コード例 #1
0
def _test(n_max, v_max):
    for n in range(n_max + 1):
        for v in range(1, v_max + 1):
            for lam1 in Partition.all(n):
                for lam2 in Partition.all(n):
                    print()
                    print()
                    print('* v =', v, ', n =', n, ', mu =', lam1, ', nu =',
                          lam2)
                    print()

                    print('Computing LHS . . .')
                    print()

                    s = Polynomial()
                    for mu in Partition.all(n + max(sum(lam1), sum(lam2))):
                        a = SymmetricPolynomial.stable_grothendieck_doublebar(
                            v, mu, lam1).truncate(n).polynomial('x')
                        b = SymmetricPolynomial.dual_stable_grothendieck(
                            v, mu, lam2).truncate(n).polynomial('y')
                        s += (a * b).truncate(n)
                        print('  ', mu, ':', s, '|', a, '|', b)
                        print()
                    print('LHS =', s)
                    print()
                    print()

                    print('Computing RHS . . .')
                    print()

                    f = Polynomial.one()
                    x = Polynomial.x
                    y = Polynomial.y
                    for i in range(1, v + 1):
                        for j in range(1, v + 1):
                            a = x(i) * y(j)
                            term = Polynomial.one()
                            for e in range(1, n + 1):
                                term += a**e
                            f = (f * term).truncate(n)
                    print('  ', '   :', f)
                    print()

                    t = Polynomial()
                    for kappa in Partition.subpartitions(lam2):
                        a = SymmetricPolynomial.stable_grothendieck_doublebar(
                            v, lam2, kappa).truncate(n)
                        b = SymmetricPolynomial.dual_stable_grothendieck(
                            v, lam1, kappa).truncate(n)
                        t += (f * a.polynomial('x') *
                              b.polynomial('y')).truncate(n)
                        print('  ', kappa, ':', t)
                        print()

                    print('RHS =', t)
                    print()
                    print()
                    print('diff =', s - t)
                    print()
                    assert s == t
コード例 #2
0
def test_gq_to_gp_expansion():  # noqa
    for mu in Partition.all(15, strict=True):
        print('mu =', mu)
        print()
        print(Partition.printable(mu, shifted=True))
        print()
        n = len(mu)
        q = gq(n, mu)
        expansion = SymmetricPolynomial.gp_expansion(q)
        print('  mu =', mu, 'n =', n)
        print('  expansion =', expansion)
        assert all(len(nu) == len(mu) for nu in expansion)
        assert all(Partition.contains(mu, nu) for nu in expansion)
        # assert all(c % 2**(len(mu) - sum(nu) + sum(mu)) == 0 for nu, c in expansion.items())
        expected = {}
        for a in zero_one_tuples(len(mu)):
            if not all(mu[i - 1] - a[i - 1] > mu[i] - a[i]
                       for i in range(1, len(a))):
                continue
            if not all(mu[i] - a[i] > 0 for i in range(len(a))):
                continue
            nu = Partition.trim(tuple(mu[i] - a[i] for i in range(len(a))))
            coeff = 2**(len(nu) - sum(a)) * sgn(nu, mu) * BETA**sum(a)
            assert coeff != 0
            expected[nu] = coeff
        print('  expected =', expected)
        assert expansion == Vector(expected)
        print()
        print()
コード例 #3
0
def test_refined_gq_to_gp_expansion(k=12):  # noqa
    for mu in Partition.all(k, strict=True):
        print('mu =', mu)
        print()
        print(Partition.printable(mu, shifted=True))
        print()
        n = len(mu)
        q = SymmetricPolynomial._slow_refined_dual_stable_grothendieck_q(n, mu)
        expected = {}
        for a in zero_one_tuples(len(mu)):
            if not all(mu[i - 1] - a[i - 1] > mu[i] - a[i]
                       for i in range(1, len(a))):
                continue
            if not all(mu[i] - a[i] > 0 for i in range(len(a))):
                continue
            nu = Partition.trim(tuple(mu[i] - a[i] for i in range(len(a))))
            coeff = 2**(len(nu) - sum(a)) * sgn(nu, mu) * BETA**sum(a)
            assert coeff != 0
            expected[nu] = coeff
        print('  expected =', expected)
        expected = sum([
            coeff *
            SymmetricPolynomial._slow_refined_dual_stable_grothendieck_p(
                n, nu) for (nu, coeff) in expected.items()
        ])
        print('           =', expected)
        assert q == expected
        print()
        print()
コード例 #4
0
def test_GQ_to_GP_expansion():  # noqa
    for mu in Partition.all(25, strict=True):
        print('mu =', mu)
        print()
        print(Partition.printable(mu, shifted=True))
        print()
        n = len(mu)
        q = GQ(n, mu)
        expansion = SymmetricPolynomial.GP_expansion(q)
        normalized = Vector({
            tuple(nu[i] - mu[i] for i in range(len(mu))): c * sgn(mu, nu) *
            BETA**(sum(nu) - sum(mu)) / 2**(len(mu) - sum(nu) + sum(mu))
            for nu, c in expansion.items()
        })
        unsigned = all(c > 0 for c in normalized.values())
        print('  mu =', mu, 'n =', n)
        print('  expansion =', expansion)
        print('  normalized expansion =', normalized)
        assert all(len(nu) == 0 or max(nu) <= 1 for nu in normalized)
        assert all(len(nu) == len(mu) for nu in expansion)
        assert all(Partition.contains(nu, mu) for nu in expansion)
        assert all(c % 2**(len(mu) - sum(nu) + sum(mu)) == 0
                   for nu, c in expansion.items())
        assert unsigned
        expected = {
            tuple(mu[i] + a[i] for i in range(len(a)))
            for a in zero_one_tuples(len(mu)) if all(
                mu[i - 1] + a[i - 1] > mu[i] + a[i] for i in range(1, len(a)))
        }
        print('  expected =', expected)
        assert set(expansion) == expected
        print()
        print()
コード例 #5
0
def test_complement():
    nu = ()
    assert Partition.complement(0, nu) == ()
    assert Partition.complement(1, nu) == (1, )
    assert Partition.complement(2, nu) == (2, 1)

