コード例 #1
0
ファイル: impl.py プロジェクト: taichi-dev/taichi
def ndarray(dtype, shape, layout=Layout.NULL):
    """Defines a Taichi ndarray with scalar elements.

    Args:
        dtype (Union[DataType, MatrixType]): Data type of each element. This can be either a scalar type like ti.f32 or a compound type like ti.types.vector(3, ti.i32).
        shape (Union[int, tuple[int]]): Shape of the ndarray.
        layout (Layout, optional): Layout of ndarray, only applicable when element is non-scalar type. Default is Layout.AOS.

    Example:
        The code below shows how a Taichi ndarray with scalar elements can be declared and defined::

            >>> x = ti.ndarray(ti.f32, shape=(16, 8))  # ndarray of shape (16, 8), each element is ti.f32 scalar.
            >>> vec3 = ti.types.vector(3, ti.i32)
            >>> y = ti.ndarray(vec3, shape=(10, 2))  # ndarray of shape (10, 2), each element is a vector of 3 ti.i32 scalars.
            >>> matrix_ty = ti.types.matrix(3, 4, float)
            >>> z = ti.ndarray(matrix_ty, shape=(4, 5), layout=ti.Layout.SOA)  # ndarray of shape (4, 5), each element is a matrix of (3, 4) ti.float scalars.
    """
    if isinstance(shape, numbers.Number):
        shape = (shape, )
    if dtype in all_types:
        assert layout == Layout.NULL
        return ScalarNdarray(dtype, shape)
    if isinstance(dtype, MatrixType):
        layout = Layout.AOS if layout == Layout.NULL else layout
        return MatrixNdarray(dtype.n, dtype.m, dtype.dtype, shape, layout)

    raise TaichiRuntimeError(
        f'{dtype} is not supported as ndarray element type')
コード例 #2
0
def produce_injected_args(kernel, symbolic_args=None):
    injected_args = []
    for i, arg in enumerate(kernel.arguments):
        anno = arg.annotation
        if isinstance(anno, template_types):
            if not isinstance(anno, NdarrayType):
                raise TaichiCompilationError(
                    f'Expected Ndaray type, got {anno}')
            if symbolic_args is not None:
                element_shape = tuple(symbolic_args[i].element_shape)
                element_dim = len(element_shape)
                dtype = symbolic_args[i].dtype()
            else:
                element_shape = anno.element_shape
                element_dim = anno.element_dim
                dtype = anno.dtype

            if element_shape is None or anno.field_dim is None:
                raise TaichiCompilationError(
                    'Please either specify both `element_shape` and `field_dim` '
                    'in the param annotation, or provide an example '
                    f'ndarray for param={arg.name}')
            if element_dim is None or element_dim == 0:
                injected_args.append(
                    ScalarNdarray(dtype, (2, ) * anno.field_dim))
            elif element_dim == 1:
                injected_args.append(
                    VectorNdarray(element_shape[0],
                                  dtype=dtype,
                                  shape=(2, ) * anno.field_dim,
                                  layout=Layout.AOS))
            elif element_dim == 2:
                injected_args.append(
                    MatrixNdarray(element_shape[0],
                                  element_shape[1],
                                  dtype=dtype,
                                  shape=(2, ) * anno.field_dim,
                                  layout=Layout.AOS))
            else:
                raise RuntimeError('')
        elif isinstance(anno, MatrixType):
            if not isinstance(symbolic_args[i], list):
                raise RuntimeError('Expected a symbolic arg with Matrix type.')

            symbolic_mat_n = len(symbolic_args[i])
            symbolic_mat_m = len(symbolic_args[i][0])

            if symbolic_mat_m != anno.m or symbolic_mat_n != anno.n:
                raise RuntimeError(
                    f'Matrix dimension mismatch, expected ({anno.n}, {anno.m}) '
                    f'but dispathed shape ({symbolic_mat_n}, {symbolic_mat_m}).'
                )
            injected_args.append(Matrix([0] * anno.n * anno.m, dt=anno.dtype))
        else:
            # For primitive types, we can just inject a dummy value.
            injected_args.append(0)
    return injected_args
コード例 #3
0
    def add_kernel(self, kernel_fn, example_any_arrays=None, name=None):
        """Add a taichi kernel to the AOT module.

        Args:
          kernel_fn (Function): the function decorated by taichi `kernel`.
          example_any_arrays (Dict[int, ti.ndarray]): a dict where key is arg_id and key is example any_arr input.
          name (str): Name to identify this kernel in the module. If not
            provided, uses the built-in ``__name__`` attribute of `kernel_fn`.

