コード例 #1
0
ファイル: analysis.py プロジェクト: shrey1098/BSHDEV
    def ich():
        ica = ta.ichimoku_a(high, low, n1=9, n2=26, visual=False, fillna=False)
        icb = ta.ichimoku_b(high,
                            low,
                            n2=26,
                            n3=52,
                            visual=False,
                            fillna=False)

        if ica[-1] > icb[-1]:
            trn_ich_status = "ICH Signal is: Buy"
        elif ica[-1] < icb[-1]:
            trn_ich_status = "ICH Signal is: Sell"
        else:
            trn_ich_status = "ICH Signal is: Hold"
        return trn_ich_status
コード例 #2
0
def process_data(data):
    data['BB_5'] = ta.bollinger_mavg(
        data['CLOSE'], 5)  #bollinger_moving average 5 trading periods
    data['BB_10'] = ta.bollinger_mavg(
        data['CLOSE'], 10)  #bollinger_moving average 10 trading periods
    data['BB_20'] = ta.bollinger_mavg(
        data['CLOSE'], 20)  # bollinger_moving average 20 periods
    data['ADX'] = ta.adx(data['HIGH'], data['LOW'], data['CLOSE'],
                         14)  #Average Directional Index
    data['ATR'] = ta.average_true_range(data['HIGH'], data['LOW'],
                                        data['CLOSE'], 14)  #Average True Range
    data['CCI'] = ta.cci(data['HIGH'], data['LOW'], data['CLOSE'],
                         14)  #Commodity Channel Index
    data['DCH'] = ta.donchian_channel_hband(
        data['CLOSE'])  #Donchian Channel High Band
    data['DCL'] = ta.donchian_channel_lband(
        data['CLOSE'])  #Donchian Channel Low Band
    data['DPO'] = ta.dpo(data['CLOSE'])  #Detrend Price Oscilator
    data['EMAf'] = ta.ema_fast(
        data['CLOSE'])  #Expornential Moving Average fast
    data['EMAs'] = ta.ema_slow(
        data['CLOSE'])  #Expornential Moving Average slow
    data['FI'] = ta.force_index(
        data['CLOSE'],
        data['VOLUME'])  # Force Index(reveals the value of a trend)
    data['ICHa'] = ta.ichimoku_a(data['HIGH'], data['LOW'])  #Ichimoku A
    data['ICHb'] = ta.ichimoku_b(data['HIGH'], data['LOW'])  #Ichimoku B
    data['KC'] = ta.keltner_channel_central(
        data['HIGH'], data['LOW'], data['CLOSE'])  #Keltner channel(KC) Central
    data['KST'] = ta.kst(
        data['CLOSE']
    )  #KST Oscillator (KST) identify major stock market cycle junctures
    data['MACD'] = ta.macd(
        data['CLOSE'])  # Moving Average convergence divergence
    data['OBV'] = ta.on_balance_volume_mean(
        data['CLOSE'], data['VOLUME'])  # on_balance_volume_mean
    data['RSI'] = ta.rsi(data['CLOSE'])  # Relative Strength Index (RSI)
    data['TRIX'] = ta.trix(
        data['CLOSE']
    )  #Shows the percent rate of change of a triple exponentially smoothed moving average
    data['TSI'] = ta.tsi(data['CLOSE'])  #True strength index (TSI)
    data['ROC1'] = (data['CLOSE'] - data['OPEN']) / data['OPEN']
    data['RET'] = data['CLOSE'].pct_change()
    data['y'] = np.where(data['OPEN'] <= data['CLOSE'], 1, -1)
    data = data.dropna()
    return data
コード例 #3
0
def plot(symbol, grouping_range, ts_start=0, ts_end=0, skip_orders=False):
    if not ts_start:
        d = datetime.date(2018, 1, 11)
        ts_start = mktime(d.timetuple())
    if not ts_end:
        d2 = datetime.date(2018, 12, 18)
        ts_end = mktime(d2.timetuple())

