コード例 #1
0
def substep():
  for i, j in ti.ndrange(n_grid, n_grid):
    grid_v[i, j] = [0, 0]
    grid_m[i, j] = 0
  for p in range(n_particles): # Particle state update and scatter to grid (P2G)
    base = (x[p] * inv_dx - 0.5).cast(int)
    fx = x[p] * inv_dx - base.cast(float)
    # Quadratic kernels  [http://mpm.graphics   Eqn. 123, with x=fx, fx-1,fx-2]
    w = [0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1), 0.5 * ti.sqr(fx - 0.5)]
    F[p] = (ti.Matrix.identity(ti.f32, 2) + dt * C[p]) @ F[p] # deformation gradient update
    h = ti.exp(10 * (1.0 - Jp[p])) # Hardening coefficient: snow gets harder when compressed
    if material[p] == 1: # jelly, make it softer
      h = 0.3
    mu, la = mu_0 * h, lambda_0 * h
    if material[p] == 0: # liquid
      mu = 0.0
    U, sig, V = ti.svd(F[p])
    J = 1.0
    for d in ti.static(range(2)):
      new_sig = sig[d, d]
      if material[p] == 2:  # Snow
        new_sig = min(max(sig[d, d], 1 - 2.5e-2), 1 + 4.5e-3)  # Plasticity
      Jp[p] *= sig[d, d] / new_sig
      sig[d, d] = new_sig
      J *= new_sig
    if material[p] == 0:  # Reset deformation gradient to avoid numerical instability
      F[p] = ti.Matrix.identity(ti.f32, 2) * ti.sqrt(J)
    elif material[p] == 2:
      F[p] = U @ sig @ V.T() # Reconstruct elastic deformation gradient after plasticity
    stress = 2 * mu * (F[p] - U @ V.T()) @ F[p].T() + ti.Matrix.identity(ti.f32, 2) * la * J * (J - 1)
    stress = (-dt * p_vol * 4 * inv_dx * inv_dx) * stress
    affine = stress + p_mass * C[p]
    for i, j in ti.static(ti.ndrange(3, 3)): # Loop over 3x3 grid node neighborhood
      offset = ti.Vector([i, j])
      dpos = (offset.cast(float) - fx) * dx
      weight = w[i][0] * w[j][1]
      grid_v[base + offset] += weight * (p_mass * v[p] + affine @ dpos)
      grid_m[base + offset] += weight * p_mass
  for i, j in ti.ndrange(n_grid, n_grid):
    if grid_m[i, j] > 0: # No need for epsilon here
      grid_v[i, j] = (1 / grid_m[i, j]) * grid_v[i, j] # Momentum to velocity
      grid_v[i, j][1] -= dt * 50 # gravity
      if i < 3 and grid_v[i, j][0] < 0:          grid_v[i, j][0] = 0 # Boundary conditions
      if i > n_grid - 3 and grid_v[i, j][0] > 0: grid_v[i, j][0] = 0
      if j < 3 and grid_v[i, j][1] < 0:          grid_v[i, j][1] = 0
      if j > n_grid - 3 and grid_v[i, j][1] > 0: grid_v[i, j][1] = 0
  for p in range(n_particles): # grid to particle (G2P)
    base = (x[p] * inv_dx - 0.5).cast(int)
    fx = x[p] * inv_dx - base.cast(float)
    w = [0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1.0), 0.5 * ti.sqr(fx - 0.5)]
    new_v = ti.Vector.zero(ti.f32, 2)
    new_C = ti.Matrix.zero(ti.f32, 2, 2)
    for i, j in ti.static(ti.ndrange(3, 3)): # loop over 3x3 grid node neighborhood
      dpos = ti.Vector([i, j]).cast(float) - fx
      g_v = grid_v[base + ti.Vector([i, j])]
      weight = w[i][0] * w[j][1]
      new_v += weight * g_v
      new_C += 4 * inv_dx * weight * ti.outer_product(g_v, dpos)
    v[p], C[p] = new_v, new_C
    x[p] += dt * v[p] # advection
コード例 #2
0
ファイル: mpm88.py プロジェクト: whatisor/taichi
def substep():
    for p in x:
        base = (x[p] * inv_dx - 0.5).cast(int)
        fx = x[p] * inv_dx - base.cast(float)
        w = [
            0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1),
            0.5 * ti.sqr(fx - 0.5)
        ]
        stress = -dt * p_vol * (J[p] - 1) * 4 * inv_dx * inv_dx * E
        affine = ti.Matrix([[stress, 0], [0, stress]]) + p_mass * C[p]
        for i in ti.static(range(3)):
            for j in ti.static(range(3)):
                offset = ti.Vector([i, j])
                dpos = (offset.cast(float) - fx) * dx
                weight = w[i][0] * w[j][1]
                grid_v[base + offset].atomic_add(
                    weight * (p_mass * v[p] + affine @ dpos))
                grid_m[base + offset].atomic_add(weight * p_mass)

