コード例 #1
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        # Set Up Bollinger Bands
        upper_bb1, mid_bb1, lower_bb1 = ta.BBANDS(dataframe['close'],
                                                  timeperiod=36)
        upper_bb2, mid_bb2, lower_bb2 = ta.BBANDS(
            qtpylib.typical_price(dataframe), timeperiod=12)

        # Only putting some bands into dataframe as the others are not used elsewhere in the strategy
        dataframe['lower-bb1'] = lower_bb1
        dataframe['lower-bb2'] = lower_bb2
        dataframe['mid-bb2'] = mid_bb2

        dataframe['bb1-delta'] = (mid_bb1 - dataframe['lower-bb1']).abs()
        dataframe['closedelta'] = (dataframe['close'] -
                                   dataframe['close'].shift()).abs()
        dataframe['tail'] = (dataframe['close'] - dataframe['low']).abs()

        # Additional indicators
        dataframe['ema_fast'] = ta.EMA(dataframe['close'], timeperiod=6)
        dataframe['ema_slow'] = ta.EMA(dataframe['close'], timeperiod=48)
        dataframe['volume_mean_slow'] = dataframe['volume'].rolling(
            window=24).mean()

        dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)

        # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher-rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        # Informative Pair Indicators
        coin, stake = metadata['pair'].split('/')
        fiat = self.fiat
        stake_fiat = f"{stake}/{self.fiat}"
        coin_fiat = f"{coin}/{self.fiat}"

        coin_fiat_inf = self.dp.get_pair_dataframe(pair=f"{coin}/{fiat}",
                                                   timeframe=self.timeframe)
        dataframe['coin-fiat-adx'] = ta.ADX(coin_fiat_inf, timeperiod=21)
        coin_aroon = ta.AROON(coin_fiat_inf, timeperiod=25)
        dataframe['coin-fiat-aroon-down'] = coin_aroon['aroondown']
        dataframe['coin-fiat-aroon-up'] = coin_aroon['aroonup']

        stake_fiat_inf = self.dp.get_pair_dataframe(pair=f"{stake}/{fiat}",
                                                    timeframe=self.timeframe)
        dataframe['stake-fiat-adx'] = ta.ADX(stake_fiat_inf, timeperiod=21)
        stake_aroon = ta.AROON(stake_fiat_inf, timeperiod=25)
        dataframe['stake-fiat-aroon-down'] = stake_aroon['aroondown']
        dataframe['stake-fiat-aroon-up'] = stake_aroon['aroonup']

        # These indicators are used to persist a buy signal in live trading only
        # They dramatically slow backtesting down
        if self.config['runmode'].value in ('live', 'dry_run'):
            dataframe['sar'] = ta.SAR(dataframe)

        return dataframe
コード例 #2
0
    def AROON(self):
        aroondown, aroonup = abstract.AROON(self.company_stock)

        self.company_stock['AROON_U'] = aroonup
        self.company_stock['AROON_D'] = aroondown

        return aroondown, aroonup
コード例 #3
0
ファイル: ticker_data.py プロジェクト: animanathome/stcks
    def get_momentum_indicators(self):
        # https://mrjbq7.github.io/ta-lib/func_groups/momentum_indicators.html
        if self.verbose:
            print self.ticker, 'get_momentum_indicators'

        _a = ['open', 'high', 'low', 'close', 'volume']
        inputs = {_a[i]: self.data[_a[i]].values for i in range(len(_a))}

        # average directional movement index
        self.data['mi_adx_14'] = abstract.ADX(inputs, timeperiod=14)

        # average directional movement index rating
        self.data['mi_adxr_14'] = abstract.ADX(inputs, timeperiod=14)

        # absolute price oscillator
        self.data['mi_apo'] = abstract.APO(inputs,
                                           fastperiod=12,
                                           slowperiod=26,
                                           matype=0)

        # aroon
        self.data['mi_aroon_d'], self.data['mi_aroon_u'] = abstract.AROON(
            inputs, timeperiod=14)

        # aroon oscillator
        self.data['mi_aroonosc'] = abstract.AROONOSC(inputs, timeperiod=14)
コード例 #4
0
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:

        dataframe['adx'] = ta.ADX(dataframe, timeperiod=90)  #90
        aroon = ta.AROON(dataframe, timeperiod=60)  #60

        dataframe['aroon-down'] = aroon['aroondown']
        dataframe['aroon-up'] = aroon['aroonup']

        return dataframe
コード例 #5
0
ファイル: LoadRLModel.py プロジェクト: t3ch9/freqtrade-gym
    def populate_indicators(self, dataframe: DataFrame,
                            metadata: dict) -> DataFrame:
        # Momentum Indicators
        # ------------------------------------

        # ADX
        dataframe['adx'] = ta.ADX(dataframe)

        # Plus Directional Indicator / Movement
        dataframe['plus_dm'] = ta.PLUS_DM(dataframe)
        dataframe['plus_di'] = ta.PLUS_DI(dataframe)

        # # Minus Directional Indicator / Movement
        dataframe['minus_dm'] = ta.MINUS_DM(dataframe)
        dataframe['minus_di'] = ta.MINUS_DI(dataframe)

