コード例 #1
0
ファイル: basecall.py プロジェクト: udishadc/taiyaki
def worker_init(device, modelname, chunk_size, overlap,
                read_params, alphabet, max_concurrent_chunks,
                fastq, qscore_scale, qscore_offset, beam, posterior,
                temperature):
    global all_read_params
    global process_read_partial

    all_read_params = read_params
    device = helpers.set_torch_device(device)
    model = load_model(modelname).to(device)
    stride = guess_model_stride(model)
    chunk_size = chunk_size * stride
    overlap = overlap * stride

    n_can_base = len(alphabet)
    n_can_state = nstate_flipflop(n_can_base)

    def process_read_partial(read_filename, read_id, read_params):
        res = process_read(read_filename, read_id,
                           model, chunk_size, overlap, read_params,
                           n_can_state, stride, alphabet,
                           max_concurrent_chunks, fastq, qscore_scale,
                           qscore_offset, beam, posterior, temperature)
        return (read_id, *res)
コード例 #2
0
ファイル: basecall.py プロジェクト: nodrogluap/taiyaki
def main():
    args = parser.parse_args()

    device = helpers.set_torch_device(args.device)
    # TODO convert to logging
    sys.stderr.write("* Loading model.\n")
    model = load_model(args.model).to(device)
    is_cat_mod = isinstance(model.sublayers[-1],
                            layers.GlobalNormFlipFlopCatMod)
    do_output_mods = args.modified_base_output is not None
    if do_output_mods and not is_cat_mod:
        sys.stderr.write(
            "Cannot output modified bases from canonical base only model.")
        sys.exit()
    n_can_states = nstate_flipflop(model.sublayers[-1].nbase)
    stride = guess_model_stride(model)
    chunk_size = args.chunk_size * stride
    chunk_overlap = args.overlap * stride

    sys.stderr.write("* Initializing reads file search.\n")
    fast5_reads = list(
        fast5utils.iterate_fast5_reads(args.input_folder,
                                       limit=args.limit,
                                       strand_list=args.input_strand_list,
                                       recursive=args.recursive))
    sys.stderr.write("* Found {} reads.\n".format(len(fast5_reads)))

    if args.scaling is not None:
        sys.stderr.write("* Loading read scaling parameters from {}.\n".format(
            args.scaling))
        all_read_params = get_per_read_params_dict_from_tsv(args.scaling)
        input_read_ids = frozenset(rec[1] for rec in fast5_reads)
        scaling_read_ids = frozenset(all_read_params.keys())
        sys.stderr.write("* {} / {} reads have scaling information.\n".format(
            len(input_read_ids & scaling_read_ids), len(input_read_ids)))
        fast5_reads = [
            rec for rec in fast5_reads if rec[1] in scaling_read_ids
        ]
    else:
        all_read_params = {}

    mods_fp = None
    if do_output_mods:
        mods_fp = h5py.File(args.modified_base_output)
        mods_fp.create_group('Reads')
        mod_long_names = model.sublayers[-1].ordered_mod_long_names
        sys.stderr.write("* Preparing modified base output: {}.\n".format(
            ', '.join(map(str, mod_long_names))))
        mods_fp.create_dataset('mod_long_names',
                               data=np.array(mod_long_names, dtype='S'),
                               dtype=h5py.special_dtype(vlen=str))

    sys.stderr.write("* Calling reads.\n")
    nbase, ncalled, nread, nsample = 0, 0, 0, 0
    t0 = time.time()
    progress = Progress(quiet=args.quiet)
    startcharacter = '@' if args.fastq else '>'
    try:
        with open_file_or_stdout(args.output) as fh:
            for read_filename, read_id in fast5_reads:
                read_params = all_read_params[
                    read_id] if read_id in all_read_params else None
                basecall, qstring, read_nsample = process_read(
                    read_filename, read_id, model, chunk_size, chunk_overlap,
                    read_params, n_can_states, stride, args.alphabet,
                    is_cat_mod, mods_fp, args.max_concurrent_chunks,
                    args.fastq, args.qscore_scale, args.qscore_offset)
                if basecall is not None:
                    fh.write("{}{}\n{}\n".format(
                        startcharacter, read_id,
                        basecall[::-1] if args.reverse else basecall))
                    nbase += len(basecall)
                    ncalled += 1
                    if args.fastq:
                        fh.write("+\n{}\n".format(
                            qstring[::-1] if args.reverse else qstring))
                nread += 1
                nsample += read_nsample
                progress.step()
    finally:
        if mods_fp is not None:
            mods_fp.close()
    total_time = time.time() - t0