    df = get_dataframe_from_timerange(db,
                                      symbol,
                                      grouping_range,
                                      ts_start=ts_start,
                                      ts_end=ts_end)
    df['ema_fast'] = ta.ema_fast(df['close'], 32)
    df['ema_slow'] = ta.ema_slow(df['close'], 9)
    df['bollinger_hband'] = ta.bollinger_hband(df['close'], 26, 1.9)
    df['bollinger_lband'] = ta.bollinger_lband(df['close'], 26, 1.9)
    df['ichimoku_a'] = ta.ichimoku_a(df['high'], df['low'])
    df['ichimoku_b'] = ta.ichimoku_b(df['high'], df['low'])
    # df['keltner_low'] = ta.keltner_channel_lband(df['high'], df['low'], df['close'])
    # df['keltner_high'] = ta.keltner_channel_hband(df['high'], df['low'], df['close'])
    # df['mkl'] = multiplied_keltner_channel_lband(df['high'], df['low'], df['close'], n=14, m=2)
    # df['atr'] = ta.average_true_range(df['high'], df['low'], df['close'], n=14)
    # df['ema'] = ta.ema_slow(df['close'], 14)
    # df['mkh'] = multiplied_keltner_channel_hband(df['high'], df['low'], df['close'], n=14, m=2)
    # df['mkh'] = multiplied_keltner_channel_hband(df['high'], df['low'], df['close'], n=14, m=2)
    # plotly_candles(df, 'test_plot', ['ichimoku_a', 'ichimoku_b'])

    if not skip_orders:
        orders = get_orders(symbol, ts_start=ts_start, ts_end=ts_end)
    else:
        orders = None
    plotly_candles(df,
                   'test_plot',
                   orders=orders,
                   indicators=['bollinger_hband', 'bollinger_lband'])
コード例 #4
0
    df["High"], df["Low"], df["Close"])
ta_df['Vortex_neg'] = ta.vortex_indicator_neg(
    df["High"], df["Low"], df["Close"])
ta_df['Vortex_diff'] = abs(
    ta_df['Vortex_pos'] -
    ta_df['Vortex_neg'])
ta_df['Trix'] = ta.trix(df["Close"])
ta_df['Mass_index'] = ta.mass_index(df["High"], df["Low"])
ta_df['CCI'] = ta.cci(df["High"], df["Low"], df["Close"])
ta_df['DPO'] = ta.dpo(df["Close"])
ta_df['KST'] = ta.kst(df["Close"])
ta_df['KST_sig'] = ta.kst_sig(df["Close"])
ta_df['KST_diff'] = (
    ta_df['KST'] -
    ta_df['KST_sig'])
ta_df['Ichimoku_a'] = ta.ichimoku_a(df["High"], df["Low"], visual=True)
ta_df['Ichimoku_b'] = ta.ichimoku_b(df["High"], df["Low"], visual=True)
ta_df['Aroon_up'] = ta.aroon_up(df["Close"])
ta_df['Aroon_down'] = ta.aroon_down(df["Close"])
ta_df['Aroon_ind'] = (
    ta_df['Aroon_up'] -
    ta_df['Aroon_down']
)

ta_df['ATR'] = ta.average_true_range(
    df["High"],
    df["Low"],
    df["Close"])
ta_df['BBH'] = ta.bollinger_hband(df["Close"])
ta_df['BBL'] = ta.bollinger_lband(df["Close"])
ta_df['BBM'] = ta.bollinger_mavg(df["Close"])
コード例 #5
0
def get_data(context, data_, window):
    # Crear ventana de datos.

