コード例 #1
0
ファイル: test_linalg.py プロジェクト: victoriacity/taichi
 def polar():
     R, S = ti.polar_decompose(m[None], dt)
     r[None] = R
     s[None] = S
     m[None] = R @ S
     I[None] = R @ R.transpose()
     D[None] = S - S.transpose()
コード例 #2
0
ファイル: test_linalg.py プロジェクト: wkindling/taichi
 def polar():
     R, S = ti.polar_decompose(m[None], dt)
     r[None] = R
     s[None] = S
     m[None] = R @ S
     I[None] = R @ ti.transposed(R)
     D[None] = S - ti.transposed(S)
コード例 #3
0
ファイル: diffmpm.py プロジェクト: AnimatedRNG/taichi
def p2g(f: ti.i32):
    for p in range(0, n_particles):
        base = ti.cast(x[f, p] * inv_dx - 0.5, ti.i32)
        fx = x[f, p] * inv_dx - ti.cast(base, ti.i32)
        w = [
            0.5 * ti.sqr(1.5 - fx), 0.75 - ti.sqr(fx - 1),
            0.5 * ti.sqr(fx - 0.5)
        ]
        new_F = (ti.Matrix.diag(dim=2, val=1) + dt * C[f, p]) @ F[f, p]
        J = ti.determinant(new_F)
        if particle_type[p] == 0:  # fluid
            sqrtJ = ti.sqrt(J)
            new_F = ti.Matrix([[sqrtJ, 0], [0, sqrtJ]])

        F[f + 1, p] = new_F
        r, s = ti.polar_decompose(new_F)

        act_id = actuator_id[p]

        act = actuation[f, ti.max(0, act_id)] * act_strength
        if act_id == -1:
            act = 0.0
        # ti.print(act)

        A = ti.Matrix([[0.0, 0.0], [0.0, 1.0]]) * act
        cauchy = ti.Matrix([[0.0, 0.0], [0.0, 0.0]])
        mass = 0.0
        if particle_type[p] == 0:
            mass = 4
            cauchy = ti.Matrix([[1.0, 0.0], [0.0, 0.1]]) * (J - 1) * E
        else:
            mass = 1
            cauchy = 2 * mu * (new_F - r) @ ti.transposed(new_F) + \
                     ti.Matrix.diag(2, la * (J - 1) * J)
        cauchy += new_F @ A @ ti.transposed(new_F)
        stress = -(dt * p_vol * 4 * inv_dx * inv_dx) * cauchy
        affine = stress + mass * C[f, p]
        for i in ti.static(range(3)):
            for j in ti.static(range(3)):
                offset = ti.Vector([i, j])
                dpos = (ti.cast(ti.Vector([i, j]), real) - fx) * dx
                weight = w[i](0) * w[j](1)
                grid_v_in[base + offset].atomic_add(
                    weight * (mass * v[f, p] + affine @ dpos))
                grid_m_in[base + offset].atomic_add(weight * mass)
コード例 #4
0
def p2g(f: ti.i32):
    for p in range(n_particles):
        base = ti.cast(x[f, p] * inv_dx - 0.5, ti.i32)
        fx = x[f, p] * inv_dx - ti.cast(base, ti.i32)
        w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
        new_F = (ti.Matrix.diag(dim=2, val=1) + dt * C[f, p]) @ F[f, p]
        F[f + 1, p] = new_F
        J = (new_F).determinant()
        r, s = ti.polar_decompose(new_F)
        cauchy = 2 * mu * (new_F - r) @ new_F.transpose() + \
                 ti.Matrix.diag(2, la * (J - 1) * J)
        stress = -(dt * p_vol * 4 * inv_dx * inv_dx) * cauchy
        affine = stress + p_mass * C[f, p]
        for i in ti.static(range(3)):
            for j in ti.static(range(3)):
                offset = ti.Vector([i, j])
                dpos = (ti.cast(ti.Vector([i, j]), real) - fx) * dx
                weight = w[i](0) * w[j](1)
                grid_v_in[f, base + offset] += weight * (p_mass * v[f, p] +
                                                         affine @ dpos)
                grid_m_in[f, base + offset] += weight * p_mass
コード例 #5
0
 def foo():
     ti.polar_decompose(m, ti.f32)
コード例 #6
0
ファイル: main.py プロジェクト: Hanke98/MyMLSMPM
def step():

    for i, j in grid_v:
        grid_v[i, j] = [0, 0]
        grid_m[i, j] = 0
    # 1. p2g
    for p in x:
        base = (x[p] * inv_dx - 0.5).cast(int)
        fx = x[p] * inv_dx - base.cast(float)
        # Quadratic kernels  [http://mpm.graphics   Eqn. 123, with x=fx, fx-1,fx-2]
        w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
        # 1.1 F update
        F[p] = (ti.Matrix.identity(dt=ti.f32, n=2) + dt * C[p]) @ F[p]
        r, _ = ti.polar_decompose(F[p])
        U, sig, V = ti.svd(F[p])
        J[p] = F[p].determinant()
        # 1.2 Cauchy Stress
        mu = 0
        PF = 2 * mu * (F[p] - U @ V.T()) @ F[p].T() + lambda_0 * (
            J[p] - 1) * J[p] * ti.Matrix.identity(dt=ti.f32, n=2)
        Dinv = 4 * inv_dx * inv_dx
        stress = -dt * p_vol * Dinv * PF
        # 1.3 affine
        affine = stress + p_mass * C[p]

        for i, j in ti.static(ti.ndrange(3, 3)):
            offset = ti.Vector([i, j])
            dpos = (offset.cast(float) - fx) * dx
            weight = w[i][0] * w[j][1]
            grid_v[base + offset] += weight * (p_mass * v[p] + affine @ dpos)
            grid_m[base + offset] += weight * p_mass

    # 2. update grad momentum
    for i, j in grid_m:
        if grid_m[i, j] > 0:
            grid_v[i,
                   j] = (1 / grid_m[i, j]) * grid_v[i,
                                                    j]  # Momentum to velocity
            grid_v[i, j][1] -= dt * 200  # gravity
            if i < 3 and grid_v[i, j][0] < 0:
                grid_v[i, j][0] = 0  # Boundary conditions
            if i > n_grid - 3 and grid_v[i, j][0] > 0: grid_v[i, j][0] = 0
            if j < 3 and grid_v[i, j][1] < 0: grid_v[i, j][1] = 0
            if j > n_grid - 3 and grid_v[i, j][1] > 0: grid_v[i, j][1] = 0

    # 3. g2p
    for p in x:  # grid to particle (G2P)
        base = (x[p] * inv_dx - 0.5).cast(int)
        fx = x[p] * inv_dx - base.cast(float)
        w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2]
        new_v = ti.Vector.zero(ti.f32, 2)
        new_C = ti.Matrix.zero(ti.f32, 2, 2)
        for i, j in ti.static(ti.ndrange(
                3, 3)):  # loop over 3x3 grid node neighborhood
            dpos = ti.Vector([i, j]).cast(float) - fx
            g_v = grid_v[base + ti.Vector([i, j])]
            weight = w[i][0] * w[j][1]
            new_v += weight * g_v
            new_C += 4 * inv_dx * weight * g_v.outer_product(dpos)
        v[p], C[p] = new_v, new_C
        x[p] += dt * v[p]