        """
        name = name or kernel_fn.__name__
        kernel = kernel_fn._primal
        assert isinstance(kernel, kernel_impl.Kernel)
        injected_args = []
        num_arr = len([
            anno for anno in kernel.argument_annotations
            if isinstance(anno, ArgAnyArray)
        ])
        assert example_any_arrays is None or num_arr == len(
            example_any_arrays
        ), f'Need {num_arr} example any_arr inputs but got {len(example_any_arrays)}'
        i = 0
        for anno in kernel.argument_annotations:
            if isinstance(anno, ArgAnyArray):
                if example_any_arrays:
                    injected_args.append(example_any_arrays[i])
                else:
                    assert anno.element_shape is not None and anno.field_dim is not None, 'Please either specify element_shape & field_dim in the kernel arg annotation or provide a dict of example ndarrays.'
                    if anno.element_dim == 0:
                        injected_args.append(
                            ScalarNdarray(dtype=f32,
                                          shape=(2, ) * anno.field_dim))
                    elif anno.element_dim == 1:
                        injected_args.append(
                            VectorNdarray(anno.element_shape[0],
                                          dtype=f32,
                                          shape=(2, ) * anno.field_dim,
                                          layout=Layout.AOS))
                    elif anno.element_dim == 2:
                        injected_args.append(
                            MatrixNdarray(anno.element_shape[0],
                                          anno.element_shape[1],
                                          dtype=f32,
                                          shape=(2, ) * anno.field_dim,
                                          layout=Layout.AOS))
                    else:
                        raise RuntimeError('')
            else:
                # For primitive types, we can just inject a dummy value.
                injected_args.append(0)
            i = i + 1
        kernel.ensure_compiled(*injected_args)
        self._aot_builder.add(name, kernel.kernel_cpp)

        # kernel AOT
        self._kernels.append(kernel)
コード例 #4
0
def ndarray(dtype, shape):
    """Defines a Taichi ndarray with scalar elements.

    Args:
        dtype (DataType): Data type of each value.
        shape (Union[int, tuple[int]]): Shape of the ndarray.

    Example:
        The code below shows how a Taichi ndarray with scalar elements can be declared and defined::

            >>> x = ti.ndarray(ti.f32, shape=(16, 8))
    """
    if isinstance(shape, numbers.Number):
        shape = (shape, )
    return ScalarNdarray(dtype, shape)
コード例 #5
0
def produce_injected_args(kernel, symbolic_args=None):
    injected_args = []
    for j, arg in enumerate(kernel.arguments):
        anno = arg.annotation
        if isinstance(anno, template_types):
            if not isinstance(anno, NdarrayType):
                raise TaichiCompilationError(
                    f'Expected Ndaray type, got {anno}')
            if symbolic_args is not None:
                anno.element_shape = tuple(symbolic_args[j].element_shape)
                anno.element_dim = len(anno.element_shape)

            if anno.element_shape is None or anno.field_dim is None:
                raise TaichiCompilationError(
                    'Please either specify both `element_shape` and `field_dim` '
                    'in the param annotation, or provide an example '
                    f'ndarray for param={arg.name}')
            if anno.element_dim == 0:
                injected_args.append(ScalarNdarray(f32,
                                                   (2, ) * anno.field_dim))
            elif anno.element_dim == 1:
                injected_args.append(
                    VectorNdarray(anno.element_shape[0],
                                  dtype=f32,
                                  shape=(2, ) * anno.field_dim,
                                  layout=Layout.AOS))
            elif anno.element_dim == 2:
                injected_args.append(
                    MatrixNdarray(anno.element_shape[0],
                                  anno.element_shape[1],
                                  dtype=f32,
                                  shape=(2, ) * anno.field_dim,
                                  layout=Layout.AOS))
            else:
                raise RuntimeError('')
        else:
            # For primitive types, we can just inject a dummy value.
            injected_args.append(0)
    return injected_args
コード例 #6
0
def produce_injected_args(kernel, symbolic_args=None):
    injected_args = []
    for i, arg in enumerate(kernel.arguments):
        anno = arg.annotation
        if isinstance(anno, template_types):
            if not isinstance(anno, NdarrayType):
                raise TaichiCompilationError(
                    f'Expected Ndaray type, got {anno}')
            if symbolic_args is not None:
                element_shape = tuple(symbolic_args[i].element_shape)
                element_dim = len(element_shape)
                field_dim = symbolic_args[i].field_dim
                dtype = symbolic_args[i].dtype()
            else:
                element_shape = anno.element_shape
                element_dim = anno.element_dim
                field_dim = anno.field_dim
                dtype = anno.dtype

            if element_shape is None or field_dim is None:
                raise TaichiCompilationError(
                    'Please either specify both `element_shape` and `field_dim` '
                    'in the param annotation, or provide an example '
                    f'ndarray for param={arg.name}')
            if anno.field_dim is not None and field_dim != anno.field_dim:
                raise TaichiCompilationError(
                    f'{field_dim} from Arg {arg.name} doesn\'t match kernel\'s annotated field_dim={anno.field_dim}'
                )

            if anno.dtype is not None and not check_type_match(
                    dtype, anno.dtype):
                raise TaichiCompilationError(
                    f' Arg {arg.name}\'s dtype {dtype.to_string()} doesn\'t match kernel\'s annotated dtype={anno.dtype.to_string()}'
                )

