def training(data): print('inside controller') # removing rows with label values data = data.dropna(subset=[label]) tabclient = Client(tabpy_serverurl) # dataframe to json input_data = json.loads(data.to_json(orient='records')) returnResult = tabclient.query('RapidMiner_Train', go_url, go_username, go_password, input_data, label,cost_matrix,high_value,low_value,selection_criteria, max_min_crietria_selector, platform) final_out = json_normalize(returnResult['response']) return final_out
def quick_training(training_data): # removing rows with label values training_data = training_data.dropna(subset=[label]) tabclient = Client(tabpy_serverurl) # dataframe to json+ responseJSON = training_data.to_json(orient='records') input_data = json.loads(responseJSON) returnResult = tabclient.query('Rapidminer_Quick_Training', go_url, go_username, go_password, input_data, label,selection_criteria,max_min_crietria_selector,'tabprep') final_out = json_normalize(returnResult['response']) return final_out