コード例 #1
0
ファイル: obv.py プロジェクト: twopirllc/pandas-ta
def obv(close, volume, talib=None, offset=None, **kwargs):
    """Indicator: On Balance Volume (OBV)"""
    # Validate arguments
    close = verify_series(close)
    volume = verify_series(volume)
    offset = get_offset(offset)
    mode_tal = bool(talib) if isinstance(talib, bool) else True

    # Calculate Result
    if Imports["talib"] and mode_tal:
        from talib import OBV
        obv = OBV(close, volume)
    else:
        signed_volume = signed_series(close, initial=1) * volume
        obv = signed_volume.cumsum()

    # Offset
    if offset != 0:
        obv = obv.shift(offset)

    # Handle fills
    if "fillna" in kwargs:
        obv.fillna(kwargs["fillna"], inplace=True)
    if "fill_method" in kwargs:
        obv.fillna(method=kwargs["fill_method"], inplace=True)

    # Name and Categorize it
    obv.name = f"OBV"
    obv.category = "volume"

    return obv
コード例 #2
0
ファイル: cstock01.py プロジェクト: lqwangxg/python
    def refresh(self, df):
        df = df[-(MAX_ROWS + 1):-1]
        open = df.open.astype("f8").values
        high = df.high.astype("f8").values
        low = df.low.astype("f8").values
        close = df.close.astype("f8").values
        volume = df.volume.astype("f8").values

        df["price"] = WCLPRICE(high, low, close)  #Weighted Close Price
        df["obv"] = OBV(close, volume)
        df["ad"] = AD(high, low, close, volume)
        df["macd"], df["signal"], df["histogram"] = MACD(close)
        df["rsi"] = RSI(close)  #relative strong index
        #df["willr"] = WILLR(high, low, close) + 100 #will index
        df["roc"] = ROC(close)

        #統計
        df["beta"] = BETA(high, low)
        df["linearR"] = LINEARREG(close)  #線形回帰
        df["linearA"] = LINEARREG_ANGLE(close)  ##線形回帰 角度
        df["linearI"] = LINEARREG_INTERCEPT(close)  #線形回帰 JIEJU
        df["linearS"] = LINEARREG_SLOPE(close)  #線形回帰 坂
        df["stddev"] = STDDEV(close)  #標準偏差
        df["tsf"] = TSF(close)  #Time Series Forecast
        df["var"] = VAR(close)  #方差

        df["wramount"] = 0
        df["amount"] = 0
        df["memo"] = 0
コード例 #3
0
def getOBV(price, volume):
    date = 1
    OBV_ = []
    obv = OBV(price, volume)
    for ele in obv:
        OBV_.append([date, ele])
        date = date + 1
    return OBV_
コード例 #4
0
def volumeTechnicalIndicators(price, volume, tot_lags, prefix):
    data_result = priceTechnicalIndicator(volume, tot_lags, prefix)

    # OBV
    lags = tot_lags
    obv = OBV(price, volume)
    for lag in lags:
        tmp = obv.diff(lag) # diff, otherwise the scale would change if accumulates
        tmp.name = 'OBV_DIFF_%dD' % lag
        data_result = data_result.join(tmp)

    # VOLUME RATIO
    lag = 5
    tmp = volume.rolling(window=lag).mean()
    volume_ratio = volume / tmp
    volume_ratio.name = 'VOLUME_RATIO'
    data_result = data_result.join(volume_ratio)

    return data_result
コード例 #5
0
    def binaryClassificationInThirtyMinutes(self, df):
        '''
        Predict the price of bitcoin in the next 30 minutes by a given df (dataframe)

        Example: 
            binaryClassificationInThirtyMinutes(df) = 0

        Parameters:
            df: a dataframe with df.columns = ['open', 'high', 'low', 'close', 'volume']
        Returns:
            prediction: int = a prediction by the model, 0 for down, 1 for same or up
        '''