    for i, j in grid_m:
        if grid_m[i, j] > 0:
            bound = 3
            inv_m = 1 / grid_m[i, j]
            grid_v[i, j] = inv_m * grid_v[i, j]
            grid_v[i, j][1] -= dt * 9.8
            if i < bound and grid_v[i, j][0] < 0:
                grid_v[i, j][0] = 0
            if i > n_grid - bound and grid_v[i, j][0] > 0:
                grid_v[i, j][0] = 0
            if j < bound and grid_v[i, j][1] < 0:
                grid_v[i, j][1] = 0
            if j > n_grid - bound and grid_v[i, j][1] > 0:
                grid_v[i, j][1] = 0

    for p in x:
        base = (x[p] * inv_dx - 0.5).cast(int)
        fx = x[p] * inv_dx - base.cast(float)
        w = [
            0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1.0),
            0.5 * ti.sqr(fx - 0.5)
        ]
        new_v = ti.Vector.zero(ti.f32, 2)
        new_C = ti.Matrix.zero(ti.f32, 2, 2)
        for i in ti.static(range(3)):
            for j in ti.static(range(3)):
                dpos = ti.Vector([i, j]).cast(float) - fx
                g_v = grid_v[base + ti.Vector([i, j])]
                weight = w[i][0] * w[j][1]
                new_v = new_v + weight * g_v
                new_C = new_C + 4 * weight * ti.outer_product(g_v,
                                                              dpos) * inv_dx
        v[p] = new_v
        x[p] += dt * v[p]
        J[p] *= 1 + dt * new_C.trace()
        C[p] = new_C
コード例 #3
0
def g2p():
    for p in x:
        base = ti.cast(x[p] * inv_dx - 0.5, ti.i32)
        fx = x[p] * inv_dx - ti.cast(base, ti.f32)
        w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2]
        new_v = ti.Vector([0.0, 0.0])
        new_C = ti.Matrix([[0.0, 0.0], [0.0, 0.0]])

        for i in ti.static(range(3)):
            for j in ti.static(range(3)):
                dpos = ti.cast(ti.Vector([i, j]), ti.f32) - fx
                g_v = grid_v[base(0) + i, base(1) + j]
                weight = w[i](0) * w[j](1)
                new_v += weight * g_v
                new_C += 4 * weight * ti.outer_product(g_v, dpos) * inv_dx

        v[p] = new_v
        x[p] += dt * v[p]
        C[p] = new_C
コード例 #4
0
def g2p(f: ti.i32):
  for p in range(n_particles):
    base = ti.cast(x[f, p] * inv_dx - 0.5, ti.i32)
    fx = x[f, p] * inv_dx - ti.cast(base, real)
    w = [0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1.0),
         0.5 * ti.sqr(fx - 0.5)]
    new_v = ti.Vector([0.0, 0.0])
    new_C = ti.Matrix([[0.0, 0.0], [0.0, 0.0]])

    for i in ti.static(range(3)):
      for j in ti.static(range(3)):
        dpos = ti.cast(ti.Vector([i, j]), real) - fx
        g_v = grid_v_out[base(0) + i, base(1) + j]
        weight = w[i](0) * w[j](1)
        new_v += weight * g_v
        new_C += 4 * weight * ti.outer_product(g_v, dpos) * inv_dx