    h1 = data_.history(
        context.symbols,
        context.row_features,
        bar_count=window,
        frequency=str(context.bar_period) + "T",
    )

    h1 = h1.swapaxes(2, 0)

    norm_data = []
    close_prices = []

    for i, asset in enumerate(context.assets):
        data = h1.iloc[i]
        close = h1.iloc[i].close
        if context.include_ha:
            ha = heikenashi(data)
            data = pd.concat((data, ha), axis=1)

        for period in [3, 6, 8, 10, 15, 20]:
            data["rsi" + str(period)] = ta.rsi(data.close,
                                               n=period,
                                               fillna=True)
            data["stoch" + str(period)] = ta.stoch(data.high,
                                                   data.low,
                                                   data.close,
                                                   n=period,
                                                   fillna=True)
            data["stoch_signal" + str(period)] = ta.stoch_signal(
                high=data.high,
                low=data.low,
                close=data.close,
                n=period,
                d_n=3,
                fillna=True)

            data["dpo" + str(period)] = ta.dpo(close=data.close,
                                               n=period,
                                               fillna=True)
            data["atr" + str(period)] = ta.average_true_range(high=data.high,
                                                              low=data.low,
                                                              close=data.close,
                                                              n=period,
                                                              fillna=True)

        for period in [6, 7, 8, 9, 10]:
            data["williams" + str(period)] = ta.wr(high=data.high,
                                                   low=data.low,
                                                   close=data.close,
                                                   lbp=period,
                                                   fillna=True)
        for period in [12, 13, 14, 15]:
            data["proc" + str(period)] = ta.trix(close=data.close,
                                                 n=period,
                                                 fillna=True)

        data["macd_diff"] = ta.macd_diff(close=data.close,
                                         n_fast=15,
                                         n_slow=30,
                                         n_sign=9,
                                         fillna=True)

        data["macd_signal"] = ta.macd_signal(close=data.close,
                                             n_fast=15,
                                             n_slow=30,
                                             n_sign=9,
                                             fillna=True)

        data["bb_high_indicator"] = ta.bollinger_hband_indicator(
            close=data.close, n=15, ndev=2, fillna=True)

        data["bb_low_indicator"] = ta.bollinger_lband_indicator(
            close=data.close, n=15, ndev=2, fillna=True)

        data["dc_high_indicator"] = ta.donchian_channel_hband_indicator(
            close=data.close, n=20, fillna=True)

        data["dc_low_indicator"] = ta.donchian_channel_lband_indicator(
            close=data.close, n=20, fillna=True)

        data["ichimoku_a"] = ta.ichimoku_a(high=data.high,
                                           low=data.low,
                                           n1=9,
                                           n2=26,
                                           fillna=True)

        data.fillna(method="bfill")

        # Normalizar los valores
        for feature in data.columns:
            norm_feature = preprocessing.normalize(
                data[feature].values.reshape(-1, 1), axis=0)
            data[feature] = pd.DataFrame(data=norm_feature,
                                         index=data.index,
                                         columns=[feature])

        norm_data.append(data.values)
        close_prices.append(close)
        context.features = data.columns

    return np.array(norm_data), np.array(close_prices)
コード例 #6
0
ファイル: Test_TA_Lib.py プロジェクト: toimfortes/TALibraries
                  fillna=True)
X['dpo'] = ta.dpo(price['Adj. Close'], n=20, fillna=True)
X['kst_sig'] = ta.kst_sig(price['Adj. Close'],
                          r1=10,
                          r2=15,
                          r3=20,
                          r4=30,
                          n1=10,
                          n2=10,
                          n3=10,
                          n4=15,
                          nsig=9,
                          fillna=True)
X['ichimoku_a'] = ta.ichimoku_a(price['High'],
                                price['Low'],
                                n1=9,
                                n2=26,
                                fillna=True)
X['ichimoku_b'] = ta.ichimoku_b(price['High'],
                                price['Low'],
                                n2=26,
                                n3=52,
                                fillna=True)
X['money_flow_index'] = ta.money_flow_index(price['High'],
                                            price['Low'],
                                            price['Adj. Close'],
                                            price['Volume'],
                                            n=14,
                                            fillna=True)
X['rsi'] = ta.rsi(price['Adj. Close'], n=14, fillna=True)
X['tsi'] = ta.tsi(price['Adj. Close'], r=25, s=13, fillna=True)
コード例 #7
0
    def get_trayectory(self, t_intervals):
        """
        :param t_intervals: número de intervalos en cada trayectoria
        :return: Datos con características de la trayectoria sintética y precios de cierre en bruto de al misma
        """
        trayectories = []
        closes = []
        p = True
        for i, asset in enumerate(self.context.assets):
            synthetic_return = np.exp(
                self.drift[i] + self.stdev[i] * norm.ppf(np.random.rand((t_intervals * self.frequency) + self.frequency, 1)))
            initial_close = self.close[i, -1]
            synthetic_close = np.zeros_like(synthetic_return)
            synthetic_close[0] = initial_close