        # if len(df) != 34:
        #    # due to wma
        #    raise Exception("Dataframe must have 34 rows")

        data = df.copy()

        rsi = RSI(data['close'])
        k, d = STOCH(data['high'], data['low'], data['close'])
        macd, macdsignal, macdhist = MACD(data['close'],
                                          fastperiod=12,
                                          slowperiod=26,
                                          signalperiod=9)
        williams_r = WILLR(data['high'], data['low'], data['close'])
        rate_of_change = ROC(data['close'])
        on_balance_volume = OBV(data['close'], data['volume'])
        weighted_moving_average = WMA(data['close'])
        normalized_average_true_range = NATR(data['high'], data['low'],
                                             data['close'])

        data['rsi'] = rsi
        data['k'] = k
        data['d'] = d
        data['macd'] = macd
        data['williams_r'] = williams_r
        data['rate_of_change'] = rate_of_change
        data['on_balance_volume'] = on_balance_volume
        data['weighted_moving_average'] = weighted_moving_average
        data['normalized_average_true_range'] = normalized_average_true_range

        data = data.dropna(axis=0)

        data = self.normalizeDataframe(data)

        with open(
                pathlib.Path(__file__).resolve().parent /
                "random_forest_params", "rb") as file:
            model = pickle.load(file)

        features = data.values
        prediction = model.predict(features)
        return prediction[0]
コード例 #6
0
def amountTechnicalIndicators(price, amount, tot_lags, prefix):
    data_result = priceTechnicalIndicator(amount, tot_lags, prefix)

    # OBV
    lags = tot_lags
    amt_obv = OBV(price, amount)
    for lag in lags:
        tmp = amt_obv.diff(lag)  # diff, otherwise the scale would change if accumulates
        tmp.name = 'AMT_OBV_DIFF_%dD' % lag
        data_result = data_result.join(tmp)

    # AMOUNT RATIO
    lags = np.array(tot_lags)
    lags = lags[lags >= 2]
    for lag in lags:
        tmp = amount.rolling(window=lag).mean()
        amt_ratio = amount / tmp
        amt_ratio.name = 'AMOUNT_RATIO_%dD' % lag
        data_result = data_result.join(amt_ratio)

    return data_result
コード例 #7
0
def create_features(ts):
    from talib import SMA, RSI, OBV

    target = 'future_close_ret'
    features = ['current_close_ret', 'current_volume_ret']

    for n in [14, 25, 50, 100]:
        ts['sma_' +
           str(n)] = SMA(ts['close'].values, timeperiod=n) / ts['close']
        ts['rsi_' + str(n)] = RSI(ts['close'].values, timeperiod=n)
    ts['obv'] = OBV(ts['close'].values, ts['volume'].values.astype('float64'))

    ts.drop(
        ['close', 'volume', 'close_ret', 'volume_ret', 'future_volume_ret'],
        axis='columns',
        inplace=True)
    ts.dropna(inplace=True)
    return ts.corr()
コード例 #8
0
def getTechnicalInd(data, window=10):
    close = data['Close']
    high = data['High']
    low = data['Low']
    volume = data['Volume']
    #madev = roc = willr=rsi=apo=atr=obv=adosc=slowk=fastk=slowd=fastd=vpos=vneg={}
    window = 10
    for i in range(0, window):

        # momentum indicators
        # rate of change: (price/prevPrice - 1)*100
        data["roc{0}".format(i)] = ROC(close.shift(i), timeperiod=10)
        # williams oscillator
        data["willr{0}".format(i)] = WILLR(high.shift(i),
                                           low.shift(i),
                                           close.shift(i),
                                           timeperiod=14)

        # relative strength index
        data["rsi{0}".format(i)] = RSI(close.shift(i), timeperiod=14)

        # absolute price oscillator: slowMA(price) - fastMA(price)
        data["apo{0}".format(i)] = APO(close.shift(i),
                                       fastperiod=12,
                                       slowperiod=26,
                                       matype=0)
        # volatility indicator

        data["atr{0}".format(i)] = ATR(high.shift(i),
                                       low.shift(i),
                                       close.shift(i),
                                       timeperiod=14)  # average true range
        # Volume indicator
        # on balance volume
        data["obv{0}".format(i)] = OBV(close.shift(i), volume.shift(i))
        # chaikin A/D oscillator
        data["adosc{0}".format(i)] = ADOSC(high.shift(i),
                                           low.shift(i),
                                           close.shift(i),
                                           volume.shift(i),
                                           fastperiod=3,
                                           slowperiod=10)