    nu = (6, 4, 2, 1)
    assert Partition.complement(6, nu) == (5, 3)
コード例 #6
0
ファイル: scrap.py プロジェクト: emarberg/stable-grothendieck
def skew(w):
    n = w.rank
    f = tuple(i for i in range(1, n + 1) if w(i) > i)
    r = len(f)
    lam = tuple(w(f[-1]) - r - f[i] + i + 1 for i in range(r))
    mu = tuple(w(f[-1]) - r - w(f[i]) + i + 1 for i in range(r))
    print(Partition.printable(lam))
    print()
    print(Partition.printable(mu))
    return lam, mu
コード例 #7
0
 def stable_grothendieck_doublebar(cls,
                                   num_variables,
                                   mu,
                                   nu=(),
                                   degree_bound=None):  # noqa
     ans = SymmetricPolynomial()
     if Partition.contains(mu, nu):
         for x in Partition.remove_inner_corners(nu):
             ans += BETA**(sum(nu) - sum(x)) * cls._stable_grothendieck(
                 num_variables, mu, x, degree_bound)
     return ans
コード例 #8
0
def test_transpose():
    mu = ()
    assert Partition.transpose(mu) == mu

    mu = (1, )
    assert Partition.transpose(mu) == mu

    mu = (2, )
    assert Partition.transpose(mu) == (1, 1)

    mu = (5, 3, 3, 2, 2, 1, 1, 1, 1)
    assert Partition.transpose(mu) == (9, 5, 3, 1, 1)
コード例 #9
0
def _test_shifted_p(n_max, v_max):
    for n in range(n_max + 1):
        for v in range(1, v_max + 1):
            for lam1 in Partition.all(n, strict=True):
                for lam2 in Partition.all(n, strict=True):
                    print()
                    print()
                    print('* v =', v, ', n =', n, ', mu =', lam1, ', nu =',
                          lam2)
                    print()

                    print('Computing LHS . . .')
                    print()