    sys.stderr.write("* Called {} reads in {:.2f}s\n".format(
        nread, int(total_time)))
    sys.stderr.write("* {:7.2f} kbase / s\n".format(nbase / total_time /
                                                    1000.0))
    sys.stderr.write("* {:7.2f} ksample / s\n".format(nsample / total_time /
                                                      1000.0))
    sys.stderr.write("* {} reads failed.\n".format(nread - ncalled))
    return
コード例 #3
0
        basename = 'model_final'
    else:
        basename = 'model_checkpoint_{:05d}'.format(index)

    model_file = os.path.join(outdir, basename + '.checkpoint')
    torch.save(network, model_file)
    params_file = os.path.join(outdir, basename + '.params')
    torch.save(network.state_dict(), params_file)


if __name__ == '__main__':
    args = parser.parse_args()

    np.random.seed(args.seed)

    device = helpers.set_torch_device(args.device)

    helpers.prepare_outdir(args.outdir, args.overwrite)

    copyfile(args.model, os.path.join(args.outdir, 'model.py'))

    log = helpers.Logger(os.path.join(args.outdir, 'model.log'), args.quiet)
    log.write(helpers.formatted_env_info(device))
    log.write('* Loading data from {}\n'.format(args.chunks))
    log.write('* Per read file MD5 {}\n'.format(helpers.file_md5(args.chunks)))

    if args.limit is not None:
        log.write('* Limiting number of strands to {}\n'.format(args.limit))


    with h5py.File(args.chunks, 'r') as h5:
コード例 #4
0
def main():
    args = parser.parse_args()
    is_multi_gpu = (args.local_rank is not None)
    is_lead_process = (not is_multi_gpu) or args.local_rank == 0

    if is_multi_gpu:
        #Use distributed parallel processing to run one process per GPU
        try:
            torch.distributed.init_process_group(backend='nccl')
        except:
            raise Exception(
                "Unable to start multiprocessing group. " +
                "The most likely reason is that the script is running with " +
                "local_rank set but without the set-up for distributed " +
                "operation. local_rank should be used " +
                "only by torch.distributed.launch. See the README.")
        device = helpers.set_torch_device(args.local_rank)
        if args.seed is not None:
            #Make sure processes get different random picks of training data
            np.random.seed(args.seed + args.local_rank)
    else:
        device = helpers.set_torch_device(args.device)
        np.random.seed(args.seed)

    if is_lead_process:
        helpers.prepare_outdir(args.outdir, args.overwrite)
        if args.model.endswith('.py'):
            copyfile(args.model, os.path.join(args.outdir, 'model.py'))
        batchlog = helpers.BatchLog(args.outdir)
        logfile = os.path.join(args.outdir, 'model.log')
    else:
        logfile = None

    log = helpers.Logger(logfile, args.quiet)
    log.write(helpers.formatted_env_info(device))

    log.write('* Loading data from {}\n'.format(args.input))
    log.write('* Per read file MD5 {}\n'.format(helpers.file_md5(args.input)))

    if args.input_strand_list is not None:
        read_ids = list(set(helpers.get_read_ids(args.input_strand_list)))
        log.write(('* Will train from a subset of {} strands, determined ' +
                   'by read_ids in input strand list\n').format(len(read_ids)))
    else:
        log.write('* Reads not filtered by id\n')
        read_ids = 'all'

