDet(self):
        # Tests the slog_determinant function

        # TODO: use kron and -1 * kron matrices, when mul is implemented
        # the current version is platform-dependent

        tf.compat.v1.set_random_seed(5)  # negative derminant
        initializer = initializers.random_matrix(((2, 3), (2, 3)),
                                                 tt_rank=1,
                                                 dtype=self.dtype)
        kron_neg = variables.get_variable('kron_neg', initializer=initializer)

        tf.compat.v1.set_random_seed(1)  # positive determinant
        initializer = initializers.random_matrix(((2, 3), (2, 3)),
                                                 tt_rank=1,
                                                 dtype=self.dtype)
        kron_pos = variables.get_variable('kron_pos', initializer=initializer)

        init_op = tf.compat.v1.global_variables_initializer()
        # negative derminant
        self.evaluate(init_op)
        desired_sign, desired_det = np.linalg.slogdet(
            self.evaluate(ops.full(kron_neg)))
        actual_sign, actual_det = self.evaluate(kr.slog_determinant(kron_neg))
        self.assertEqual(desired_sign, actual_sign)
        self.assertAllClose(desired_det, actual_det)

        # positive determinant
        desired_sign, desired_det = np.linalg.slogdet(
            self.evaluate(ops.full(kron_pos)))
        actual_sign, actual_det = self.evaluate(kr.slog_determinant(kron_pos))
        self.assertEqual(desired_sign, actual_sign)
        self.assertAllClose(desired_det, actual_det)
コード例 #2
0
    def _unary_complexity_penalty(self):
        """Computes the complexity penalty for unary potentials.

    This function computes KL-divergence between prior and variational 
    distribution over the values of GPs at inducing inputs.

    Returns:
      A scalar `tf.Tensor` containing the complexity penalty for GPs 
      determining unary potentials.
    """
        # TODO: test this
        mus = self.mus
        sigma_ls = _kron_tril(self.sigma_ls)
        sigmas = ops.tt_tt_matmul(sigma_ls, ops.transpose(sigma_ls))
        sigmas_logdet = _kron_logdet(sigma_ls)

        K_mms = self._K_mms()
        K_mms_inv = kron.inv(K_mms)
        K_mms_logdet = kron.slog_determinant(K_mms)[1]

        penalty = 0
        penalty += -K_mms_logdet
        penalty += sigmas_logdet
        penalty += -ops.tt_tt_flat_inner(sigmas, K_mms_inv)
        penalty += -ops.tt_tt_flat_inner(mus, ops.tt_tt_matmul(K_mms_inv, mus))
        return tf.reduce_sum(penalty) / 2
コード例 #3
0
    def complexity_penalty(self):
        """Returns the complexity penalty term for ELBO. 
        """
        mus = self.mus
        sigma_ls = _kron_tril(self.sigma_ls)
        sigmas = ops.tt_tt_matmul(sigma_ls, ops.transpose(sigma_ls))
        sigmas_logdet = _kron_logdet(sigma_ls)

        K_mms = self._K_mms()
        K_mms_inv = kron.inv(K_mms)
        K_mms_logdet = kron.slog_determinant(K_mms)[1]

        penalty = 0
        penalty += - K_mms_logdet
        penalty += sigmas_logdet
        penalty += - ops.tt_tt_flat_inner(sigmas, K_mms_inv)
        penalty += - ops.tt_tt_flat_inner(mus, 
                               ops.tt_tt_matmul(K_mms_inv, mus))
        return penalty / 2
コード例 #4
0
ファイル: gp_base.py プロジェクト: vseledkin/TTGP
  def complexity_penalty(self):
    """Returns the complexity penalty term for ELBO of different GP models. 
    """
    mu = self.mu
    sigma_l = _kron_tril(self.sigma_l)
    sigma = ops.tt_tt_matmul(sigma_l, ops.transpose(sigma_l))
    sigma_logdet = _kron_logdet(sigma_l)

    K_mm = self.K_mm()
    K_mm_inv = kron.inv(K_mm)
    K_mm_logdet = kron.slog_determinant(K_mm)[1]

    elbo = 0
    elbo += - K_mm_logdet
    elbo += sigma_logdet
    elbo += - ops.tt_tt_flat_inner(sigma, K_mm_inv)
    elbo += - ops.tt_tt_flat_inner(mu, 
                           ops.tt_tt_matmul(K_mm_inv, mu))
    return elbo / 2
コード例 #5
0
ファイル: kronecker_test.py プロジェクト: towadroid/t3f
 def testSlogDet(self):
   # Tests the slog_determinant function
   
   tf.set_random_seed(1) # negative and positive determinants
   initializer = initializers.random_matrix_batch(((2, 3), (2, 3)), tt_rank=1, 
                                                  batch_size=3,
                                                  dtype=self.dtype)
   kron_mat_batch = variables.get_variable('kron_mat_batch', 
                                           initializer=initializer)
 
   init_op = tf.global_variables_initializer()
   with self.test_session() as sess:
      # negative derminant
     sess.run(init_op)
     desired_sign, desired_det = np.linalg.slogdet(
                                               ops.full(kron_mat_batch).eval())
     actual_sign, actual_det = sess.run(kr.slog_determinant(kron_mat_batch))
     self.assertAllEqual(desired_sign, actual_sign)
     self.assertAllClose(desired_det, actual_det)