def get_collate_function(model_name, n_frames_per_step): if model_name == 'Tacotron2': collate_fn = TextMelCollate(n_frames_per_step) elif model_name == 'WaveGlow': collate_fn = torch.utils.data.dataloader.default_collate else: raise NotImplementedError( "unknown collate function requested: {}".format(model_name)) return collate_fn
def main(): parser = argparse.ArgumentParser( description='PyTorch TTS Data Pre-processing') parser = parse_args(parser) args, unk_args = parser.parse_known_args() if len(unk_args) > 0: raise ValueError(f'Invalid options {unk_args}') if args.extract_pitch_char: assert args.extract_durations, "Durations required for pitch extraction" DLLogger.init(backends=[ JSONStreamBackend(Verbosity.DEFAULT, args.log_file), StdOutBackend(Verbosity.VERBOSE) ]) for k, v in vars(args).items(): DLLogger.log(step="PARAMETER", data={k: v}) model = load_and_setup_model( 'Tacotron2', parser, args.tacotron2_checkpoint, amp=False, device=torch.device('cuda' if args.cuda else 'cpu'), forward_is_infer=False, ema=False) if args.train_mode: model.train() # n_mel_channels arg has been consumed by model's arg parser args.n_mel_channels = model.n_mel_channels for datum in ('mels', 'mels_teacher', 'attentions', 'durations', 'pitch_mel', 'pitch_char', 'pitch_trichar'): if getattr(args, f'extract_{datum}'): Path(args.dataset_path, datum).mkdir(parents=False, exist_ok=True) filenames = [ Path(l.split('|')[0]).stem for l in open(args.wav_text_filelist, 'r') ] # Compatibility with Tacotron2 Data loader args.n_speakers = 1 dataset = FilenamedLoader(filenames, args.dataset_path, args.wav_text_filelist, args, load_mel_from_disk=False) # TextMelCollate supports only n_frames_per_step=1 data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, sampler=None, num_workers=0, collate_fn=TextMelCollate(1), pin_memory=False, drop_last=False) pitch_vecs = {'mel': {}, 'char': {}, 'trichar': {}} for i, batch in enumerate(data_loader): tik = time.time() fnames = batch[-1] x, _, _ = batch_to_gpu(batch[:-1]) _, text_lens, mels_padded, _, mel_lens = x for j, mel in enumerate(mels_padded): fpath = Path(args.dataset_path, 'mels', fnames[j] + '.pt') torch.save(mel[:, :mel_lens[j]].cpu(), fpath) with torch.no_grad(): out_mels, out_mels_postnet, _, alignments = model.forward(x) if args.extract_mels_teacher: for j, mel in enumerate(out_mels_postnet): fpath = Path(args.dataset_path, 'mels_teacher', fnames[j] + '.pt') torch.save(mel[:, :mel_lens[j]].cpu(), fpath) if args.extract_attentions: for j, ali in enumerate(alignments): ali = ali[:mel_lens[j], :text_lens[j]] fpath = Path(args.dataset_path, 'attentions', fnames[j] + '.pt') torch.save(ali.cpu(), fpath) durations = [] if args.extract_durations: for j, ali in enumerate(alignments): text_len = text_lens[j] ali = ali[:mel_lens[j], :text_len] dur = torch.histc(torch.argmax(ali, dim=1), min=0, max=text_len - 1, bins=text_len) durations.append(dur) fpath = Path(args.dataset_path, 'durations', fnames[j] + '.pt') torch.save(dur.cpu().int(), fpath) if args.extract_pitch_mel or args.extract_pitch_char or args.extract_pitch_trichar: for j, dur in enumerate(durations): fpath = Path(args.dataset_path, 'pitch_char', fnames[j] + '.pt') wav = Path(args.dataset_path, 'wavs', fnames[j] + '.wav') p_mel, p_char, p_trichar = calculate_pitch( str(wav), dur.cpu().numpy()) pitch_vecs['mel'][fnames[j]] = p_mel pitch_vecs['char'][fnames[j]] = p_char pitch_vecs['trichar'][fnames[j]] = p_trichar nseconds = time.time() - tik DLLogger.log(step=f'{i+1}/{len(data_loader)} ({nseconds:.2f}s)', data={}) if args.extract_pitch_mel: normalize_pitch_vectors(pitch_vecs['mel']) for fname, pitch in pitch_vecs['mel'].items(): fpath = Path(args.dataset_path, 