                    s = Polynomial()
                    for mu in Partition.all(n + max(sum(lam1), sum(lam2)),
                                            strict=True):
                        a = SymmetricPolynomial.stable_grothendieck_p_doublebar(
                            v, mu, lam1).truncate(n).polynomial('x')
                        b = SymmetricPolynomial.dual_stable_grothendieck_q(
                            v, mu, lam2).truncate(n).polynomial('y')
                        s += (a * b).truncate(n)
                        print('  ', mu, ':', s, '|', a, '|', b)
                        print()
                    print('LHS =', s)
                    print()
                    print()

                    print('Computing RHS . . .')
                    print()

                    f = kernel(n, v)
                    print('  ', '   :', f)
                    print()

                    t = Polynomial()
                    for kappa in Partition.subpartitions(lam2, strict=True):
                        a = SymmetricPolynomial.stable_grothendieck_p_doublebar(
                            v, lam2, kappa).truncate(n)
                        b = SymmetricPolynomial.dual_stable_grothendieck_q(
                            v, lam1, kappa).truncate(n)
                        t += (f * a.polynomial('x') *
                              b.polynomial('y')).truncate(n)
                        print('  ', kappa, ':', t)
                        print()

                    print('RHS =', t)
                    print()
                    print()
                    print('diff =', s - t)
                    print()
                    assert s == t
コード例 #10
0
 def _slow_vectorize(cls, n, tableaux, signs=None, check=True):
     dictionary = defaultdict(int)
     for tab in tableaux:
         dictionary[tab.weight(n)] += 1
     if check:
         assert all(dictionary[Partition.sort(alpha)] == dictionary[alpha]
                    for alpha in dictionary)
     return SymmetricPolynomial({
         SymmetricMonomial(n, alpha):
         coeff * (signs if signs else 1)**sum(alpha)
         for alpha, coeff in dictionary.items()
         if Partition.is_partition(alpha)
     })
コード例 #11
0
def test_subpartitions():
    assert set(Partition.subpartitions(())) == {()}
    assert set(Partition.subpartitions([1])) == {(), (1, )}
    assert set(Partition.subpartitions([1, 1])) == {(), (1, ), (1, 1)}
    assert set(Partition.subpartitions([2, 1])) == {(), (1, ), (1, 1), (2, ),
                                                    (2, 1)}
    assert len(list(Partition.subpartitions([2, 1]))) == 5

    assert set(Partition.subpartitions((), True)) == {()}
    assert set(Partition.subpartitions([1], True)) == {(), (1, )}
    assert set(Partition.subpartitions([1, 1], True)) == {(), (1, )}
    assert set(Partition.subpartitions([2, 1], True)) == {(), (1, ), (2, ),
                                                          (2, 1)}
    assert len(list(Partition.subpartitions([2, 1], True))) == 4
コード例 #12
0
def test_generate_partitions():
    assert set(Partition.generate(0)) == {()}
    assert set(Partition.generate(1)) == {(1, )}
    assert set(Partition.generate(2)) == {(1, 1), (2, )}
    assert set(Partition.generate(3)) == {(1, 1, 1), (2, 1), (3, )}