        # Aroon, Aroon Oscillator
        aroon = ta.AROON(dataframe)
        dataframe['aroonup'] = aroon['aroonup']
        dataframe['aroondown'] = aroon['aroondown']
        dataframe['aroonosc'] = ta.AROONOSC(dataframe)

        # Awesome Oscillator
        dataframe['ao'] = qtpylib.awesome_oscillator(dataframe)

        # # Keltner Channel
        # keltner = qtpylib.keltner_channel(dataframe)
        # dataframe["kc_upperband"] = keltner["upper"]
        # dataframe["kc_lowerband"] = keltner["lower"]
        # dataframe["kc_middleband"] = keltner["mid"]
        # dataframe["kc_percent"] = (
        #     (dataframe["close"] - dataframe["kc_lowerband"]) /
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"])
        # )
        # dataframe["kc_width"] = (
        #     (dataframe["kc_upperband"] - dataframe["kc_lowerband"]) / dataframe["kc_middleband"]
        # )

        # Ultimate Oscillator
        dataframe['uo'] = ta.ULTOSC(dataframe)

        # Commodity Channel Index: values [Oversold:-100, Overbought:100]
        dataframe['cci'] = ta.CCI(dataframe)

        # RSI
        dataframe['rsi'] = ta.RSI(dataframe)

        # Inverse Fisher transform on RSI: values [-1.0, 1.0] (https://goo.gl/2JGGoy)
        rsi = 0.1 * (dataframe['rsi'] - 50)
        dataframe['fisher_rsi'] = (np.exp(2 * rsi) - 1) / (np.exp(2 * rsi) + 1)

        # Inverse Fisher transform on RSI normalized: values [0.0, 100.0] (https://goo.gl/2JGGoy)
        dataframe['fisher_rsi_norma'] = 50 * (dataframe['fisher_rsi'] + 1)

        # Stochastic Slow
        stoch = ta.STOCH(dataframe)
        dataframe['slowd'] = stoch['slowd']
        dataframe['slowk'] = stoch['slowk']

        # Stochastic Fast
        stoch_fast = ta.STOCHF(dataframe)
        dataframe['fastd'] = stoch_fast['fastd']
        dataframe['fastk'] = stoch_fast['fastk']

        # Stochastic RSI
        stoch_rsi = ta.STOCHRSI(dataframe)
        dataframe['fastd_rsi'] = stoch_rsi['fastd']
        dataframe['fastk_rsi'] = stoch_rsi['fastk']

        # MACD
        macd = ta.MACD(dataframe)
        dataframe['macd'] = macd['macd']
        dataframe['macdsignal'] = macd['macdsignal']
        dataframe['macdhist'] = macd['macdhist']

        # MFI
        dataframe['mfi'] = ta.MFI(dataframe)

        # # ROC
        dataframe['roc'] = ta.ROC(dataframe)

        # Overlap Studies
        # ------------------------------------

        # # Bollinger Bands
        # bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
        # dataframe['bb_lowerband'] = bollinger['lower']
        # dataframe['bb_middleband'] = bollinger['mid']
        # dataframe['bb_upperband'] = bollinger['upper']
        # dataframe["bb_percent"] = (
        #     (dataframe["close"] - dataframe["bb_lowerband"]) /
        #     (dataframe["bb_upperband"] - dataframe["bb_lowerband"])
        # )
        # dataframe["bb_width"] = (
        #     (dataframe["bb_upperband"] - dataframe["bb_lowerband"]) / dataframe["bb_middleband"]
        # )

        # # Bollinger Bands - Weighted (EMA based instead of SMA)
        # weighted_bollinger = qtpylib.weighted_bollinger_bands(
        #     qtpylib.typical_price(dataframe), window=20, stds=2
        # )
        # dataframe["wbb_upperband"] = weighted_bollinger["upper"]
        # dataframe["wbb_lowerband"] = weighted_bollinger["lower"]
        # dataframe["wbb_middleband"] = weighted_bollinger["mid"]
        # dataframe["wbb_percent"] = (
        #     (dataframe["close"] - dataframe["wbb_lowerband"]) /
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"])
        # )
        # dataframe["wbb_width"] = (
        #     (dataframe["wbb_upperband"] - dataframe["wbb_lowerband"]) /
        #     dataframe["wbb_middleband"]
        # )

        # # EMA - Exponential Moving Average
        # dataframe['ema3'] = ta.EMA(dataframe, timeperiod=3)
        # dataframe['ema5'] = ta.EMA(dataframe, timeperiod=5)
        # dataframe['ema10'] = ta.EMA(dataframe, timeperiod=10)
        # dataframe['ema21'] = ta.EMA(dataframe, timeperiod=21)
        # dataframe['ema50'] = ta.EMA(dataframe, timeperiod=50)
        # dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)

        # # SMA - Simple Moving Average
        # dataframe['sma3'] = ta.SMA(dataframe, timeperiod=3)
        # dataframe['sma5'] = ta.SMA(dataframe, timeperiod=5)
        # dataframe['sma10'] = ta.SMA(dataframe, timeperiod=10)
        # dataframe['sma21'] = ta.SMA(dataframe, timeperiod=21)
        # dataframe['sma50'] = ta.SMA(dataframe, timeperiod=50)
        # dataframe['sma100'] = ta.SMA(dataframe, timeperiod=100)