'pitch_mel', fname + '.pt') torch.save(torch.from_numpy(pitch), fpath) if args.extract_pitch_char: mean, std = normalize_pitch_vectors(pitch_vecs['char']) for fname, pitch in pitch_vecs['char'].items(): fpath = Path(args.dataset_path, 'pitch_char', fname + '.pt') torch.save(torch.from_numpy(pitch), fpath) save_stats(args.dataset_path, args.wav_text_filelist, 'pitch_char', mean, std) if args.extract_pitch_trichar: normalize_pitch_vectors(pitch_vecs['trichar']) for fname, pitch in pitch_vecs['trichar'].items(): fpath = Path(args.dataset_path, 'pitch_trichar', fname + '.pt') torch.save(torch.from_numpy(pitch), fpath) DLLogger.flush()
def main(): parser = argparse.ArgumentParser(description='PyTorch Tacotron 2 Training') parser = parse_args(parser) args, _ = parser.parse_known_args() LOGGER.set_model_name("Tacotron2_PyT") LOGGER.set_backends([ dllg.StdOutBackend(log_file=None, logging_scope=dllg.TRAIN_ITER_SCOPE, iteration_interval=1), dllg.JsonBackend(log_file=os.path.join( args.output_directory, args.log_file) if args.rank == 0 else None, logging_scope=dllg.TRAIN_ITER_SCOPE, iteration_interval=1) ]) LOGGER.timed_block_start("run") LOGGER.register_metric(tags.TRAIN_ITERATION_LOSS, metric_scope=dllg.TRAIN_ITER_SCOPE) LOGGER.register_metric("iter_time", metric_scope=dllg.TRAIN_ITER_SCOPE) LOGGER.register_metric("epoch_time", metric_scope=dllg.EPOCH_SCOPE) LOGGER.register_metric("run_time", metric_scope=dllg.RUN_SCOPE) LOGGER.register_metric("val_iter_loss", metric_scope=dllg.EPOCH_SCOPE) LOGGER.register_metric("train_epoch_frames/sec", metric_scope=dllg.EPOCH_SCOPE) LOGGER.register_metric("train_epoch_avg_frames/sec", metric_scope=dllg.EPOCH_SCOPE) LOGGER.register_metric("train_epoch_avg_loss", metric_scope=dllg.EPOCH_SCOPE) log_hardware() parser = parse_tacotron2_args(parser) args = parser.parse_args() log_args(args) torch.backends.cudnn.enabled = args.cudnn_enabled torch.backends.cudnn.benchmark = args.cudnn_benchmark distributed_run = args.world_size > 1 if distributed_run: init_distributed(args, args.world_size, args.rank, args.group_name) os.makedirs(args.output_directory, exist_ok=True) LOGGER.log(key=tags.RUN_START) run_start_time = time.time() model = get_tacotron2_model(args, len(args.training_anchor_dirs), is_training=True) if not args.amp_run and distributed_run: model = DDP(model) model.restore_checkpoint( os.path.join(args.output_directory, args.latest_checkpoint_file)) optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, weight_decay=args.weight_decay) if args.amp_run: model, optimizer = amp.initialize(model, optimizer, opt_level="O1") if distributed_run: model = DDP(model) criterion = Tacotron2Loss() collate_fn = TextMelCollate(args) train_dataset = TextMelDataset(args, args.training_anchor_dirs) train_loader = DataLoader(train_dataset, num_workers=2, shuffle=False, batch_size=args.batch_size // len(args.training_anchor_dirs), pin_memory=False, drop_last=True, collate_fn=collate_fn) # valate_dataset = TextMelDataset(args, args.validation_anchor_dirs) model.train() elapsed_epochs = model.get_elapsed_epochs() epochs = args.epochs - elapsed_epochs iteration = elapsed_epochs * len(train_loader) LOGGER.log(key=tags.TRAIN_LOOP) for epoch in range(1, epochs + 1): LOGGER.epoch_start() epoch_start_time = time.time() epoch += elapsed_epochs LOGGER.log(key=tags.TRAIN_EPOCH_START, value=epoch) # used to calculate avg frames/sec over epoch reduced_num_frames_epoch = 0 # used to calculate avg loss over epoch train_epoch_avg_loss = 0.0 train_epoch_avg_frames_per_sec = 0.0 num_iters = 0 adjust_learning_rate(optimizer, epoch, args) for i, batch in enumerate(train_loader): print(f"Batch: {i}/{len(train_loader)} epoch {epoch}") LOGGER.iteration_start() iter_start_time = time.time() LOGGER.log(key=tags.TRAIN_ITER_START, value=i) # start = time.perf_counter() optimizer.zero_grad() x, y, num_frames = batch_to_gpu(batch) y_pred = model(x) loss = criterion(y_pred, y) if distributed_run: reduced_loss = reduce_tensor(loss.data, args.world_size).item() reduced_num_frames = reduce_tensor(num_frames.data, 1).item() else: reduced_loss = loss.item() reduced_num_frames = num_frames.item() if np.isnan(reduced_loss): raise Exception("loss is NaN") LOGGER.log(key=tags.TRAIN_ITERATION_LOSS, value=reduced_loss) train_epoch_avg_loss += reduced_loss num_iters += 1 # accumulate number of frames processed in this epoch reduced_num_frames_epoch += reduced_num_frames if args.amp_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() grad_norm = torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), args.grad_clip_thresh) else: loss.backward() grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), args.grad_clip_thresh) optimizer.step() iteration += 1 LOGGER.log(key=tags.TRAIN_ITER_STOP, value=i) iter_stop_time = time.time() iter_time = iter_stop_time - iter_start_time frames_per_sec = reduced_num_frames / iter_time train_epoch_avg_frames_per_sec += frames_per_sec LOGGER.log(key="train_iter_frames/sec", value=frames_per_sec) LOGGER.log(key="iter_time", value=iter_time) LOGGER.iteration_stop() LOGGER.log(key=tags.TRAIN_EPOCH_STOP, value=epoch) epoch_stop_time = time.time() epoch_time = epoch_stop_time - epoch_start_time LOGGER.log(key="train_epoch_frames/sec", value=(reduced_num_frames_epoch / epoch_time)) LOGGER.log(key="train_epoch_avg_frames/sec", value=(train_epoch_avg_frames_per_sec / num_iters if num_iters > 0 else 0.0)) LOGGER.log(key="train_epoch_avg_loss", value=(train_epoch_avg_loss / num_iters if num_iters > 0 else 0.0)) LOGGER.log(key="epoch_time", value=epoch_time) LOGGER.log(key=tags.EVAL_START, value=epoch) # validate(model, criterion, valate_dataset, iteration, collate_fn, distributed_run, args) LOGGER.log(key=tags.EVAL_STOP, value=epoch) # Store latest checkpoint in each epoch model.elapse_epoch() checkpoint_path = os.path.join(args.output_directory, args.latest_checkpoint_file) torch.save(model.state_dict(), checkpoint_path) # Plot alignemnt if epoch % args.epochs_per_alignment == 0 and args.rank == 0: alignments = y_pred[3].data.numpy() index = np.random.randint(len(alignments)) plot_alignment( alignments[index].transpose(0, 1), # [enc_step, dec_step] os.path.join(args.output_directory, f"align_{epoch:04d}_{iteration}.png"), info= f"{datetime.now().strftime('%Y-%m-%d %H:%M')} Epoch={epoch:04d} Iteration={iteration} Average loss={train_epoch_avg_loss/num_iters:.5f}" ) # Save checkpoint if epoch % args.epochs_per_checkpoint == 0 and args.rank == 0: checkpoint_path = os.path.join(args.output_directory, f"checkpoint_{epoch:04d}.pt") print( f"Saving model and optimizer state at epoch {epoch:04d} to {checkpoint_path}" ) torch.save(model.state_dict(), checkpoint_path) # Save evaluation # save_sample(model, args.tacotron2_checkpoint, args.phrase_path, # os.path.join(args.output_directory, f"sample_{epoch:04d}_{iteration}.wav"), args.sampling_rate) LOGGER.epoch_stop() run_stop_time = time.time() run_time = run_stop_time - run_start_time LOGGER.log(key="run_time", value=run_time) LOGGER.log(key=tags.RUN_FINAL) print("training time", run_stop_time - run_start_time) LOGGER.timed_block_stop("run") if args.rank == 0: LOGGER.finish()
def get_collate_function(model_name): return { 'Tacotron2': lambda _: TextMelCollate(n_frames_per_step=1), 'WaveGlow': lambda _: torch.utils.data.dataloader.default_collate, 'FastPitch': TextMelAliCollate }[model_name]()