    assert set(Partition.generate(4)) == {(1, 1, 1, 1), (2, 1, 1), (2, 2),
                                          (3, 1), (4, )}
    assert set(Partition.generate(4, max_row=0)) == set()
    assert set(Partition.generate(4, max_row=1)) == {(4, )}
    assert set(Partition.generate(4, max_row=2)) == {(2, 2), (3, 1), (4, )}
    assert set(Partition.generate(4, max_row=3)) == {(2, 1, 1), (2, 2), (3, 1),
                                                     (4, )}
    assert set(Partition.generate(4, max_row=4)) == {(1, 1, 1, 1), (2, 1, 1),
                                                     (2, 2), (3, 1), (4, )}
コード例 #13
0
 def _slow_transposed_dual_stable_grothendieck_q(cls,
                                                 num_variables,
                                                 mu,
                                                 nu=()):
     p = 0
     for tab in Tableau.semistandard_shifted_marked(num_variables, mu, nu):
         m = 1
         for i in range(1, num_variables + 1):
             r = len({x for x, y, v in tab if v[0] == i})
             c = len({y for x, y, v in tab if v[0] == -i})
             a = len({(x, y) for x, y, v in tab if abs(v[0]) == i})
             x = Polynomial.x(i)
             m *= x**(r + c) * (x + 1)**(a - r - c)
         p += m
     dictionary = {}
     for e in p:
         tup = num_variables * [0]
         for i in e:
             tup[i - 1] = e[i]
         dictionary[tuple(tup)] = p[e]
     return SymmetricPolynomial({
         SymmetricMonomial(num_variables, alpha): coeff *
         (-BETA**-1)**(sum(alpha))
         for alpha, coeff in dictionary.items()
         if Partition.is_partition(alpha)
     }) * (-BETA)**(sum(mu) - sum(nu))
コード例 #14
0
def test_skew_GP_positivity():  # noqa
    k = 10
    for mu in Partition.all(k, strict=True):
        for nu in Partition.all(k, strict=True):
            if not Partition.contains(mu, nu):
                continue
            n = len(mu)
            f = GP(n, mu, nu)
            expansion = SymmetricPolynomial.GP_expansion(f)
            normalized = Vector({
                lam: c * BETA**(sum(lam) - sum(mu) + sum(nu))
                for lam, c in expansion.items()
            })
            print('GP_{%s/%s}(x_%s) =' % (mu, nu, n), normalized)
            print()
            assert all(c > 0 for c in normalized.values())
コード例 #15
0
 def get_inv_grassmannian(cls, *mu):
     assert Partition.is_strict_partition(mu)
     ans = Permutation()
     for i in range(len(mu)):
         ans *= Permutation.transposition(1 + mu[0] - mu[i], i + 1 + mu[0])
     w0 = Permutation.longest_element(len(mu) + (mu[0] if mu else 0))
     ans = w0 * ans * w0
     return ans
コード例 #16
0
def test_staircase_grothendieck_GP_positivity():  # noqa
    r = 6
    for k in range(r):
        delta = tuple(k - i for i in range(k))
        for nu in Partition.all(sum(delta)):
            if not Partition.contains(delta, nu):
                continue
            n = len(delta)
            f = G(n, delta, nu)
            expansion = SymmetricPolynomial.GP_expansion(f)
            normalized = Vector({
                lam: c * BETA**(sum(lam) - sum(delta) + sum(nu))
                for lam, c in expansion.items()
            })
            print('G_{%s/%s}(x_%s) =' % (delta, nu, n), normalized)
            print()
            assert all(c > 0 for c in normalized.values())
コード例 #17
0
def test_find_shifted_corners():
    mu = (3, 2, 1)
    assert Partition.find_shifted_inner_corner(mu, 0) == 3
    assert Partition.find_shifted_inner_corner(mu, 1) is None
    assert Partition.find_shifted_inner_corner(mu, 2) is None

    assert Partition.find_shifted_outer_corner(mu, 0) is None
    assert Partition.find_shifted_outer_corner(mu, 1) is None
    assert Partition.find_shifted_outer_corner(mu, 2) is None
    assert Partition.find_shifted_outer_corner(mu, 3) == 1
コード例 #18
0
 def get_fpf_grassmannian(cls, *mu):
     assert Partition.is_strict_partition(mu)
     ans = Permutation()
     o = 1 if (mu and (len(mu) + 1 + mu[0]) % 2 != 0) else 0
     for i in range(len(mu)):
         ans *= Permutation.transposition(o + 1 + mu[0] - mu[i], o + i + 2 + mu[0])
     while not ans.is_fpf_involution():
         f = [i for i in range(1, ans.rank + 2) if ans(i) == i]
         ans *= Permutation.transposition(f[0], f[1])
     w0 = Permutation.longest_element(o + 1 + len(mu) + (mu[0] if mu else 0))
     ans = w0 * ans * w0
     return ans
コード例 #19
0
def _expansion(n, function, expand, shifted=True, unsigned=True):  # noqa
    for mu in Partition.all(n, strict=shifted):
        n = len(mu)
        p = function(n, mu)
        ansion = expand(p)
        if unsigned:
            expansion = {
                nu: coeff * (-1)**abs(sum(mu) - sum(nu))
                for nu, coeff in ansion.items()
            }
        else:
            expansion = ansion
        print('mu =', mu)
        print()
        print(Partition.printable(mu, shifted=shifted))
        print()
        print('  mu =', mu, 'n =', n)
        print('  expansion =', ansion)
        if unsigned:
            print('  unsigned expansion =', expansion)
        print()
        assert all(v > 0 for v in expansion.values())
コード例 #20
0
def test_contains():
    mu = (1, )
    nu = ()
    assert Partition.contains(mu, mu)
    assert Partition.contains(mu, nu)
    assert not Partition.contains(nu, mu)