    if args.limit is not None:
        log.write('* Limiting number of strands to {}\n'.format(args.limit))

    with mapped_signal_files.HDF5Reader(args.input) as per_read_file:
        alphabet_info = per_read_file.get_alphabet_information()
        read_data = per_read_file.get_multiple_reads(read_ids,
                                                     max_reads=args.limit)
        # read_data now contains a list of reads
        # (each an instance of the Read class defined in
        # mapped_signal_files.py, based on dict)
    log.write('* Using alphabet definition: {}\n'.format(str(alphabet_info)))

    if len(read_data) == 0:
        log.write('* No reads remaining for training, exiting.\n')
        exit(1)
    log.write('* Loaded {} reads.\n'.format(len(read_data)))

    # Get parameters for filtering by sampling a subset of the reads
    # Result is a tuple median mean_dwell, mad mean_dwell
    # Choose a chunk length in the middle of the range for this
    sampling_chunk_len = (args.chunk_len_min + args.chunk_len_max) // 2
    filter_params = chunk_selection.sample_filter_parameters(
        read_data, args.sample_nreads_before_filtering, sampling_chunk_len,
        args.filter_mean_dwell, args.filter_max_dwell)

    log.write("* Sampled {} chunks".format(
        args.sample_nreads_before_filtering))
    log.write(": median(mean_dwell)={:.2f}".format(
        filter_params.median_meandwell))
    log.write(", mad(mean_dwell)={:.2f}\n".format(filter_params.mad_meandwell))
    log.write('* Reading network from {}\n'.format(args.model))
    model_kwargs = {
        'stride': args.stride,
        'winlen': args.winlen,
        # Number of input features to model e.g. was >1 for event-based
        # models (level, std, dwell)
        'insize': 1,
        'size': args.size,
        'alphabet_info': alphabet_info
    }

    if is_lead_process:
        # Under pytorch's DistributedDataParallel scheme, we
        # need a clone of the start network to use as a template for saving
        # checkpoints. Necessary because DistributedParallel makes the class
        # structure different.
        network_save_skeleton = helpers.load_model(args.model, **model_kwargs)
        log.write('* Network has {} parameters.\n'.format(
            sum([p.nelement() for p in network_save_skeleton.parameters()])))
        if not alphabet_info.is_compatible_model(network_save_skeleton):
            sys.stderr.write(
                '* ERROR: Model and mapped signal files contain incompatible '
                + 'alphabet definitions (including modified bases).')
            sys.exit(1)
        if is_cat_mod_model(network_save_skeleton):
            log.write('* Loaded categorical modified base model.\n')
            if not alphabet_info.contains_modified_bases():
                sys.stderr.write(
                    '* ERROR: Modified bases model specified, but mapped ' +
                    'signal file does not contain modified bases.')
                sys.exit(1)
        else:
            log.write('* Loaded standard (canonical bases-only) model.\n')
            if alphabet_info.contains_modified_bases():
                sys.stderr.write(
                    '* ERROR: Standard (canonical bases only) model ' +
                    'specified, but mapped signal file does contains ' +
                    'modified bases.')
                sys.exit(1)
        log.write('* Dumping initial model\n')
        helpers.save_model(network_save_skeleton, args.outdir, 0)

    if is_multi_gpu:
        #so that processes 1,2,3.. don't try to load before process 0 has saved
        torch.distributed.barrier()
        log.write('* MultiGPU process {}'.format(args.local_rank))
        log.write(': loading initial model saved by process 0\n')
        saved_startmodel_path = os.path.join(
            args.outdir, 'model_checkpoint_00000.checkpoint')
        network = helpers.load_model(saved_startmodel_path).to(device)
        # Wrap network for training in the DistributedDataParallel structure
        network = torch.nn.parallel.DistributedDataParallel(
            network,
            device_ids=[args.local_rank],
            output_device=args.local_rank)
    else:
        network = network_save_skeleton.to(device)
        network_save_skeleton = None