    v[f + 1, p] = new_v
    x[f + 1, p] = x[f, p] + dt * v[f + 1, p]
    C[f + 1, p] = new_C
コード例 #5
0
 def g2p(self, dt: ti.f32):
     for p in self.x:
         base = (self.x[p] * self.inv_dx - 0.5).cast(int)
         fx = self.x[p] * self.inv_dx - base.cast(float)
         w = [
             0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1.0),
             0.5 * ti.sqr(fx - 0.5)
         ]
         new_v = ti.Vector.zero(ti.f32, self.dim)
         new_C = ti.Matrix.zero(ti.f32, self.dim, self.dim)
         # loop over 3x3 grid node neighborhood
         for I in ti.static(ti.grouped(self.stencil_range())):
             dpos = I.cast(float) - fx
             g_v = self.grid_v[base + I]
             weight = 1.0
             for d in ti.static(range(self.dim)):
                 weight *= w[I[d]][d]
             new_v += weight * g_v
             new_C += 4 * self.inv_dx * weight * ti.outer_product(g_v, dpos)
         self.v[p], self.C[p] = new_v, new_C
         self.x[p] += dt * self.v[p]  # advection
コード例 #6
0
def substep():
    for i, j in grid_m:
        grid_v[i, j] = [0, 0]
        grid_m[i, j] = 0
    for p in x:
        base = (x[p] * inv_dx - 0.5).cast(int)
        fx = x[p] * inv_dx - base.cast(float)
        w = [
            0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1),
            0.5 * ti.sqr(fx - 0.5)
        ]
        F[p] = (ti.Matrix.identity(ti.f32, 2) + dt * C[p]) @ F[p]
        h = ti.exp(10 * (1.0 - Jp[p]))
        if material[p] == 0:
            h = 0.3
        mu, la = mu_0 * h, lambda_0 * h
        U, sig, V = ti.svd(F[p])
        J = 1.0
        for d in ti.static(range(2)):
            new_sig = sig[d, d]
            if material[p] == 1:
                new_sig = min(max(sig[d, d], 1 - 2.5e-2), 1 + 4.5e-3)
            Jp[p] *= sig[d, d] / new_sig
            sig[d, d] = new_sig
            J *= new_sig
        if material[p] == 1:
            F[p] = U @ sig @ V.T()
        stress = 2 * mu * (F[p] - U @ V.T()) @ F[p].T() + ti.Matrix.identity(
            ti.f32, 2) * la * J * (J - 1)
        stress = (-dt * p_vol * 4 * inv_dx * inv_dx) * stress
        affine = stress + p_mass * C[p]
        for i, j in ti.static(ti.ndrange(3, 3)):
            offset = ti.Vector([i, j])
            dpos = (offset.cast(float) - fx) * dx
            weight = w[i][0] * w[j][1]
            grid_v[base + offset] += weight * (p_mass * v[p] + affine @ dpos)
            grid_m[base + offset] += weight * p_mass
    for i, j in grid_m:
        if grid_m[i, j] > 0:
            grid_v[i, j] = (1 / grid_m[i, j]) * grid_v[i, j]
            grid_v[i, j][1] -= dt * 50
            if i < 3 and grid_v[i, j][0] < 0: grid_v[i, j][0] = 0
            if i > n_grid - 3 and grid_v[i, j][0] > 0: grid_v[i, j][0] = 0
            if j < 3 and grid_v[i, j][1] < 0: grid_v[i, j][1] = 0
            if j > n_grid - 3 and grid_v[i, j][1] > 0: grid_v[i, j][1] = 0
    for p in x:
        base = (x[p] * inv_dx - 0.5).cast(int)
        fx = x[p] * inv_dx - base.cast(float)
        w = [
            0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1.0),
            0.5 * ti.sqr(fx - 0.5)
        ]
        new_v = ti.Vector.zero(ti.f32, 2)
        new_C = ti.Matrix.zero(ti.f32, 2, 2)
        for i, j in ti.static(ti.ndrange(3, 3)):
            dpos = ti.Vector([i, j]).cast(float) - fx
            g_v = grid_v[base + ti.Vector([i, j])]
            weight = w[i][0] * w[j][1]
            new_v += weight * g_v
            new_C += 4 * inv_dx * weight * ti.outer_product(g_v, dpos)
        v[p], C[p] = new_v, new_C
        x[p] += dt * v[p]