    mu = (3, 2, 1)
    nu = (3, 2)
    assert Partition.contains(mu, mu)
    assert Partition.contains(mu, nu)
    assert not Partition.contains(nu, mu)

    mu = (3, 2, 1)
    nu = (1, 1, 1)
    assert Partition.contains(mu, nu)
    assert not Partition.contains(nu, mu)

    mu = (1, 1, 1, 1)
    nu = (1, 1, 1)
    assert Partition.contains(mu, nu)
    assert not Partition.contains(nu, mu)
コード例 #21
0
 def _multiply(cls, f, g):
     assert type(f) == type(g) == SymmetricMonomial
     assert f.order() == g.order()
     mu = f.mu
     nu = g.mu
     n = min(f.order(), len(mu) + len(nu))
     if (mu, nu, n) not in MONOMIAL_PRODUCT_CACHE:
         ans = defaultdict(int)
         for alpha in cls._destandardize(n, mu):
             for blpha in cls._destandardize(n, nu):
                 gamma = tuple(alpha[i] + blpha[i] for i in range(n))
                 if Partition.is_partition(gamma):
                     while gamma and gamma[-1] == 0:
                         gamma = gamma[:-1]
                     ans[gamma] += 1
         MONOMIAL_PRODUCT_CACHE[(mu, nu, n)] = ans
     return MONOMIAL_PRODUCT_CACHE[(mu, nu, n)]
コード例 #22
0
def test_covers():
    mu = ()
    assert set(Partition.remove_inner_corners(mu)) == {()}
    assert set(Partition.remove_shifted_inner_corners(mu)) == {()}

    mu = (1, )
    assert set(Partition.remove_inner_corners(mu)) == {(1, ), ()}
    assert set(Partition.remove_shifted_inner_corners(mu)) == {(1, ), ()}

    mu = (3, 2, 1)
    assert set(Partition.remove_inner_corners(mu)) == {(3, 2, 1), (2, 2, 1),
                                                       (3, 1, 1), (3, 2),
                                                       (2, 1, 1), (2, 2),
                                                       (3, 1), (2, 1)}
    assert set(Partition.remove_shifted_inner_corners(mu)) == {(3, 2),
                                                               (3, 2, 1)}
コード例 #23
0
def test_symmetric_functions():
    nn = 6
    for mu in Partition.all(nn):
        for nu in Partition.all(nn, strict=True):
            for n in range(nn):
                print(n, mu, nu)
                print()

                f = SymmetricPolynomial.schur(n, mu, nu)
                g = SymmetricPolynomial.stable_grothendieck(n, mu, nu)
                h = SymmetricPolynomial.dual_stable_grothendieck(n, mu, nu)

                fs = SymmetricPolynomial._slow_schur(n, mu, nu)
                gs = SymmetricPolynomial._slow_stable_grothendieck(n, mu, nu)
                hs = SymmetricPolynomial._slow_dual_stable_grothendieck(
                    n, mu, nu)

                if f != fs:
                    print(f)
                    print(fs)
                    print()
                if g != gs:
                    print(g)
                    print(gs)
                    print()
                if h != hs:
                    print(h)
                    print(hs)
                    print()
                    print()

                assert f == fs
                assert g == gs
                assert h == hs

                hh = SymmetricPolynomial.schur_s(n, mu, nu)
                kk = SymmetricPolynomial.stable_grothendieck_s(n, mu, nu)

                if mu == nu:
                    assert f == 1
                    assert g == 1
                    assert h == 1
                    assert fs == 1
                    assert gs == 1
                    assert hs == 1
                    assert hh == 1
                    assert kk == 1

                if not Partition.contains(mu, nu):
                    assert f == 0
                    assert g == 0
                    assert h == 0
                    assert fs == 0
                    assert gs == 0
                    assert hs == 0
                    assert hh == 0
                    assert kk == 0