    optimizer = torch.optim.Adam(network.parameters(),
                                 lr=args.lr_max,
                                 betas=args.adam,
                                 weight_decay=args.weight_decay,
                                 eps=args.eps)

    if args.lr_warmup is None:
        lr_warmup = args.lr_min
    else:
        lr_warmup = args.lr_warmup

    if args.lr_frac_decay is not None:
        lr_scheduler = optim.ReciprocalLR(optimizer, args.lr_frac_decay,
                                          args.warmup_batches, lr_warmup)
        log.write('* Learning rate schedule lr_max*k/(k+t)')
        log.write(', k={}, t=iterations.\n'.format(args.lr_frac_decay))
    else:
        lr_scheduler = optim.CosineFollowedByFlatLR(optimizer, args.lr_min,
                                                    args.lr_cosine_iters,
                                                    args.warmup_batches,
                                                    lr_warmup)
        log.write('* Learning rate goes like cosine from lr_max to lr_min ')
        log.write('over {} iterations.\n'.format(args.lr_cosine_iters))
    log.write('* At start, train for {} '.format(args.warmup_batches))
    log.write('batches at warm-up learning rate {:3.2}\n'.format(lr_warmup))

    score_smoothed = helpers.WindowedExpSmoother()

    # prepare modified base paramter tensors
    network_is_catmod = is_cat_mod_model(network)
    mod_factor_t = torch.tensor(args.mod_factor,
                                dtype=torch.float32).to(device)
    can_mods_offsets = (network.sublayers[-1].can_mods_offsets
                        if network_is_catmod else None)
    # mod cat inv freq weighting is currently disabled. Compute and set this
    # value to enable mod cat weighting
    mod_cat_weights = np.ones(alphabet_info.nbase, dtype=np.float32)

    #Generating list of batches for standard loss reporting
    reporting_chunk_len = (args.chunk_len_min + args.chunk_len_max) // 2
    reporting_batch_list = list(
        prepare_random_batches(device, read_data, reporting_chunk_len,
                               args.min_sub_batch_size,
                               args.reporting_sub_batches, alphabet_info,
                               filter_params, network, network_is_catmod, log))

    log.write(
        ('* Standard loss report: chunk length = {} & sub-batch size ' +
         '= {} for {} sub-batches. \n').format(reporting_chunk_len,
                                               args.min_sub_batch_size,
                                               args.reporting_sub_batches))

    #Set cap at very large value (before we have any gradient stats).
    gradient_cap = constants.LARGE_VAL
    if args.gradient_cap_fraction is None:
        log.write('* No gradient capping\n')
    else:
        rolling_quantile = maths.RollingQuantile(args.gradient_cap_fraction)
        log.write('* Gradient L2 norm cap will be upper' +
                  ' {:3.2f} quantile of the last {} norms.\n'.format(
                      args.gradient_cap_fraction, rolling_quantile.window))

    total_bases = 0
    total_samples = 0
    total_chunks = 0
    # To count the numbers of different sorts of chunk rejection
    rejection_dict = defaultdict(int)

    t0 = time.time()
    log.write('* Training\n')

    for i in range(args.niteration):

        # Chunk length is chosen randomly in the range given but forced to
        # be a multiple of the stride
        batch_chunk_len = (
            np.random.randint(args.chunk_len_min, args.chunk_len_max + 1) //
            args.stride) * args.stride

        # We choose the size of a sub-batch so that the size of the data in
        # the sub-batch is about the same as args.min_sub_batch_size chunks of
        # length args.chunk_len_max
        sub_batch_size = int(args.min_sub_batch_size * args.chunk_len_max /
                             batch_chunk_len + 0.5)

        optimizer.zero_grad()

        main_batch_gen = prepare_random_batches(
            device, read_data, batch_chunk_len, sub_batch_size,
            args.sub_batches, alphabet_info, filter_params, network,
            network_is_catmod, log)

