コード例 #1
0
 def run_benchmark():
     compile_time = time.time()
     func(*args)  # compile the kernel first
     ti.sync()
     compile_time = time.time() - compile_time
     ti.stat_write('compilation_time', compile_time)
     codegen_stat = ti.core.stat()
     for line in codegen_stat.split('\n'):
         try:
             a, b = line.strip().split(':')
         except:
             continue
         a = a.strip()
         b = int(float(b))
         if a == 'codegen_kernel_statements':
             ti.stat_write('instructions', b)
         if a == 'codegen_offloaded_tasks':
             ti.stat_write('offloaded_tasks', b)
         elif a == 'launched_tasks':
             ti.stat_write('launched_tasks', b)
     # The reason why we run 3 more times is to warm up
     # instruction/data caches. Discussion:
     # https://github.com/taichi-dev/taichi/pull/1002#discussion_r426312136
     for i in range(3):
         func(*args)
         ti.sync()
     t = time.time()
     for n in range(repeat):
         func(*args)
         ti.sync()
     elapsed = time.time() - t
     avg = elapsed / repeat
     ti.stat_write('running_time', avg)
コード例 #2
0
ファイル: __init__.py プロジェクト: inkydragon/taichi
def benchmark(func, repeat=300, args=()):
    import taichi as ti
    import time
    # The reason why we run 4 times is to warm up instruction/data caches.
    # Discussion: https://github.com/taichi-dev/taichi/pull/1002#discussion_r426312136
    for i in range(4):
        func(*args)  # compile the kernel first
    ti.sync()
    t = time.time()
    for n in range(repeat):
        func(*args)
    ti.get_runtime().sync()
    elapsed = time.time() - t
    avg = elapsed / repeat * 1000  # miliseconds
    ti.stat_write(avg)
コード例 #3
0
ファイル: __init__.py プロジェクト: nvwa-makesi/taichi
    def run_benchmark():
        compile_time = time.time()
        func(*args)  # compile the kernel first
        ti.sync()
        compile_time = time.time() - compile_time
        ti.stat_write('compilation_time', compile_time)
        codegen_stat = ti.core.stat()
        for line in codegen_stat.split('\n'):
            try:
                a, b = line.strip().split(':')
            except:
                continue
            a = a.strip()
            b = int(float(b))
            if a == 'codegen_kernel_statements':
                ti.stat_write('compiled_inst', b)
            if a == 'codegen_offloaded_tasks':
                ti.stat_write('compiled_tasks', b)
            elif a == 'launched_tasks':
                ti.stat_write('launched_tasks', b)

        # Use 3 initial iterations to warm up
        # instruction/data caches. Discussion:
        # https://github.com/taichi-dev/taichi/pull/1002#discussion_r426312136
        for i in range(3):
            func(*args)
            ti.sync()
        ti.kernel_profiler_clear()
        t = time.time()
        for n in range(repeat):
            func(*args)
            ti.sync()
        elapsed = time.time() - t
        avg = elapsed / repeat
        ti.stat_write('wall_clk_t', avg)
        device_time = ti.kernel_profiler_total_time()
        ti.stat_write('exec_t', device_time)
コード例 #4
0
def benchmark_range():
    quality = 1  # Use a larger value for higher-res simulations
    n_particles, n_grid = 9000 * quality**2, 128 * quality
    dx, inv_dx = 1 / n_grid, float(n_grid)
    dt = 1e-4 / quality
    p_vol, p_rho = (dx * 0.5)**2, 1
    p_mass = p_vol * p_rho
    E, nu = 0.1e4, 0.2  # Young's modulus and Poisson's ratio
    mu_0, lambda_0 = E / (2 * (1 + nu)), E * nu / (
        (1 + nu) * (1 - 2 * nu))  # Lame parameters

    x = ti.Vector(2, dt=ti.f32, shape=n_particles)  # position
    v = ti.Vector(2, dt=ti.f32, shape=n_particles)  # velocity
    C = ti.Matrix(2, 2, dt=ti.f32, shape=n_particles)  # affine velocity field
    F = ti.Matrix(2, 2, dt=ti.f32, shape=n_particles)  # deformation gradient
    material = ti.var(dt=ti.i32, shape=n_particles)  # material id
    Jp = ti.var(dt=ti.f32, shape=n_particles)  # plastic deformation
    grid_v = ti.Vector(2, dt=ti.f32,
                       shape=(n_grid, n_grid))  # grid node momemtum/velocity
    grid_m = ti.var(dt=ti.f32, shape=(n_grid, n_grid))  # grid node mass

