コード例 #1
0
    def fit_solution(self, solution_id, dataset):

        request = core_pb2.FitSolutionRequest(
            solution_id=solution_id,
            inputs=[Value(dataset_uri=self._get_dataset_doc_path(dataset))],
            expose_outputs=[
                'outputs.0'
                # 'steps.0.produce'
            ],
            expose_value_types=[ValueType.Value('CSV_URI')],
            # users=[
            #     core_pb2.SolutionRunUser(
            #         id='dummy',
            #         choosen=True,
            #         reason='dummy'
            #     )
            # ]
        )

        LOGGER.debug("%s: %s", request.__class__.__name__, request)

        response = self.stub.FitSolution(request)

        LOGGER.debug("%s: %s", response.__class__.__name__, response)

        return response
コード例 #2
0
    def do_search(self,
                  dataset_doc_path,
                  problem_doc_path,
                  ta2_id,
                  time_bound=30.0,
                  pipelines_limit=0,
                  pipeline_template=None):
        # Search
        search = self.core.SearchSolutions(
            pb_core.SearchSolutionsRequest(
                user_agent='D3M_TA2_Evaluation',
                version=version,
                time_bound_search=time_bound,
                priority=10,
                rank_solutions_limit=pipelines_limit,
                allowed_value_types=['RAW', 'DATASET_URI', 'CSV_URI'],
                template=pipeline_template,
                problem=self._build_problem(problem_doc_path),
                inputs=[Value(dataset_uri='file://%s' % dataset_doc_path)],
            ))

        # Get request
        getsearch_request = pb_core.GetSearchSolutionsResultsRequest()
        getsearch_request.search_id = search.search_id

        # Make the call (loop cause streaming)-- It makes client docker remain open untill complete
        logger.warning('Solution Stream: ')
        for getsearch_response in self.core.GetSearchSolutionsResults(
                getsearch_request):
            logger.warning(getsearch_response)
            if getsearch_response.solution_id:
                pipeline_id = getsearch_response.solution_id
                yield {'id': pipeline_id, 'search_id': str(search.search_id)}
            logger.warning('------------------------------------')
コード例 #3
0
    def score_solution(self, solution_id, dataset):

        problem = self._build_problem(dataset)

        request = core_pb2.ScoreSolutionRequest(
            solution_id=solution_id,
            inputs=[Value(dataset_uri=self._get_dataset_doc_path(dataset))],
            performance_metrics=problem.problem.performance_metrics,
            # users=[
            #     core_pb2.SolutionRunUser(
            #         id='dummy',
            #         choosen=True,
            #         reason='dummy'
            #     )
            # ],
            configuration=core_pb2.ScoringConfiguration(
                method=core_pb2.EvaluationMethod.Value('K_FOLD'),
                folds=3,
                train_test_ratio=3,
                shuffle=True,
                random_seed=0,
                stratified=False))

        LOGGER.debug("%s: %s", request.__class__.__name__, request)

        response = self.stub.ScoreSolution(request)

        LOGGER.debug("%s: %s", response.__class__.__name__, response)

        return response
コード例 #4
0
def test_apiclient_search_solutions(search_solutions_request_mock,
                                    logger_mock):
    instance = TA3APIClient(port=9999)
    dataset = 'test_dataset'
    expected_value = 'response'

    # instance mocks
    instance._get_dataset_doc_path = MagicMock(return_value='dataset-doc-path')
    instance._build_problem = MagicMock(return_value='build-problem')
    instance.stub.SearchSolutions = MagicMock(return_value=expected_value)

    value = instance.search_solutions(dataset)
    assert value == expected_value

    search_solutions_request_mock.assert_called_once_with(
        user_agent='ta3_api_test.py',
        version='2019.6.11',
        time_bound_search=1.,
        priority=0.,
        allowed_value_types=[
            ValueType.Value('RAW'),
            ValueType.Value('DATASET_URI'),
            ValueType.Value('CSV_URI'),
        ],
        inputs=[Value(dataset_uri='dataset-doc-path')],
        problem='build-problem')

    assert logger_mock.call_count == 2
コード例 #5
0
ファイル: client.py プロジェクト: proska/dsbox-ta2
 def searchSolutions(self, stub, problem):
     _logger.info("Calling Search Solutions:")
     metric = problem['problem']['performance_metrics'][0]
     request = SearchSolutionsRequest(
         user_agent="Test Client",
         version="2019.1.22",
         time_bound_search=self.time_bound,
         priority=0,
         allowed_value_types=[value_pb2.RAW],
         problem=ProblemDescription(
             problem=Problem(
                 # id=problem['id'],
                 # version="3.1.2",
                 # name=problem['id'],
                 # description=problem['id'],
                 task_type=problem['problem']['task_type'].value,
                 task_subtype=problem['problem']['task_subtype'].value,
                 performance_metrics=[
                     ProblemPerformanceMetric(
                         # metric=problem['problem']['performance_metrics'][0]['metric'].value,
                         metric=metric['metric'].value,
                         k=metric.get('params', {}).get('k', None),
                         pos_label=metric.get('params',
                                              {}).get('pos_label', None),
                     )
                 ]),
             inputs=[
                 ProblemInput(
                     dataset_id=problem['inputs'][0]['dataset_id'],
                     targets=[
                         ProblemTarget(target_index=problem['inputs'][0]
                                       ['targets'][0]['target_index'],
                                       resource_id=problem['inputs'][0]
                                       ['targets'][0]['resource_id'],
                                       column_index=problem['inputs'][0]
                                       ['targets'][0]['column_index'],
                                       column_name=problem['inputs'][0]
                                       ['targets'][0]['column_name'])
                     ])
             ]),
         template=PipelineDescription(
         ),  # TODO: We will handle pipelines later D3M-61
         inputs=[
             Value(dataset_uri='file://' +
                   dataset_docs[problem['inputs'][0]['dataset_id']]),
         ],
         time_bound_run=5,  # in minutes
         rank_solutions_limit=20)
     print_request(request)
     reply = stub.SearchSolutions(request)
     log_msg(reply)
     return reply
コード例 #6
0
ファイル: client.py プロジェクト: proska/dsbox-ta2
    def fitSolution(self, stub, solution_id, problem):
        _logger.info("Calling FitSolution with solution_id: " + solution_id)