                print(f)
                print(g)
                print()
                print(hh)
                print(kk)
                print()
                assert g.lowest_degree_terms() == f
                assert kk.lowest_degree_terms() == hh
コード例 #24
0
 def fpf_grassmannians(cls, rank):
     assert rank % 2 == 0
     delta = tuple(range(rank - 2, 0, -2))
     for mu in Partition.subpartitions(delta, strict=True):
         yield cls.get_fpf_grassmannian(*mu)
コード例 #25
0
 def inv_grassmannians(cls, rank):
     delta = tuple(range(rank - 1, 0, -2))
     for mu in Partition.subpartitions(delta, strict=True):
         yield cls.get_inv_grassmannian(*mu)
コード例 #26
0
 def grassmannians(cls, rank):
     delta = tuple(range(rank - 1, 0, -1))
     for mu in Partition.subpartitions(delta):
         yield cls.get_grassmannian(*mu)
コード例 #27
0
 def shape(self):
     return Partition.sort(self.inverse().code(), trim=True)
コード例 #28
0
 def all(cls, n, rank, excess, is_multisetvalued, is_symplectic):
     for mu in Partition.generate(n, strict=True):
         cg = cls(mu, rank, excess, is_multisetvalued, is_symplectic)
         if cg.edges:
             cg.generate()
コード例 #29
0
 def fpf_involution_shape(self):
     assert self.is_fpf_involution()
     mu = Partition.sort(self.fpf_involution_code(), trim=True)
     return Partition.transpose(mu)
コード例 #30
0
def test_strict_symmetric_functions():
    nn = 5
    for mu in Partition.all(nn, strict=True):
        for nu in Partition.all(nn, strict=True):
            for n in range(nn):
                print(n, mu, nu)
                print()

                # Schur-P and GP

                f = SymmetricPolynomial.schur_p(n, mu, nu)
                g = SymmetricPolynomial.stable_grothendieck_p(n, mu, nu)
                h = SymmetricPolynomial.dual_stable_grothendieck_p(n, mu, nu)

                fs = SymmetricPolynomial._slow_schur_p(n, mu, nu)
                gs = SymmetricPolynomial._slow_stable_grothendieck_p(n, mu, nu)
                hs = SymmetricPolynomial._slow_dual_stable_grothendieck_p(
                    n, mu, nu)

                if f != fs:
                    print(f)
                    print(fs)
                    print()

                if g != gs:
                    print(g)
                    print(gs)
                    print()

                if h != hs:
                    print(h)
                    print(hs)
                    print()
                    print()
                    print()

                assert f == fs
                assert g == gs
                assert h == hs

                if mu == nu:
                    assert f == 1
                    assert g == 1
                    assert h == 1
                    assert fs == 1
                    assert gs == 1
                    assert hs == 1

                if not Partition.contains(mu, nu):
                    assert f == 0
                    assert g == 0
                    assert h == 0
                    assert fs == 0
                    assert gs == 0
                    assert hs == 0

                # Schur-Q and GQ

                f = SymmetricPolynomial.schur_q(n, mu, nu)
                g = SymmetricPolynomial.stable_grothendieck_q(n, mu, nu)
                h = SymmetricPolynomial.dual_stable_grothendieck_q(n, mu, nu)

                fs = SymmetricPolynomial._slow_schur_q(n, mu, nu)
                gs = SymmetricPolynomial._slow_stable_grothendieck_q(n, mu, nu)
                hs = SymmetricPolynomial._slow_dual_stable_grothendieck_q(
                    n, mu, nu)

                if f != fs:
                    print(f)
                    print(fs)
                    print()

                if g != gs:
                    print(g)
                    print(gs)
                    print()

                if h != hs:
                    print(h)
                    print(hs)
                    print()
                    print()
                    print()

                assert f == fs
                assert g == gs
                assert h == hs

                if mu == nu:
                    assert f == 1
                    assert g == 1
                    assert h == 1
                    assert fs == 1
                    assert gs == 1
                    assert hs == 1

                if not Partition.contains(mu, nu):
                    assert f == 0
                    assert g == 0
                    assert h == 0
                    assert fs == 0
                    assert gs == 0
                    assert hs == 0