        chunk_count, fval, chunk_samples, chunk_bases, batch_rejections = \
                            calculate_loss( network, network_is_catmod,
                                            main_batch_gen, args.sharpen,
                                            can_mods_offsets, mod_cat_weights,
                                            mod_factor_t, calc_grads = True )

        gradnorm_uncapped = torch.nn.utils.clip_grad_norm_(
            network.parameters(), gradient_cap)
        if args.gradient_cap_fraction is not None:
            gradient_cap = rolling_quantile.update(gradnorm_uncapped)

        optimizer.step()
        if is_lead_process:
            batchlog.record(
                fval, gradnorm_uncapped,
                None if args.gradient_cap_fraction is None else gradient_cap)

        total_chunks += chunk_count
        total_samples += chunk_samples
        total_bases += chunk_bases

        # Update counts of reasons for rejection
        for k, v in batch_rejections.items():
            rejection_dict[k] += v

        score_smoothed.update(fval)

        if (i + 1) % args.save_every == 0 and is_lead_process:
            helpers.save_model(network, args.outdir,
                               (i + 1) // args.save_every,
                               network_save_skeleton)
            log.write('C')
        else:
            log.write('.')

        if (i + 1) % DOTROWLENGTH == 0:

            _, rloss, _, _, _ = calculate_loss(network, network_is_catmod,
                                               reporting_batch_list,
                                               args.sharpen, can_mods_offsets,
                                               mod_cat_weights, mod_factor_t)

            # In case of super batching, additional functionality must be
            # added here
            learning_rate = lr_scheduler.get_lr()[0]
            tn = time.time()
            dt = tn - t0
            t = (' {:5d} {:7.5f} {:7.5f}  {:5.2f}s ({:.2f} ksample/s {:.2f} ' +
                 'kbase/s) lr={:.2e}')
            log.write(
                t.format((i + 1) // DOTROWLENGTH, score_smoothed.value, rloss,
                         dt, total_samples / 1000.0 / dt,
                         total_bases / 1000.0 / dt, learning_rate))
            # Write summary of chunk rejection reasons
            if args.full_filter_status:
                for k, v in rejection_dict.items():
                    log.write(" {}:{} ".format(k, v))
            else:
                n_tot = n_fail = 0
                for k, v in rejection_dict.items():
                    n_tot += v
                    if k != 'pass':
                        n_fail += v
                log.write("  {:.1%} chunks filtered".format(n_fail / n_tot))
            log.write("\n")
            total_bases = 0
            total_samples = 0
            t0 = tn

            # Uncomment the lines below to check synchronisation of models
            # between processes in multi-GPU operation
            #for p in network.parameters():
            #    v = p.data.reshape(-1)[:5].to('cpu')
            #    u = p.data.reshape(-1)[-5:].to('cpu')
            #    break
            #if args.local_rank is not None:
            #    log.write("* GPU{} params:".format(args.local_rank))
            #log.write("{}...{}\n".format(v,u))

        lr_scheduler.step()

    if is_lead_process:
        helpers.save_model(network,
                           args.outdir,
                           model_skeleton=network_save_skeleton)
コード例 #5
0
ファイル: train_flipflop.py プロジェクト: udishadc/taiyaki
def parse_init_args(args):
    is_multi_gpu = (args.local_rank is not None)
    is_lead_process = (not is_multi_gpu) or args.local_rank == 0

    # if seed is provided use this else generate random seed value
    seed = (np.random.randint(0, np.iinfo(np.uint32).max, dtype=np.uint32)
            if args.seed is None else args.seed)

    main_log_fn = os.path.join(args.outdir, MODEL_LOG_FILENAME)
    if is_lead_process:
        helpers.prepare_outdir(args.outdir, args.overwrite)
        if args.model.endswith('.py'):
            copyfile(args.model, os.path.join(args.outdir, 'model.py'))
        # note buffering=1 to enforce line buffering and enable
        # inspection/plotting during a run
        logs = LOGS(main=helpers.Logger(main_log_fn, args.quiet),
                    batch=open(os.path.join(args.outdir, BATCH_LOG_FILENAME),
                               'w',
                               buffering=1),
                    validation=open(os.path.join(args.outdir,
                                                 VAL_LOG_FILENAME),
                                    'w',
                                    buffering=1))
        logs.batch.write(BATCH_HEADER)
        logs.validation.write(VAL_HEADER)