        request = FitSolutionRequest(
            solution_id=solution_id,
            inputs=[
                Value(dataset_uri='file://' +
                      dataset_docs[problem['inputs'][0]['dataset_id']])
            ],
            # expose_outputs = ['steps.7.produce'],
            expose_outputs=['outputs.0'],
            expose_value_types=[value_pb2.CSV_URI])
        print_request(request)
        reply = stub.FitSolution(request)
        log_msg(reply)
        return reply
コード例 #7
0
ファイル: client.py プロジェクト: proska/dsbox-ta2
    def scoreSolutionRequest(self, stub, solution_id, problem):
        _logger.info("Calling Score Solution Request:")

        request = ScoreSolutionRequest(
            solution_id=solution_id,
            inputs=[
                Value(dataset_uri='file://' +
                      dataset_docs[problem['inputs'][0]['dataset_id']])
            ],
            performance_metrics=[
                ProblemPerformanceMetric(metric=problem_pb2.ACCURACY)
            ],
            users=[SolutionRunUser()],  # Optional so pushing for now
            configuration=None  # For future implementation
        )
        print_request(request)
        reply = stub.ScoreSolution(request)
        return reply
コード例 #8
0
def test_apiclient_fit_solution(fit_solution_request_mock, logger_mock):
    instance = TA3APIClient(port=9999)
    solution_id = 'solution-id'
    dataset = 'test-dataset'
    expected_response = 'response'

    # mocks
    fit_solution_request_mock.return_value = 'request'
    instance._get_dataset_doc_path = MagicMock(return_value='dataset-doc-path')
    instance.stub.FitSolution = MagicMock(return_value=expected_response)

    return_value = instance.fit_solution(solution_id, dataset)

    assert return_value == expected_response
    assert logger_mock.call_count == 2

    fit_solution_request_mock.assert_called_once_with(
        solution_id=solution_id,
        inputs=[Value(dataset_uri='dataset-doc-path')],
        expose_outputs=['outputs.0'],
        expose_value_types=[ValueType.Value('CSV_URI')])

    instance.stub.FitSolution.called_once_with('request')
コード例 #9
0
    def search_solutions(self, dataset, time_bound_search=1.):

        created_at = Timestamp()
        created_at.FromDatetime(datetime.utcnow())

        request = core_pb2.SearchSolutionsRequest(
            user_agent='ta3_api_test.py',
            version='2019.7.9',
            time_bound_search=time_bound_search,
            priority=0.,
            allowed_value_types=[
                ValueType.Value('RAW'),
                ValueType.Value('DATASET_URI'),
                ValueType.Value('CSV_URI'),
            ],
            inputs=[Value(dataset_uri=self._get_dataset_doc_path(dataset))],
            problem=self._build_problem(dataset)
            # template=pipeline_pb2.PipelineDescription(
            #     id='dummy',
            #     source=pipeline_pb2.PipelineSource(
            #         name='dummy',
            #         contact='dummy',
            #         pipelines=['dummy'],
            #     ),
            #     created=created_at,
            #     context=pipeline_pb2.PipelineContext.Value('PIPELINE_CONTEXT_UNKNOWN'),
            #     name='dummy',
            #     description='dummy',
            #     users=[
            #         pipeline_pb2.PipelineDescriptionUser(
            #             id='dummy',
            #             reason='dummy',
            #             rationale='dummy'
            #         )
            #     ],
            #     inputs=[
            #         pipeline_pb2.PipelineDescriptionInput(
            #             name='dummy'
            #         )
            #     ],
            #     outputs=[
            #         pipeline_pb2.PipelineDescriptionOutput(
            #             name='dummy',
            #             data='dummy'
            #         )
            #     ],
            #     steps=[
            #         pipeline_pb2.PipelineDescriptionStep(
            #             primitive=pipeline_pb2.PrimitivePipelineDescriptionStep(
            #                 primitive=Primitive(
            #                     id='dummy',
            #                     version='dummy',
            #                     python_path='dummy',
            #                     name='dummy',
            #                     digest='dummy'
            #                 ),
            #                 arguments={
            #                     'dummy': pipeline_pb2.PrimitiveStepArgument(
            #                         data=pipeline_pb2.DataArgument(
            #                             data='dummy'
            #                         )
            #                     )
            #                 },
            #                 outputs=[
            #                     pipeline_pb2.StepOutput(
            #                         id='dummy'
            #                     )
            #                 ],
            #                 hyperparams={
            #                     'dummy': pipeline_pb2.PrimitiveStepHyperparameter(
            #                         data=pipeline_pb2.DataArgument(
            #                             data='dummy'
            #                         )
            #                     )
            #                 },
            #                 users=[
            #                     pipeline_pb2.PipelineDescriptionUser(
            #                         id='dummy',
            #                         reason='dummy',
            #                         rationale='dummy'
            #                     )
            #                 ],
            #             )
            #         )
            #     ]
            # ),
        )

        LOGGER.debug("%s: %s", request.__class__.__name__, request)

        response = self.stub.SearchSolutions(request)

        LOGGER.debug("%s: %s", response.__class__.__name__, response)

        return response