            for t in range(1, synthetic_return.shape[0]):
                synthetic_close[t] = synthetic_close[t - 1] * synthetic_return[t]

            OHLC = []

            for t in range(synthetic_return.shape[0]):
                if t % self.frequency == 0 and t > 0:
                    open = synthetic_close[t - self.frequency]
                    high = np.max(synthetic_close[t - self.frequency: t])
                    low = np.min(synthetic_close[t - self.frequency: t])
                    close = synthetic_close[t]

                    OHLC.append([open, high, close, low])

            data = pd.DataFrame(data=OHLC, columns=["open", "high", "low", "close"])

            close = data.close

            if self.context.include_ha:
                ha = heikenashi(data)
                data = pd.concat((data, ha), axis=1)

            for period in [3, 6, 8, 10, 15, 20]:
                data["rsi" + str(period)] = ta.rsi(data.close, n=period, fillna=True)
                data["stoch" + str(period)] = ta.stoch(data.high, data.low, data.close, n=period, fillna=True)
                data["stoch_signal" + str(period)] = ta.stoch_signal(high=data.high,
                                                                     low=data.low,
                                                                     close=data.close,
                                                                     n=period,
                                                                     d_n=3,
                                                                     fillna=True)

                data["dpo" + str(period)] = ta.dpo(close=data.close,
                                                   n=period,
                                                   fillna=True)

                data["atr" + str(period)] = ta.average_true_range(high=data.high,
                                                                  low=data.low,
                                                                  close=data.close,
                                                                  n=period,
                                                                  fillna=True)

            for period in [6, 7, 8, 9, 10]:
                data["williams" + str(period)] = ta.wr(high=data.high,
                                                       low=data.low,
                                                       close=data.close,
                                                       lbp=period,
                                                       fillna=True)
            for period in [12, 13, 14, 15]:
                data["proc" + str(period)] = ta.trix(close=data.close,
                                                     n=period,
                                                     fillna=True)

            data["macd_diff"] = ta.macd_diff(close=data.close,
                                             n_fast=15,
                                             n_slow=30,
                                             n_sign=9,
                                             fillna=True)

            data["macd_signal"] = ta.macd_signal(close=data.close,
                                                 n_fast=15,
                                                 n_slow=30,
                                                 n_sign=9,
                                                 fillna=True)

            data["bb_high_indicator"] = ta.bollinger_hband_indicator(close=data.close,
                                                                     n=15,
                                                                     ndev=2,
                                                                     fillna=True)

            data["bb_low_indicator"] = ta.bollinger_lband_indicator(close=data.close,
                                                                    n=15,
                                                                    ndev=2,
                                                                    fillna=True)

            data["dc_high_indicator"] = ta.donchian_channel_hband_indicator(close=data.close,
                                                                            n=20,
                                                                            fillna=True)

            data["dc_low_indicator"] = ta.donchian_channel_lband_indicator(close=data.close,
                                                                           n=20,
                                                                           fillna=True)

            data["ichimoku_a"] = ta.ichimoku_a(high=data.high,
                                               low=data.low,
                                               n1=9,
                                               n2=26,
                                               fillna=True)

            data.fillna(method="bfill")

            # Normalizar los valores
            for feature in data.columns:
                norm_feature = preprocessing.normalize(data[feature].values.reshape(-1, 1), axis=0)
                data[feature] = pd.DataFrame(data=norm_feature, index=data.index, columns=[feature])

            self.assets = data.columns

            trayectories.append(data.values)
            closes.append(close)

        return np.array(trayectories), np.array(closes)