コード例 #1
0
ファイル: test_ad_basics.py プロジェクト: dclcs/taichi-1
def test_obey_kernel_simplicity():
    x = ti.var(ti.f32)
    y = ti.var(ti.f32)

    @ti.layout
    def place():
        ti.root.dense(ti.i, 1).place(x, y)
        ti.root.lazy_grad()

    @ti.kernel
    def func():
        for i in x:
            # OK: nested for loop
            for j in ti.static(range(3)):
                # OK: a series of non-for-loop statements
                y[i] += x[i] * 42
                y[i] -= x[i] * 5

    y.grad[0] = 1.0
    x[0] = 0.1

    func()
    func.grad()
    assert x.grad[0] == approx((42 - 5) * 3)
コード例 #2
0
def test_basic_utils():
    a = ti.Vector(3, dt=ti.f32)
    b = ti.Vector(2, dt=ti.f32)
    abT = ti.Matrix.field(3, 2, dtype=ti.f32)
    aNormalized = ti.Vector(3, dt=ti.f32)

    normA = ti.field(ti.f32)
    normSqrA = ti.field(ti.f32)
    normInvA = ti.field(ti.f32)

    ti.root.place(a, b, abT, aNormalized, normA, normSqrA, normInvA)

    @ti.kernel
    def init():
        a[None] = ti.Vector([1.0, 2.0, 3.0])
        b[None] = ti.Vector([4.0, 5.0])
        abT[None] = a[None].outer_product(b[None])

        normA[None] = a[None].norm()
        normSqrA[None] = a[None].norm_sqr()
        normInvA[None] = a[None].norm_inv()

        aNormalized[None] = a[None].normalized()

    init()

    for i in range(3):
        for j in range(2):
            assert abT[None][i, j] == a[None][i] * b[None][j]

    sqrt14 = np.sqrt(14.0)
    invSqrt14 = 1.0 / sqrt14
    assert normSqrA[None] == approx(14.0)
    assert normInvA[None] == approx(invSqrt14)
    assert normA[None] == approx(sqrt14)
    assert aNormalized[None][0] == approx(1.0 * invSqrt14)
    assert aNormalized[None][1] == approx(2.0 * invSqrt14)
    assert aNormalized[None][2] == approx(3.0 * invSqrt14)
コード例 #3
0
ファイル: test_f16.py プロジェクト: YuCrazing/taichi-1
def test_float16():
    dtype = ti.float16
    x = ti.field(dtype, shape=())
    x[None] = 0.3
    print(x[None])
    assert (x[None] == approx(0.3, rel=1e-3))
コード例 #4
0
ファイル: test_f16.py プロジェクト: YuCrazing/taichi-1
def test_snode_read_write():
    dtype = ti.f16
    x = ti.field(dtype, shape=())
    x[None] = 0.3
    print(x[None])
    assert (x[None] == approx(0.3, rel=1e-3))
コード例 #5
0
def test_to_numpy_as_vector_deprecated():
    v = ti.Vector(3, dt=ti.f32, shape=(2))
    u = np.array([[2, 3, 4], [5, 6, 7]])
    v.from_numpy(u)
    assert v.to_numpy(as_vector=True) == approx(u)
    assert v.to_numpy() == approx(u)
コード例 #6
0
def run_mpm88_test():
    dim = 2
    N = 64
    n_particles = N * N
    n_grid = 128
    dx = 1 / n_grid
    inv_dx = 1 / dx
    dt = 2.0e-4
    p_vol = (dx * 0.5)**2
    p_rho = 1
    p_mass = p_vol * p_rho
    E = 400

    x = ti.Vector.field(dim, dtype=ti.f32, shape=n_particles)
    v = ti.Vector.field(dim, dtype=ti.f32, shape=n_particles)
    C = ti.Matrix.field(dim, dim, dtype=ti.f32, shape=n_particles)
    J = ti.field(dtype=ti.f32, shape=n_particles)
    grid_v = ti.Vector.field(dim, dtype=ti.f32, shape=(n_grid, n_grid))
    grid_m = ti.field(dtype=ti.f32, shape=(n_grid, n_grid))