        # Stochastic Oscillator Slow %k: (C-L)/(H-L)*100
        data["slowk{0}".format(i)], data["slowd{0}".format(i)] = STOCH(
            high.shift(i),
            low.shift(i),
            close.shift(i),
            fastk_period=5,
            slowk_period=3,
            slowk_matype=0,
            slowd_period=3,
            slowd_matype=0)

        # STOCHF - Stochastic Fast
        data["fastk{0}".format(i)], data["fastd{0}".format(i)] = STOCHF(
            high.shift(i),
            low.shift(i),
            close.shift(i),
            fastk_period=5,
            fastd_period=3,
            fastd_matype=0)

        #vortex
        data["vortex_indicator_pos{0}".format(i)] = vortex_indicator_pos(
            high.shift(i), low.shift(i), close.shift(i), n=14, fillna=False)
        data["vortex_indicator_neg{0}".format(i)] = vortex_indicator_neg(
            high.shift(i), low.shift(i), close.shift(i), n=14, fillna=False)

        # returns
    for i in range(1, window):
        # overlap studies
        data["madev{0}".format(i)] = close - close.shift(1).rolling(
            window=i).mean()
        data["return{0}".format(i)] = close - close.shift(i)
    # std
    for i in range(2, window):
        data["std{0}".format(i)] = close.rolling(
            i).std()  #Standard deviation for a period of 5 days

    return data  #madev, roc,willr,rsi,apo,atr,obv,adosc,slowk,slowd,fastk,fastd,vpos, vneg, returns, stds
コード例 #9
0
 def calcOBV(self, dates, price, volume):
     obv = OBV(price, volume)
     OBV_, isExist = self.createDateFrame(dates, obv, ['timestamp', 'OBV'])
     return OBV_, isExist
コード例 #10
0
def setvolume(open, high, low, close, volume):
    #volume
    df["obv"] = OBV(close, volume)
    #df["ad"] = AD(high, low, close, volume)
    df["ad"] = ADOSC(high, low, close, volume, fastperiod=3, slowperiod=10)
コード例 #11
0
                                  slowperiod=26,
                                  signalperiod=9)
# print('-----------------------------------MACD-----------------------------------')
# print(macd[34:37])
# print(macdsignal[34:37])
# print(macdhist[34:37])
#
rsi = RSI(fechamento, timeperiod=14)
# print('-----------------------------------RSI-----------------------------------')
# print(rsi[34:37])
# Momentum Indicators # Volume Indicators
mfi = MFI(maximo, minimo, fechamento, volume, timeperiod=14)
# print('-----------------------------------MFI-----------------------------------')
# print(mfi[34:37])

#Volume Indicators
ad = AD(maximo, minimo, fechamento, volume)
adosc = ADOSC(maximo, minimo, fechamento, volume, fastperiod=3, slowperiod=10)
obv = OBV(fechamento, volume)

# dataFrameConcatened = pd.concat(fechamento, rsi)
dataFrameConcatened = np.concatenate((abertura, rsi), axis=0)
print(dataFrameConcatened)

ax = plt.gca()
# brsr6CSV.plot(kind='line',x='DATA',y='ABERTURA',ax=ax)
brsr6CSV.plot(kind='line', x='DATA', y='FECHAMENTO', color='red', ax=ax)
plt.plot(upBR, label='BB UP')
plt.plot(lowBR, label='BB Low')
plt.show()
コード例 #12
0
    def fetch(self,
              symbol: str,
              interval: Interval = Interval.DAY,
              window: Window = Window.YEAR,
              indicators: Indicators = [],
              verbose=False) -> pd.DataFrame:
        """
        Fetch symbol stock OHLCV from Yahoo Finance API

        Args:
            symbol (str): Symbol to fetch
            interval (Interval, optional): Interval (hour, day, week, ...) of data. Defaults to Interval.DAY.
            window (Window, optional): Length (day, week, month, year) of interval. Defaults to Window.YEAR.
            indicators (Indicators, optional): Array of indicators to include in the result. Defaults to empty array.