        if args.save_every % DOTROWLENGTH != 0:
            # Illegal save_every, change
            se2 = int(math.ceil(args.save_every / DOTROWLENGTH)) * DOTROWLENGTH
            logs.main.write('* --save_every {} not a multiple of {}, rounding '
                            'to {}'.format(args.save_every, DOTROWLENGTH, se2))
            args.save_every = se2

        if args.chunk_len_min > args.chunk_len_max:
            # Illegal chunk length parameters
            raise ValueError('--chunk_len_min greater than --chunk_len_max')

        logs.main.write('* Using random seed: {}\n'.format(seed))
    else:
        logs = LOGS(main=helpers.Logger(main_log_fn, args.quiet))

    if is_multi_gpu:
        # Use distributed parallel processing to run one process per GPU
        try:
            torch.distributed.init_process_group(backend='nccl')
        except Exception:
            raise Exception(
                'Unable to start multiprocessing group. The most likely ' +
                'reason is that the script is running with local_rank set ' +
                'but without the set-up for distributed operation. ' +
                'local_rank should be used only by torch.distributed.' +
                'launch. See the README.')
        device = helpers.set_torch_device(args.local_rank)
        # offset seeds so different GPUs get different data streams
        seed += args.local_rank
    else:
        device = helpers.set_torch_device(args.device)
    logs.main.write(helpers.formatted_env_info(device))

    # set random seed for this process
    np.random.seed(seed)
    torch.manual_seed(seed)
    if _MAKE_TORCH_DETERMINISTIC and device.type == 'cuda':
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False

    return RESOURCE_INFO(is_multi_gpu, is_lead_process, device), logs
コード例 #6
0
def main():
    args = parser.parse_args()
    np.random.seed(args.seed)

    helpers.prepare_outdir(args.outdir, args.overwrite)

    device = helpers.set_torch_device(args.device)

    log = helpers.Logger(os.path.join(args.outdir, 'model.log'), args.quiet)
    log.write(helpers.formatted_env_info(device))

    if args.input_strand_list is not None:
        read_ids = list(set(helpers.get_read_ids(args.input_strand_list)))
        log.write('* Will train from a subset of {} strands\n'.format(
            len(read_ids)))
    else:
        log.write('* Reads not filtered by id\n')
        read_ids = 'all'

    if args.limit is not None:
        log.write('* Limiting number of strands to {}\n'.format(args.limit))

    with mapped_signal_files.HDF5Reader(args.input) as per_read_file:
        alphabet_info = per_read_file.get_alphabet_information()
        assert alphabet_info.nbase == 4, (
            'Squiggle prediction with modified base training data is ' +
            'not currenly supported.')
        read_data = per_read_file.get_multiple_reads(read_ids,
                                                     max_reads=args.limit)
        # read_data now contains a list of reads
        # (each an instance of the Read class defined in mapped_signal_files.py, based on dict)

    if len(read_data) == 0:
        log.write('* No reads remaining for training, exiting.\n')
        exit(1)
    log.write('* Loaded {} reads.\n'.format(len(read_data)))