    @ti.kernel
    def substep():
        for p in x:
            base = (x[p] * inv_dx - 0.5).cast(int)
            fx = x[p] * inv_dx - base.cast(float)
            w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
            stress = -dt * p_vol * (J[p] - 1) * 4 * inv_dx * inv_dx * E
            affine = ti.Matrix([[stress, 0], [0, stress]]) + p_mass * C[p]
            for i in ti.static(range(3)):
                for j in ti.static(range(3)):
                    offset = ti.Vector([i, j])
                    dpos = (offset.cast(float) - fx) * dx
                    weight = w[i][0] * w[j][1]
                    grid_v[base + offset].atomic_add(
                        weight * (p_mass * v[p] + affine @ dpos))
                    grid_m[base + offset].atomic_add(weight * p_mass)

        for i, j in grid_m:
            if grid_m[i, j] > 0:
                bound = 3
                inv_m = 1 / grid_m[i, j]
                grid_v[i, j] = inv_m * grid_v[i, j]
                grid_v[i, j][1] -= dt * 9.8
                if i < bound and grid_v[i, j][0] < 0:
                    grid_v[i, j][0] = 0
                if i > n_grid - bound and grid_v[i, j][0] > 0:
                    grid_v[i, j][0] = 0
                if j < bound and grid_v[i, j][1] < 0:
                    grid_v[i, j][1] = 0
                if j > n_grid - bound and grid_v[i, j][1] > 0:
                    grid_v[i, j][1] = 0

        for p in x:
            base = (x[p] * inv_dx - 0.5).cast(int)
            fx = x[p] * inv_dx - base.cast(float)
            w = [
                0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2
            ]
            new_v = ti.Vector.zero(ti.f32, 2)
            new_C = ti.Matrix.zero(ti.f32, 2, 2)
            for i in ti.static(range(3)):
                for j in ti.static(range(3)):
                    dpos = ti.Vector([i, j]).cast(float) - fx
                    g_v = grid_v[base + ti.Vector([i, j])]
                    weight = w[i][0] * w[j][1]
                    new_v += weight * g_v
                    new_C += 4 * weight * g_v.outer_product(dpos) * inv_dx
            v[p] = new_v
            x[p] += dt * v[p]
            J[p] *= 1 + dt * new_C.trace()
            C[p] = new_C

    # gui = ti.core.GUI("MPM88", ti.veci(512, 512))
    # canvas = gui.get_canvas()

    for i in range(n_particles):
        x[i] = [i % N / N * 0.4 + 0.2, i / N / N * 0.4 + 0.05]
        v[i] = [0, -3]
        J[i] = 1

    for frame in range(10):
        for s in range(50):
            grid_v.fill([0, 0])
            grid_m.fill(0)
            substep()

    pos = x.to_numpy()
    pos[:, 1] *= 2
    regression = [
        0.31722742,
        0.15826741,
        0.10224003,
        0.07810827,
    ]
    for i in range(4):
        assert (pos**(i + 1)).mean() == approx(regression[i], rel=1e-2)
コード例 #7
0
ファイル: test_test.py プロジェクト: wjgaas/taichi
    assert ti.cfg.arch in [ti.cpu]


@ti.test(arch=[ti.cpu, ti.opengl],
         require=[ti.extension.sparse, ti.extension.bls])
def test_require_extensions_2():
    assert ti.cfg.arch in [ti.cuda]


### `ti.approx` and `ti.allclose`


@ti.test()
@pytest.mark.parametrize('x', [0.1, 3])
@pytest.mark.parametrize('allclose',
                         [ti.allclose, lambda x, y: x == ti.approx(y)])
def test_allclose_rel(x, allclose):
    rel = 1e-3 if ti.cfg.arch == ti.opengl else 1e-6
    assert not allclose(x + x * rel * 3.0, x)
    assert not allclose(x + x * rel * 1.2, x)
    assert allclose(x + x * rel * 0.9, x)
    assert allclose(x + x * rel * 0.5, x)
    assert allclose(x, x)
    assert allclose(x - x * rel * 0.5, x)
    assert allclose(x - x * rel * 0.9, x)
    assert not allclose(x - x * rel * 1.2, x)
    assert not allclose(x - x * rel * 3.0, x)