            if element_dim is None or element_dim == 0:
                injected_args.append(ScalarNdarray(dtype, (2, ) * field_dim))
            elif element_dim == 1:
                injected_args.append(
                    VectorNdarray(element_shape[0],
                                  dtype=dtype,
                                  shape=(2, ) * field_dim,
                                  layout=Layout.AOS))
            elif element_dim == 2:
                injected_args.append(
                    MatrixNdarray(element_shape[0],
                                  element_shape[1],
                                  dtype=dtype,
                                  shape=(2, ) * field_dim,
                                  layout=Layout.AOS))
            else:
                raise RuntimeError('')
        elif isinstance(anno, (TextureType, RWTextureType)):
            if symbolic_args is None:
                raise RuntimeError(
                    'Texture type annotation doesn\'t have enough information for aot. Please either specify the channel_format, shape and num_channels in the graph arg declaration.'
                )
            texture_shape = tuple(symbolic_args[i].texture_shape)
            channel_format = symbolic_args[i].channel_format()
            num_channels = symbolic_args[i].num_channels
            injected_args.append(
                Texture(channel_format, num_channels, texture_shape))
        elif isinstance(anno, MatrixType):
            if not isinstance(symbolic_args[i], list):
                raise RuntimeError('Expected a symbolic arg with Matrix type.')

            symbolic_mat_n = len(symbolic_args[i])
            symbolic_mat_m = len(symbolic_args[i][0])

            if symbolic_mat_m != anno.m or symbolic_mat_n != anno.n:
                raise RuntimeError(
                    f'Matrix dimension mismatch, expected ({anno.n}, {anno.m}) '
                    f'but dispatched shape ({symbolic_mat_n}, {symbolic_mat_m}).'
                )
            injected_args.append(Matrix([0] * anno.n * anno.m, dt=anno.dtype))
        else:
            if symbolic_args is not None:
                dtype = symbolic_args[i].dtype()
            else:
                dtype = anno

            if not check_type_match(dtype, anno):
                raise TaichiCompilationError(
                    f' Arg {arg.name}\'s dtype {dtype.to_string()} doesn\'t match kernel\'s annotated dtype={anno.to_string()}'
                )
            # For primitive types, we can just inject a dummy value.
            injected_args.append(0)
    return injected_args
コード例 #7
0
    def add_kernel(self, kernel_fn, template_args=None, name=None):
        """Add a taichi kernel to the AOT module.

        Args:
          kernel_fn (Function): the function decorated by taichi `kernel`.
          template_args (Dict[str, Any]): a dict where key is the template
            parameter name, and value is the instantiating arg. Note that this
            works for both :class:`~taichi.types.template` and for
            `:class:`~taichi.types.ndarray`.
          name (str): Name to identify this kernel in the module. If not
            provided, uses the built-in ``__name__`` attribute of `kernel_fn`.

        """
        kernel_name = name or kernel_fn.__name__
        kernel = kernel_fn._primal
        assert isinstance(kernel, kernel_impl.Kernel)
        injected_args = []
        template_types = (NdarrayType, template)
        num_template_args = len([
            anno for anno in kernel.argument_annotations
            if isinstance(anno, template_types)
        ])
        if template_args is not None and num_template_args != len(
                template_args):
            raise TaichiCompilationError(
                f'Need {num_template_args} inputs to instantiate the template '
                f'parameters, got {len(template_args)}')
        i = 0
        for arg_name, anno in zip(kernel.argument_names,
                                  kernel.argument_annotations):
            if isinstance(anno, template_types):
                if template_args:
                    injected_args.append(template_args[arg_name])
                else:
                    if not isinstance(anno, NdarrayType):
                        raise TaichiCompilationError(
                            f'Expected Ndaray type, got {anno}')
                    if anno.element_shape is None or anno.field_dim is None:
                        raise TaichiCompilationError(
                            'Please either specify both `element_shape` and `field_dim` '
                            'in the param annotation, or provide an example '
                            f'ndarray for param={name}')
                    if anno.element_dim == 0:
                        injected_args.append(
                            ScalarNdarray(f32, (2, ) * anno.field_dim))
                    elif anno.element_dim == 1:
                        injected_args.append(
                            VectorNdarray(anno.element_shape[0],
                                          dtype=f32,
                                          shape=(2, ) * anno.field_dim,
                                          layout=Layout.AOS))
                    elif anno.element_dim == 2:
                        injected_args.append(
                            MatrixNdarray(anno.element_shape[0],
                                          anno.element_shape[1],
                                          dtype=f32,
                                          shape=(2, ) * anno.field_dim,
                                          layout=Layout.AOS))
                    else:
                        raise RuntimeError('')
                i = i + 1
            else:
                # For primitive types, we can just inject a dummy value.
                injected_args.append(0)
        kernel.ensure_compiled(*injected_args)
        self._aot_builder.add(kernel_name, kernel.kernel_cpp)

        # kernel AOT
        self._kernels.append(kernel)