    # Get parameters for filtering by sampling a subset of the reads
    # Result is a tuple median mean_dwell, mad mean_dwell
    filter_parameters = chunk_selection.sample_filter_parameters(
        read_data, args.sample_nreads_before_filtering, args.target_len,
        args.filter_mean_dwell, args.filter_max_dwell)

    log.write(
        "* Sampled {} chunks: median(mean_dwell)={:.2f}, mad(mean_dwell)={:.2f}\n"
        .format(args.sample_nreads_before_filtering,
                filter_parameters.median_meandwell,
                filter_parameters.mad_meandwell))

    conv_net = create_convolution(args.size, args.depth, args.winlen)
    nparam = sum([p.data.detach().numpy().size for p in conv_net.parameters()])
    log.write('* Created network.  {} parameters\n'.format(nparam))
    log.write('* Depth {} layers ({} residual layers)\n'.format(
        args.depth + 2, args.depth))
    log.write('* Window width {}\n'.format(args.winlen))
    log.write('* Context +/- {} bases\n'.format(
        (args.depth + 2) * (args.winlen // 2)))

    conv_net = conv_net.to(device)

    optimizer = torch.optim.Adam(conv_net.parameters(),
                                 lr=args.lr_max,
                                 betas=args.adam,
                                 weight_decay=args.weight_decay,
                                 eps=args.eps)

    lr_scheduler = optim.ReciprocalLR(optimizer, args.lr_decay)

    rejection_dict = defaultdict(
        lambda: 0
    )  # To count the numbers of different sorts of chunk rejection
    t0 = time.time()
    score_smoothed = helpers.WindowedExpSmoother()
    total_chunks = 0

    for i in range(args.niteration):
        # If the logging threshold is 0 then we log all chunks, including those rejected, so pass the log
        # object into assemble_batch
        # chunk_batch is a list of dicts.
        chunk_batch, batch_rejections = chunk_selection.assemble_batch(
            read_data,
            args.batch_size,
            args.target_len,
            filter_parameters,
            chunk_len_means_sequence_len=True)
        if len(chunk_batch) < args.batch_size:
            log.write('* Warning: only {} chunks passed filters.\n'.format(
                len(chunk_batch)))

        total_chunks += len(chunk_batch)
        # Update counts of reasons for rejection
        for k, v in batch_rejections.items():
            rejection_dict[k] += v

        # Shape of input needs to be seqlen x batchsize x embedding_dimension
        embedded_matrix = [
            embed_sequence(d['sequence'], alphabet=None) for d in chunk_batch
        ]
        seq_embed = torch.tensor(embedded_matrix).permute(1, 0, 2).to(device)
        # Shape of labels is a flat vector
        batch_signal = torch.tensor(
            np.concatenate([d['current'] for d in chunk_batch])).to(device)
        # Shape of lens is also a flat vector
        batch_siglen = torch.tensor([len(d['current'])
                                     for d in chunk_batch]).to(device)

        #print("First 10 elements of first sequence in batch",seq_embed[:10,0,:])
        #print("First 10 elements of signal batch",batch_signal[:10])
        #print("First 10 lengths",batch_siglen[:10])

        optimizer.zero_grad()

        predicted_squiggle = conv_net(seq_embed)
        batch_loss = squiggle_match_loss(predicted_squiggle, batch_signal,
                                         batch_siglen, args.back_prob)
        fval = batch_loss.sum() / float(batch_siglen.sum())

        fval.backward()
        optimizer.step()

        score_smoothed.update(float(fval))

        if (i + 1) % args.save_every == 0:
            helpers.save_model(conv_net, args.outdir,
                               (i + 1) // args.save_every)
            log.write('C')
        else:
            log.write('.')

        if (i + 1) % DOTROWLENGTH == 0:
            tn = time.time()
            dt = tn - t0
            t = ' {:5d} {:7.5f}  {:5.2f}s'
            log.write(
                t.format((i + 1) // DOTROWLENGTH, score_smoothed.value, dt))
            t0 = tn
            # Write summary of chunk rejection reasons
            if args.full_filter_status:
                for k, v in rejection_dict.items():
                    log.write(" {}:{} ".format(k, v))
            else:
                n_tot = n_fail = 0
                for k, v in rejection_dict.items():
                    n_tot += v
                    if k != 'pass':
                        n_fail += v
                log.write("  {:.1%} chunks filtered".format(n_fail / n_tot))
            log.write("\n")

        lr_scheduler.step()

    helpers.save_model(conv_net, args.outdir)