@pytest.mark.parametrize('x', [0.1, 3])
@ti.test()
コード例 #8
0
ファイル: test_atomic.py プロジェクト: zyl1336110861/taichi
def test_atomic_add_global_f32():
    run_atomic_add_global_case(ti.f32,
                               4.2,
                               valproc=lambda x: approx(x, rel=1e-5))
コード例 #9
0
ファイル: test_mpm88.py プロジェクト: quadpixels/taichi
def test_mpm88_numpy():
    import numpy as np

    dim = 2
    N = 64
    n_particles = N * N
    n_grid = 128
    dx = 1 / n_grid
    inv_dx = 1 / dx
    dt = 2.0e-4
    p_vol = (dx * 0.5)**2
    p_rho = 1
    p_mass = p_vol * p_rho
    E = 400

    x = np.zeros((n_particles, dim), dtype=np.float32)
    v = np.zeros((n_particles, dim), dtype=np.float32)
    C = np.zeros((n_particles, dim, dim), dtype=np.float32)
    J = np.zeros(n_particles, dtype=np.float32)
    grid_v = np.zeros((n_grid, n_grid, dim), dtype=np.float32)
    grid_m = np.zeros((n_grid, n_grid), dtype=np.float32)

    @ti.kernel
    def substep(x: ti.any_arr(element_shape=(dim, )),
                v: ti.any_arr(element_shape=(dim, )),
                C: ti.any_arr(element_shape=(dim, dim)), J: ti.any_arr(),
                grid_v: ti.any_arr(element_shape=(dim, )),
                grid_m: ti.any_arr()):
        for p in range(n_particles):
            base = (x[p] * inv_dx - 0.5).cast(int)
            fx = x[p] * inv_dx - base.cast(float)
            w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
            stress = -dt * p_vol * (J[p] - 1) * 4 * inv_dx * inv_dx * E
            affine = ti.Matrix([[stress, 0], [0, stress]],
                               dt=ti.f32) + p_mass * C[p]
            for i in ti.static(range(3)):
                for j in ti.static(range(3)):
                    offset = ti.Vector([i, j], dt=ti.i32)
                    dpos = (offset.cast(float) - fx) * dx
                    weight = w[i][0] * w[j][1]
                    grid_v[base + offset].atomic_add(
                        weight * (p_mass * v[p] + affine @ dpos))
                    grid_m[base + offset].atomic_add(weight * p_mass)

        for i, j in ti.ndrange(n_grid, n_grid):
            if grid_m[i, j] > 0:
                bound = 3
                inv_m = 1 / grid_m[i, j]
                grid_v[i, j] = inv_m * grid_v[i, j]
                grid_v[i, j][1] -= dt * 9.8
                if i < bound and grid_v[i, j][0] < 0:
                    grid_v[i, j][0] = 0
                if i > n_grid - bound and grid_v[i, j][0] > 0:
                    grid_v[i, j][0] = 0
                if j < bound and grid_v[i, j][1] < 0:
                    grid_v[i, j][1] = 0
                if j > n_grid - bound and grid_v[i, j][1] > 0:
                    grid_v[i, j][1] = 0

        for p in range(n_particles):
            base = (x[p] * inv_dx - 0.5).cast(int)
            fx = x[p] * inv_dx - base.cast(float)
            w = [
                0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2
            ]
            new_v = ti.Vector.zero(ti.f32, 2)
            new_C = ti.Matrix.zero(ti.f32, 2, 2)
            for i in ti.static(range(3)):
                for j in ti.static(range(3)):
                    dpos = ti.Vector([i, j], dt=ti.i32).cast(float) - fx
                    g_v = grid_v[base + ti.Vector([i, j], dt=ti.i32)]
                    weight = w[i][0] * w[j][1]
                    new_v += weight * g_v
                    new_C += 4 * weight * g_v.outer_product(dpos) * inv_dx
            v[p] = new_v
            x[p] += dt * v[p]
            J[p] *= 1 + dt * new_C.trace()
            C[p] = new_C

    for i in range(n_particles):
        x[i] = [i % N / N * 0.4 + 0.2, i / N / N * 0.4 + 0.05]
        v[i] = [0, -3]
        J[i] = 1

    for frame in range(10):
        for s in range(50):
            grid_v.fill(0)
            grid_m.fill(0)
            substep(x, v, C, J, grid_v, grid_m)

    pos = x
    pos[:, 1] *= 2
    regression = [
        0.31722742,
        0.15826741,
        0.10224003,
        0.07810827,
    ]
    for i in range(4):
        assert (pos**(i + 1)).mean() == approx(regression[i], rel=1e-2)