        # Parabolic SAR
        # dataframe['sar'] = ta.SAR(dataframe)

        # TEMA - Triple Exponential Moving Average
        # dataframe['tema'] = ta.TEMA(dataframe, timeperiod=9)

        # # Cycle Indicator
        # # ------------------------------------
        # # Hilbert Transform Indicator - SineWave
        # hilbert = ta.HT_SINE(dataframe)
        # dataframe['htsine'] = hilbert['sine']
        # dataframe['htleadsine'] = hilbert['leadsine']

        # # Pattern Recognition - Bullish candlestick patterns
        # # ------------------------------------
        # # Hammer: values [0, 100]
        # dataframe['CDLHAMMER'] = ta.CDLHAMMER(dataframe)
        # # Inverted Hammer: values [0, 100]
        # dataframe['CDLINVERTEDHAMMER'] = ta.CDLINVERTEDHAMMER(dataframe)
        # # Dragonfly Doji: values [0, 100]
        # dataframe['CDLDRAGONFLYDOJI'] = ta.CDLDRAGONFLYDOJI(dataframe)
        # # Piercing Line: values [0, 100]
        # dataframe['CDLPIERCING'] = ta.CDLPIERCING(dataframe) # values [0, 100]
        # # Morningstar: values [0, 100]
        # dataframe['CDLMORNINGSTAR'] = ta.CDLMORNINGSTAR(dataframe) # values [0, 100]
        # # Three White Soldiers: values [0, 100]
        # dataframe['CDL3WHITESOLDIERS'] = ta.CDL3WHITESOLDIERS(dataframe) # values [0, 100]

        # # Pattern Recognition - Bearish candlestick patterns
        # # ------------------------------------
        # # Hanging Man: values [0, 100]
        # dataframe['CDLHANGINGMAN'] = ta.CDLHANGINGMAN(dataframe)
        # # Shooting Star: values [0, 100]
        # dataframe['CDLSHOOTINGSTAR'] = ta.CDLSHOOTINGSTAR(dataframe)
        # # Gravestone Doji: values [0, 100]
        # dataframe['CDLGRAVESTONEDOJI'] = ta.CDLGRAVESTONEDOJI(dataframe)
        # # Dark Cloud Cover: values [0, 100]
        # dataframe['CDLDARKCLOUDCOVER'] = ta.CDLDARKCLOUDCOVER(dataframe)
        # # Evening Doji Star: values [0, 100]
        # dataframe['CDLEVENINGDOJISTAR'] = ta.CDLEVENINGDOJISTAR(dataframe)
        # # Evening Star: values [0, 100]
        # dataframe['CDLEVENINGSTAR'] = ta.CDLEVENINGSTAR(dataframe)

        # # Pattern Recognition - Bullish/Bearish candlestick patterns
        # # ------------------------------------
        # # Three Line Strike: values [0, -100, 100]
        # dataframe['CDL3LINESTRIKE'] = ta.CDL3LINESTRIKE(dataframe)
        # # Spinning Top: values [0, -100, 100]
        # dataframe['CDLSPINNINGTOP'] = ta.CDLSPINNINGTOP(dataframe) # values [0, -100, 100]
        # # Engulfing: values [0, -100, 100]
        # dataframe['CDLENGULFING'] = ta.CDLENGULFING(dataframe) # values [0, -100, 100]
        # # Harami: values [0, -100, 100]
        # dataframe['CDLHARAMI'] = ta.CDLHARAMI(dataframe) # values [0, -100, 100]
        # # Three Outside Up/Down: values [0, -100, 100]
        # dataframe['CDL3OUTSIDE'] = ta.CDL3OUTSIDE(dataframe) # values [0, -100, 100]
        # # Three Inside Up/Down: values [0, -100, 100]
        # dataframe['CDL3INSIDE'] = ta.CDL3INSIDE(dataframe) # values [0, -100, 100]

        # # Chart type
        # # ------------------------------------
        # # Heikin Ashi Strategy
        # heikinashi = qtpylib.heikinashi(dataframe)
        # dataframe['ha_open'] = heikinashi['open']
        # dataframe['ha_close'] = heikinashi['close']
        # dataframe['ha_high'] = heikinashi['high']
        # dataframe['ha_low'] = heikinashi['low']

        # Retrieve best bid and best ask from the orderbook
        # ------------------------------------
        """
        # first check if dataprovider is available
        if self.dp:
            if self.dp.runmode in ('live', 'dry_run'):
                ob = self.dp.orderbook(metadata['pair'], 1)
                dataframe['best_bid'] = ob['bids'][0][0]
                dataframe['best_ask'] = ob['asks'][0][0]
        """

        return dataframe
コード例 #6
0
 def __countAROON(self):
     self.aroondown, self.aroonup = ta.AROON(self.stock.inputs)
     self.aroonosc = ta.AROONOSC(self.stock.inputs)