def main(): """Make a jazz noise here""" args = get_args() min_len = args.min_len files = args.FILE hamm = args.hamming_distance logfile = args.logfile table = args.table logging.basicConfig( filename=logfile, filemode='w', level=logging.DEBUG if args.debug else logging.CRITICAL) file1 = files[0] file2 = files[1] logging.debug('file1 = {}, file2 = {}'.format(file1, file2)) if hamm < 0: die('--distance "{}" must be > 0'.format(hamm)) words1 = sorted(uniq_words(file1, min_len)) words2 = sorted(uniq_words(file2, min_len)) matches = {} for str1 in words1: for str2 in words2: d = dist(str1, str2) if d <= hamm: matches[(str1, str2)] = d if len(matches) > 0: t = [] for pairs, count in matches.items(): col1 = pairs[0] col2 = pairs[1] col3 = count column = col1, col2, col3 t.append(column) if table: print( tbl(t, headers=['word1', 'word2', 'distance'], tablefmt='psql')) else: print('{}\t{}\t{}'.format('word1', 'word2', 'distance')) for row in t: print('{}\t{}\t{}'.format(row[0], row[1], row[2])) else: print('No words in common.')
# https://github.com/dhava-stmkg/interpolation import numpy as np # Import modul numpy sebagai np import sympy as sy # Import modul sympy sebagai sy from tabulate import tabulate as tbl # Import sub-modul tabulate dari modul tabulate sebagai tbl # Define t as symbol using sympy lib t = sy.Symbol('t') # Data x = np.array([0, 10, 15, 20, 22.5, 30]) y = np.array([0, 227.04, 362.78, 517.35, 602.97, 901.67]) tabel = [] for i in range(len(x)): tabel.append([x[i], y[i]]) table = tbl(tabel, headers=['t(s)', 'v(t) (mm/s)'], tablefmt='orgtbl') print(table) # Function def direct_method(x, y): vander_matrix = np.vander( x, increasing=False ) # Membuat matrix Vandermonde dengan menggunakan modul numpy coef = np.linalg.solve(vander_matrix, y) # Menyelesaikan persamaan dengan modul numpy return coef # Mengembalikan nilai koefisien def newt_method(x, y): m = len(x) # Mengambil jumlah data
c.get_rate(base_cur, MXN, date_obj), c.get_rate(base_cur, BGN, date_obj), c.get_rate(base_cur, HUF, date_obj), c.get_rate(base_cur, MYR, date_obj), c.get_rate(base_cur, HRK, date_obj), c.get_rate(base_cur, THB, date_obj), c.get_rate(base_cur, NOK, date_obj), c.get_rate(base_cur, PLN, date_obj), c.get_rate(base_cur, CZK, date_obj) ]] tbl_header = (USD, GBP, ZAR, EUR, AUD, SGD, CAD, CNY, JPY, NZD, INR, CHF, MXN, BGN, HUF, MYR, HRK, THB, NOK, PLN, CZK) print(">>Table Results:") print('>>Base Currency = ', base_cur) print(tbl(tbl_data, tbl_header, tablefmt="fancy_grid")) print(">>DOne loading table...") print("\n::Lets Check Bitcoin now...!") print("Bitcoin price for => ", base_cur) print("1 BITCOIN = %(base)s %(price).2F" % { 'base': base_cur, 'price': b.get_latest_price(base_cur) }) print(">>Done checking bitcoin...") print("Goodbye!") print("PS, From [[[ElectronSz]]] :)")
dic3=lz4.frame.get_frame_info(compressed) bs=dic3['block_size'] ty=nd.dtype.name dic=[['LZ4 library version',lz4lver], ['LZ4 python module version',lz4ver], ['LZ4 block size',"{0}kB".format(int(np.round(bs/1024)))], ['LZ4 compression level',0], ['Zstd library version',zzs], ['Zstd Compression level',1], ['Zstd Compression Threads',4], ['Type of element',ty], ['Shape of data',sp], ['Original Size',"{0}kB".format(int(np.round(result3/1024)))], ['Compressed Size(LZ4)',"{0}kB".format(int(np.round(result2/1024)))], ['Compressed Size(Zstd)',"{0}kB".format(int(np.round(result4/1024)))], ['Compression Ratio(LZ4)',"{0:.6f}".format(result3/result2)], ['Compression Ratio(Zstd)',"{0:.6f}".format(result3/result4)], ['Compression Time(LZ4)',"{0:.6f}s".format(time)], ['Compression Time(Zstd)',"{0:.6f}s".format(time2)], ['Decompression Time(LZ4)',"{0:.6f}s".format(time4)], ['Decompression Time(Zstd)',"{0:.6f}s".format(time3)], ['Original == Compressed ?',result]] with open('data.json', 'w') as fp: json.dump(dic, fp) with open('data.json', 'r') as fp: dic2 = json.load(fp) print(tbl(dic2, tablefmt="fancy_grid", headers=['Name','Value']))
def MoneyTable(): global all_users, money out = tbl(list(zip(all_users, money)), tablefmt = 'psql', headers=('Players', 'Money')) print('Current Money Distribution') print(out)
winner = all_users[final_hands_original.index(final_hands[0])] #Display a table with final hands of all players with winner marked separately print(tbl (list (zip ( [f'Winner >> [{i}]' if i is winner else i for i in all_users], final_hands_original, [_dispCards(*k) for k in \ [i.replace('10', 'T').split() for i in final_hands_original] ] ) ), headers = ( 'Player', 'Cards', '' ), tablefmt='psql' ) ) win_msg = f"player [{winner}] won with '{get_best_hand_of_user(winner)[1]}'\nCards are: {'['+', '.join(get_best_hand_of_user(winner)[0])+']'}"
Created on Tue Nov 19 12:07:06 2019 @author: agnib """ # Create an N x N magic square. N must be odd. from tabulate import tabulate as tbl import numpy as np N = 9 magic_square = np.zeros((N, N), dtype=int) i, j, n = 0, N // 2, 1 while n <= N**2: magic_square[i, j] = n n += 1 newi, newj = (i - 1) % N, (j + 1) % N if magic_square[newi, newj]: i += 1 else: i, j = newi, newj for i in magic_square: for j in i: print(j, end=" ") print("\n") print(tbl(magic_square, tablefmt="grid"))
headers += ['covariance'] headers += ['Linear mean [dBm]'] row_0 = [2] row_1 = [5] row_2 = [3.4] for x, y, z in zip(qunatile_2m, qunatile_5m, qunatile_ant): row_0.append(x) row_1.append(y) row_2.append(z) row_0.append(cov_2m) row_1.append(cov_5m) row_0.append(linear_mean(rssi_2m)) row_1.append(linear_mean(rssi_5m)) row_2.append(cov_ant) tble = [row_0, row_1] table = tbl(tble, headers=headers, tablefmt='github') print('*' * 150) print(table) print('*' * 150) fig, ax = plt.subplots() ax.plot(_2x, z2m, label='RSSI - 2m pdf') ax.plot(_5x, z5m, label='RSSI - 5m pdf') ax.set_title('PDF 2m, 5m') ax.legend() ax.grid() plt.xlabel('power [dBm]') fig.show() fig, ax = plt.subplots() ax.plot(_2x, cdf2m, label='RSSI - 2m CDF') ax.plot(_5x, cdf5m, label='RSSI - 5m CDF') ax.set_title('CDF 2m, 5m')