    @ti.kernel
    def substep():
        for i, j in ti.ndrange(n_grid, n_grid):
            grid_v[i, j] = [0, 0]
            grid_m[i, j] = 0
        for p in range(n_particles
                       ):  # Particle state update and scatter to grid (P2G)
            base = (x[p] * inv_dx - 0.5).cast(int)
            fx = x[p] * inv_dx - base.cast(float)
            # Quadratic kernels  [http://mpm.graphics   Eqn. 123, with x=fx, fx-1,fx-2]
            w = [0.5 * (1.5 - fx)**2, 0.75 - (fx - 1)**2, 0.5 * (fx - 0.5)**2]
            F[p] = (ti.Matrix.identity(ti.f32, 2) +
                    dt * C[p]) @ F[p]  # deformation gradient update
            h = ti.exp(
                10 * (1.0 - Jp[p])
            )  # Hardening coefficient: snow gets harder when compressed
            if material[p] == 1:  # jelly, make it softer
                h = 0.3
            mu, la = mu_0 * h, lambda_0 * h
            if material[p] == 0:  # liquid
                mu = 0.0
            U, sig, V = ti.svd(F[p])
            J = 1.0
            for d in ti.static(range(2)):
                new_sig = sig[d, d]
                if material[p] == 2:  # Snow
                    new_sig = min(max(sig[d, d], 1 - 2.5e-2),
                                  1 + 4.5e-3)  # Plasticity
                Jp[p] *= sig[d, d] / new_sig
                sig[d, d] = new_sig
                J *= new_sig
            if material[
                    p] == 0:  # Reset deformation gradient to avoid numerical instability
                F[p] = ti.Matrix.identity(ti.f32, 2) * ti.sqrt(J)
            elif material[p] == 2:
                F[p] = U @ sig @ V.T(
                )  # Reconstruct elastic deformation gradient after plasticity
            stress = 2 * mu * (F[p] - U @ V.T()) @ F[p].T(
            ) + ti.Matrix.identity(ti.f32, 2) * la * J * (J - 1)
            stress = (-dt * p_vol * 4 * inv_dx * inv_dx) * stress
            affine = stress + p_mass * C[p]
            for i, j in ti.static(ti.ndrange(
                    3, 3)):  # Loop over 3x3 grid node neighborhood
                offset = ti.Vector([i, j])
                dpos = (offset.cast(float) - fx) * dx
                weight = w[i][0] * w[j][1]
                grid_v[base +
                       offset] += weight * (p_mass * v[p] + affine @ dpos)
                grid_m[base + offset] += weight * p_mass
        for i, j in ti.ndrange(n_grid, n_grid):
            if grid_m[i, j] > 0:  # No need for epsilon here
                grid_v[i, j] = (
                    1 / grid_m[i, j]) * grid_v[i, j]  # Momentum to velocity
                grid_v[i, j][1] -= dt * 50  # gravity
                if i < 3 and grid_v[i, j][0] < 0:
                    grid_v[i, j][0] = 0  # Boundary conditions
                if i > n_grid - 3 and grid_v[i, j][0] > 0: grid_v[i, j][0] = 0
                if j < 3 and grid_v[i, j][1] < 0: grid_v[i, j][1] = 0
                if j > n_grid - 3 and grid_v[i, j][1] > 0: grid_v[i, j][1] = 0
        for p in range(n_particles):  # grid to particle (G2P)
            base = (x[p] * inv_dx - 0.5).cast(int)
            fx = x[p] * inv_dx - base.cast(float)
            w = [
                0.5 * (1.5 - fx)**2, 0.75 - (fx - 1.0)**2, 0.5 * (fx - 0.5)**2
            ]
            new_v = ti.Vector.zero(ti.f32, 2)
            new_C = ti.Matrix.zero(ti.f32, 2, 2)
            for i, j in ti.static(ti.ndrange(
                    3, 3)):  # loop over 3x3 grid node neighborhood
                dpos = ti.Vector([i, j]).cast(float) - fx
                g_v = grid_v[base + ti.Vector([i, j])]
                weight = w[i][0] * w[j][1]
                new_v += weight * g_v
                new_C += 4 * inv_dx * weight * ti.outer_product(g_v, dpos)
            v[p], C[p] = new_v, new_C
            x[p] += dt * v[p]  # advection

    import random
    group_size = n_particles // 3
    for i in range(n_particles):
        x[i] = [
            random.random() * 0.2 + 0.3 + 0.10 * (i // group_size),
            random.random() * 0.2 + 0.05 + 0.32 * (i // group_size)
        ]
        material[i] = i // group_size  # 0: fluid 1: jelly 2: snow
        v[i] = [0, 0]
        F[i] = [[1, 0], [0, 1]]
        Jp[i] = 1

    gui = ti.GUI("Taichi MLS-MPM-99", res=512, background_color=0x112F41)
    substep()
    ti.get_runtime().sync()
    t = time.time()
    for frame in range(200):
        for s in range(20):
            substep()
        # colors = np.array([0x068587, 0xED553B, 0xEEEEF0], dtype=np.uint32)
        # gui.circles(x.to_numpy(), radius=1.5, color=colors[material.to_numpy()])
        # gui.show() # Change to gui.show(f'{frame:06d}.png') to write images to disk
    ti.get_runtime().sync()
    avg = (time.time() - t) / 4000 * 1000  # miliseconds
    ti.stat_write(avg)