        Returns:
            pd.DataFrame: OHLCV pandas DataFrame with interval on window length and indicators if specified
        """
        try:
            if verbose:
                print(
                    f"Fetching OHLCV {symbol} stock data on {interval.name} interval and {window.name} window"
                )

            # Generic url to fetch
            url = f"https://query1.finance.yahoo.com/v8/finance/chart/{symbol}?region=FR&lang=fr-FR&includePrePost=false&interval={interval.value}&range={window.value}&corsDomain=fr.finance.yahoo.com&.tsrc=finance"

            req = requests.get(url)

            # Testing request status code
            if req.status_code == 200:

                # Extracting data as json
                data = req.json()

                # Creating new DataFrame
                df = pd.DataFrame()

                # Extract date from object
                if interval in [
                        Interval.MINUTE, Interval.TWO_MINUTE,
                        Interval.FIVE_MINUTE, Interval.FIFTEEN_MINUTE,
                        Interval.THIRTY_MINUTE, Interval.HOUR
                ]:
                    dateFromUnix = [
                        datetime.utcfromtimestamp(dt).strftime(
                            "%Y-%m-%d %H:%M:%S")
                        for dt in data["chart"]["result"][0]["timestamp"]
                    ]
                else:
                    dateFromUnix = [
                        datetime.utcfromtimestamp(dt).strftime("%Y-%m-%d")
                        for dt in data["chart"]["result"][0]["timestamp"]
                    ]

                # Date & OHLCV to DataFrame
                df["date"] = pd.to_datetime(dateFromUnix)
                df["open"] = data["chart"]["result"][0]["indicators"]["quote"][
                    0]["open"]
                df["high"] = data["chart"]["result"][0]["indicators"]["quote"][
                    0]["high"]
                df["low"] = data["chart"]["result"][0]["indicators"]["quote"][
                    0]["low"]
                df["close"] = data["chart"]["result"][0]["indicators"][
                    "quote"][0]["close"]
                df["volume"] = data["chart"]["result"][0]["indicators"][
                    "quote"][0]["volume"]

                # Drop NaN on close col
                df.dropna(subset=["close"], inplace=True)

                # Divide volume column by a 1 000
                df["volume"] = df["volume"].div(1000)

                # Set date column as index
                df.set_index("date", inplace=True)

                for indicator in indicators:
                    # ADX
                    if indicator == Indicators.ADX:
                        df[indicator.value] = ADX(df["high"], df["low"],
                                                  df["close"])
                    # BBANDS
                    elif indicator == Indicators.BBANDS:
                        df[Indicators.BBANDS.value[0]], df[
                            Indicators.BBANDS.value[1]], df[
                                Indicators.BBANDS.value[2]] = BBANDS(
                                    df["close"])
                        df["p_band"] = 100 - \
                            (df["l_band"] / df["u_band"] * 100)
                        df["p_band_ma_5"] = MA(df["p_band"], timeperiod=5)
                    # EMA
                    elif indicator == Indicators.EMA:
                        for ema in Indicators.EMA.value:
                            df[ema] = EMA(df["close"],
                                          timeperiod=int(ema.split("_")[1]))
                    # MA
                    elif indicator == Indicators.MA:
                        for ma in Indicators.MA.value:
                            df[ma] = MA(df["close"],
                                        timeperiod=int(ma.split("_")[1]))

                    # OBV
                    elif indicator == Indicators.OBV:
                        df[indicator.value] = OBV(df["close"], df["volume"])
                        df[indicator.value] = df[indicator.value].div(1000)
                    # PSAR
                    elif indicator == Indicators.PSAR:
                        df[indicator.value] = SAR(df["high"], df["low"])
                    # PERCENT CHANGE
                    elif indicator == Indicators.P_CHANGE:
                        for p_change in Indicators.P_CHANGE.value:
                            df[p_change] = df["close"].pct_change(
                                int(p_change.split(" ")[1])) * 100
                    # RSI
                    elif indicator == Indicators.RSI:
                        df[indicator.value] = RSI(df["close"])

                return df.round(decimals=2)

        except Exception as e:
            print(e)